
Dynamic Aggregates in Expressive ASP
Heuristics for Configuration Problems

Richard Comploi-Taupe1, Gerhard Friedrich2, and Tilman Niestroj2

1 Siemens AG Österreich, Vienna, Austria
2 Universität Klagenfurt, Klagenfurt, Austria

Abstract. First-order logic has been applied successfully to real-world
configuration problems through Answer Set Programming (ASP). To ex-
tend the application scope of ASP, lazy grounding and domain-specific
heuristics were introduced. Domain-specific heuristics support the prob-
lem solver in selecting choices aiming at minimizing the search effort.
Dynamic heuristics exploit the current state of the problem-solving pro-
cess and assign priorities to choices. Depending on the domain, heuristics
must be formulated which reason about the properties of sets of atoms.
E.g., how many components are connected to a particular type of com-
ponent, or what is the current sum/maximum/minimum of a physical
quantity (power, voltage, current, etc.) of a particular subconfiguration?
For expressing such queries, ASP offers aggregates. The semantics of
these aggregates are defined w.r.t. a complete solution. However, in dy-
namic heuristics, the problem solver has to reason about partial solving
states. In this paper, we extend heuristics in ASP with dynamic aggre-
gates and show their implementation as well as effectiveness.

Keywords: knowledge-based configuration · answer set programming ·
heuristics

1 Introduction

Answer Set Programming (ASP) [7] is a declarative knowledge representation
and reasoning framework based on first-order logic that has been applied suc-
cessfully to a variety of industrial problems [6] such as configuration [5]. Current
ASP solvers transform first-order descriptions of problem instances into propo-
sitional logic (called grounding) and apply a propositional problem solver (e.g.,
backtracking search) to generate solutions. However, applications manifested
two issues with the ground-and-solve approach. The first issue is the so-called
grounding bottleneck : Large problem instances cannot be grounded by modern
grounders like gringo [9] in acceptable time and space. The second issue is
that, even if the problem can be grounded, computation of answer sets might
take considerable time, as indicated by ASP competition reports [10].

Both issues were recently addressed. First, to overcome the grounding bottle-
neck, lazy grounding ASP systems interleave grounding and solving to instanti-
ate and store only relevant parts of the ground program in memory. The second

2 R. Comploi-Taupe, G. Friedrich, and T. Niestroj

performance-related issue is tackled by modern solvers using various techniques,
among which domain-specific heuristics play a central role.

The work in [4] extends existing approaches by (1) introducing dynamic
heuristics and (2) their exploitation in a lazy-grounding ASP system. The ASP
system extended by this approach is Alpha [16], the most actively developed
lazy-grounding system available. Dynamic heuristics allow reasoning about the
current problem-solving state represented by a partial assignment of truth values
to some (but not all) atoms of a logical specification.

This reasoning may require the application of aggregation. E.g., during the
configuration process of electronic equipment, an effective heuristic for problem-
solving can say: Given the current state of problem-solving, select the most
power-hungry, currently unconnected electronic board, and connect this board
to the rack with minimal power consumption (i.e., the rack for which the total
power consumption of all boards currently connected is minimal).

However, state-of-the-art ASP aggregates are evaluated only w.r.t. a complete
assignment of truth values, i.e., only if every atom (proposition) is true or false,
so that their value cannot change during solving. For our rack configuration
example, this semantics implies that the power consumption of a rack can only
be determined if the assignment of boards to a rack is final. Consequently, ASP
aggregates like sum cannot be employed in dynamic heuristics to reason about
the current search state where board assignments to a rack are not completed.

In this paper, we introduce dynamic aggregates, which are computed w.r.t. the
current state of problem-solving. Consequently, such aggregates can be exploited
in dynamic heuristics to steer the reasoning process depending on the current
state of problem-solving.

The paper is organized as follows. In Section 2, we give a brief introduction
to ASP and lazy grounding. Section 3 provides a driving example and introduces
dynamic aggregates informally. In Section 4, we present the syntax and semantics
of dynamic aggregates. Section 5 shows the implementation and integration of
dynamic aggregates using a query-driven approach. Finally, in Section 6, we
present the results of our evaluation.

2 Answer Set Programming

Answer Set Programming (ASP) [7] is an approach to declarative programming.
Instead of stating how to solve a problem, the programmer formulates the prob-
lem as a logic program specifying the search space and the properties of valid
solutions. An ASP solver then finds models (so-called answer sets) for this logic
program, which correspond to solutions for the original problem.

2.1 Syntax

ASP offers a rich input language, of which we introduce only the core concepts
needed in this paper. For a comprehensive definition of ASP’s syntax and se-
mantics, we refer to [2].

Title Suppressed Due to Excessive Length 3

Let ⟨V, C,F ,P⟩ define a first-order language, where V is a set of variable
symbols, C is a set of constant symbols, F is a set of function symbols, and P is
a set of predicate symbols.

A classical atom is of the form p(t1, . . . , tn), where p ∈ P is a predicate
symbol and t1, . . . , tn are terms. Each variable v ∈ V and each constant c ∈ C is
a term. Furthermore, for f ∈ F , f(t1, . . . , tn) is a function term. ASP also allows
built-in atoms, such as equality or comparison predicates, which take arithmetic
terms as arguments, e.g., X∗∗2 > 1 where ∗∗ is the power operator.

An answer-set program P is a finite set of rules of the form

h← b1, . . . , bm, not bm+1, . . . , not bn. ⟨1 ⟩

where h and b1, . . . , bn are atoms and not is negation as failure (a.k.a. default
negation), which refers to the absence of information, i.e., an atom is assumed
to be false as long as it is not derived by some rule. A literal is either an atom a
or its negation not a. Given a rule r of the form ⟨1⟩, head(r) = {h} is called the
head of r, and body(r) = {b1, . . . , bm, not bm+1, . . . ,not bn} is called the body
of r. By body+(r) = {b1, . . . , bm} and body−(r) = {bm+1, . . . , bn} we denote
the positive and negative atoms in the body of r, respectively. A rule r where
head(r) = ∅, e.g., ← b., is called constraint. A rule r where body(r) = ∅, e.g.,
h← ., is called fact. In facts the arrow can be omitted. A rule is ground if all its
atoms are variable-free. A ground program comprises only ground rules.

2.2 Semantics

Given a program P , the Herbrand universe of P , denoted by UP , consists of
all integers and of all ground terms constructible from constant symbols and
function symbols appearing in P . The Herbrand base of P , denoted by BP , is
the set of all ground classical atoms that can be built by combining predicates
appearing in P with terms from UP as arguments [2].

A substitution σ is a mapping from variables V to elements of the Herbrand
universe UP of a program P . Let O be a rule, an atom, or a literal, then by Oσ we
denote a rule, atom, or literal obtained by replacing each variable v ∈ vars(O)
by σ(v). The function vars maps any rule, atom, literal, or any other object
containing variables to the set of variables it contains. For instance, vars(a(X)) =
{X} and for a rule r1 : a(X)← b(X,Y)., vars(r1) = {X,Y}.

As usual, we assume rules to be safe, which is the case for a rule r if vars(r) ⊆⋃
a∈body+(r) vars(a), e.g., all variables must occur in the positive atoms of the rule,

which allows the grounding process to substitute them with constants.
The (ground) instantiation of a rule r equals rσ for some substitution σ,

which maps all variables in r to ground terms. The (ground) instantiation grd(P)
of a program P is the set of all possible instantiations of the rules in P [2]. Func-
tion symbols may cause the Herbrand base and the full grounding of a program
to be infinite. By restricted usage of function symbols, answer-set programs can
be designed in a way that reasoning is decidable.

An Herbrand interpretation for a program P is a set of ground classical atoms
I ⊆ BP . A ground classical atom a is true w.r.t. an interpretation I, denoted

4 R. Comploi-Taupe, G. Friedrich, and T. Niestroj

I |= a, iff a ∈ I. A ground literal not a is true w.r.t. an interpretation I, denoted
I |= not a, iff I ⊭ a. A ground rule r is satisfied w.r.t. I, denoted I |= r, if its
head atom is true w.r.t. I (h ∈ head(r) : I |= h) whenever all body literals are
true w.r.t. I (∀b ∈ body(r) : I |= b). An interpretation I is a model of P , denoted
I |= P , if I |= r for all rules r ∈ grd(P).

Given a ground program P and an interpretation I, let P I denote the trans-
formed program obtained from P by deleting rules in which a body literal is
false w.r.t. I: P I = {r | r ∈ P,∀b ∈ body(r) : I |= b}.

An interpretation I of a program P is an answer set of P if it is a subset-
minimal model of grd(P)I , i.e., I is a model of grd(P)I and there exists no I ′ ⊊ I
that is a model of grd(P)I .

2.3 Notation

In this section, we introduce some notation that will be used later in the article.

An assignment A over BP is a set of signed literals T a, F a, or M a,
where T a and F a express that an atom a is true and false, respectively, and
M a indicates that a “must-be-true”. M means that an atom must eventually
become true by derivation in a correct solution extending the current partial
assignment, but no derivation has yet been found that would make the atom
true. E.g., given constraint ← not b. we know that atom b must be true and
has to eventually become true by derivation. Intuitively, T b ∈ A means that b
is true and justified, i.e., derived by a rule that fires under A, while M b ∈ A
only indicates that b is true but potentially not derived. Let As = {a | s a ∈ A}
for s ∈ {F,M,T} denote the set of atoms occurring with a specific sign in
assignment A. We assume assignments to be consistent, i.e., no negative literal
may also occur positively (AF∩ (AM∪AT) = ∅), and every positive literal must
also occur with must-be-true (AT ⊆ AM). The latter condition ensures that
assignments are monotonically growing (w.r.t. set inclusion) in case an atom
that was must-be-true becomes justified by a rule and hence changes to true.

An assignment A is complete if every atom in the Herbrand base is assigned
true or false (∀a ∈ BP : a ∈ AF ∪AT). A not complete assignment is partial.

Many useful language constructs have been introduced to extend the basic
language of ASP defined in Sections 2.1 and 2.2. We discuss such extensions only
briefly and refer to [2] and [7] for full details.

A cardinality atom is of the form lb {a1 : l11 , . . . , lm1 ; . . . ; an :
l1n , . . . , lmn} ub, where, for 1 ≤ i ≤ n, ai : l1i , . . . , lmi represents a conditional
literal in which ai (the head of the conditional literal) is a classical atom and all
lji are literals, and lb and ub are integer terms indicating a lower and an upper
bound, respectively. If one or both of the bounds are not given, their defaults are
used, i.e., 0 for lb and ∞ for ub. A cardinality atom is satisfied if lb ≤ |C| ≤ ub
holds, where C is the set of head atoms in the cardinality atom that are satisfied
together with their conditions (e.g., l1i , . . . , lmi

for ai).

As an extension of cardinality atoms, ASP also supports aggregate atoms
that apply aggregate functions like count or sum to sets of literals. An aggregate

Title Suppressed Due to Excessive Length 5

atom is satisfied if the value computed by the aggregate function respects the
given bounds, e.g., 1 = #sum{1 : a; 2 : b} is satisfied if a but not b is true.

2.4 Lazy Grounding

Lazy grounding is an approach that interleaves the solving and grounding phases,
such that computations are guaranteed to yield all answer sets. The foundation
for lazy grounding is known as the computation sequence [12]. A computation
sequence S = ⟨S0, S1, . . . , Sn⟩ is a sequence of partial assignments that is mono-
tonically growing (w.r.t. set inclusion). Every element Si of the sequence repre-
sents the state of the computation at step i. The first element of the sequence
is empty (S0 = ∅), and every other element Si contains the signed literals that
can be derived from the preceding partial assignment Si−1 in the program P .

Since each element of a computation sequence is a partial assignment contain-
ing signed literals, and the sequence is monotonically growing, each Si contains
atoms assignedT that will remain true in all extensions of Si, and atoms assigned
F that will definitely remain false in all extensions of Si.

Computation sequences require a normal logic program as input, i.e., rules
of the form ⟨1⟩ without cardinality atoms and aggregate atoms. Hence lazy
grounding systems usually only accept normal logic programs or, in the case of
Alpha, rewrite enhanced ASP constructs like aggregates into normal rules.

A rule r is said to be applicable in Si if {T a | a ∈ body+(r)} ⊆ Si and
{M a | a ∈ body−(r)} ∩ Si = ∅, i.e., if the positive body is satisfied and Si does
not contradict the negative body. For every applicable rule r in Si without a
negative body, the partial assignment Si is extended to Si+1 by T head(r).

Based on the fact that the computation sequence only needs to know those
ground rules that are applicable only those rules are grounded, whose positive
body holds in the current partial assignment.

Each applicable rule r in Si with a non-empty negative body constitutes an
active choice point. Given a set of choice points for Si the problem solver has to
decide which rule to apply. Applying an applicable rule r has the consequence
that Si is extended to Si+1 by adding T head(r) and F a for all a ∈ body−(r),
i.e., all atoms of the negative body are assumed to be false.

In the following example in S0, Rule 1 is the only applicable rule. Conse-
quently, S1 = {M x(1),T x(1)}. In S1 Rules 2 and 3 are applicable. If the solver
decides to apply Rule 2 then M b(1), T b(1) and F c(1) are added to assignment
S2 and therefore Rule 3 is not applicable in S2.

x(1)← . % Rule 1
b(1)← x(1), not c(1). % guessing b Rule 2
c(1)← x(1), not b(1). % guessing c Rule 3

Deciding which rule to apply is based on heuristics which may be general,
i.e., designed for every ASP program [13], or they may be domain-specific, e.g.,
designed for a specific problem [4].

6 R. Comploi-Taupe, G. Friedrich, and T. Niestroj

3 Example

As an introductory example, consider the following ASP program. The idea is
that for every number i ∈ {1, . . . ,n} the solver can decide either to assert b(i)
or c(i). As an example we set n = 400. Let Bs and Cs be all the b/1 and c/1
atoms in an answer set of the example program. We require that any answer set
must fulfill the constraint ((

∑
b(i)∈Bs i)− (

∑
c(i)∈Cs i))

2 ≤ 1, e.g., the difference
between these two sums must be at most 1. We call this problem the Balanced
Sum Problem (BSP). The example program comprises a guessing part and a part
where solutions are checked. Moreover, we may specify initial facts like b(200)
and b(201). In the worst case, 2398 guesses are possible. To avoid a high number
of possible guesses, we can formulate heuristics that aid the solver in performing
correct guesses such that backtracking is minimized.

x(1..400). % initializing values from 1 to 400.
% guessing
b(X)← x(X), not c(X). % guessing b
c(X)← x(X), not b(X). % guessing c
% initial imbalance
b(200). b(201).
% check solution
sumB(Sum)← Sum = #sum{Y : b(Y)}.
sumC(Sum)← Sum = #sum{Y : c(Y)}.
% constrain difference between sums
← sumB(SB), sumC(SC), (SB− SC)∗∗2 > 1.
% heuristics
#heuristic b(X) : % b-heuristic

x(X),not c(X),S = #sum{Y : c(Y)}, Weight = X,Level = S. [Weight@Level]
#heuristic c(X) : % c-heuristic

x(X),not b(X),S = #sum{Y : b(Y)}, Weight = X,Level = S. [Weight@Level]

As an example, let us consider an instantiated version of a heuristic for the
partial assignment S1 = {M b(200),T b(200), M b(201), T b(201),M x(1),
T x(1), . . . ,M x(400), T x(400)}, i.e., the partial assignment comprising all
initial facts which are true. For x(400) an instance of the c-heuristic (includ-
ing the evaluation of the aggregate) is #heuristic c(400) : x(400),not b(400),
401 = #sum{200, 201}, [400@401].

Heuristic directives assign a weight and a level to a rule which derives an
atom. In this instantiated heuristic directive, the weight is 400, and the level is
401. All other instantiated heuristics have either a lower level or lower weights
in case of the same level. For making choices, guesses are preferred with higher
levels, and higher weights are prioritized among guesses with the same level.
Consequently, the solver will apply a rule which asserts c(400).

The novel concept of this paper is that aggregates in heuristic directives like
#sum are evaluated w.r.t. the current assignment. For the partial assignment S1,
the aggregate #sum{Y : b(Y)} in the c-heuristic is evaluated as #sum{200, 201}
since S1 contains the atoms T b(200) and T b(201). Applying the aggregate

Title Suppressed Due to Excessive Length 7

function #sum derives 401. Note, in the partial assignment S1, the c-heuristic is
not applicable if the #sum aggregate is evaluated under the standard declarative
semantics of ASP. This semantics assumes that the truth assignments for the
b/1 atoms are fixed.

By adding the shown heuristic directives to the example program, wrong
choices, which lead to backtracks, can be avoided for the depicted problem in-
stance. The following section will present the syntax and semantics of heuristics
that employ dynamic aggregates.

4 Syntax and semantics

In [4] domain-specific heuristics for answer set programming were proposed which
allow to reason about the current state of the problem-solving process. This state
is reflected by the latest partial assignment. Consequently, heuristic directives
are evaluated w.r.t. this assignment. However, in the semantics of ASP the truth
value of aggregates as presented in the example (e.g., S = #sum{Y : b(Y)}) can
only be determined w.r.t. a fixed set of truth assignments. In the declarative
semantics of ASP assigning a truth value to S = #sum{Y : b(Y)} implies that
the set of b/1 atoms which are assigned to true is fixed, i.e., rules must not be
applied which assert additional b/1 atoms to true.

However, in the spirit of [4] we propose to evaluate aggregates w.r.t. the latest
partial assignment Si to evaluate heuristic directives for determining the choice,
i.e., which rule to apply to compute the next partial assignment.

Definition 1 (Heuristic Directive). A heuristic directive is of the form ⟨2⟩,
where ai (0 ≤ i ≤ n) are atoms and w and l are integer terms.

#heuristic a0 : a1, . . . , ak,not ak+1, . . . ,not an.[w@l] ⟨2 ⟩

The heuristics’ head is given by a0 and its condition by {a1, . . . , ak, not ak+1,
. . . , not an}.

We call an atom in a heuristic directive a heuristic atom. We now describe
our semantics, beginning with the condition under which a heuristic atom is
satisfied.

Definition 2 (Satisfying a Heuristic Atom). Given a ground heuristic
atom a and a partial assignment A, a is satisfied w.r.t. A iff a ∈ AT, i.e.,
atom a is assigned to true.

The head of a heuristic directive d of the form ⟨2 ⟩ is denoted by head(d) = a0,
its weight by weight(d) = w if given, else 0, and its level by level(d) = l if
given, else 0. The condition of a heuristic directive d is denoted by cond(d) :=
{a1, . . . , ak, not ak+1, . . . , not an}, the positive condition is cond+(d) :=
{a1, . . . , ak} and the negative condition is cond−(d) := {ak+1, . . . , an}.

Whether a heuristic directive is satisfied depends on whether the atoms oc-
curring in the directive are satisfied.

8 R. Comploi-Taupe, G. Friedrich, and T. Niestroj

Definition 3 (Satisfying a Heuristic Directive). Given a ground heuristic
directive d and a partial assignment A, cond(d) is satisfied w.r.t. A iff: every
a ∈ cond+(d) is satisfied and no a ∈ cond−(d) is satisfied.

Intuitively, a heuristic condition is satisfied iff its positive part is fully satisfied
and none of its default-negated literals is contradicted.

Definition 4 (Applicability of a Heuristic Directive). A ground heuristic
directive d is applicable w.r.t. a partial assignment A and a ground program P iff:
cond(d) is satisfied, ∃r ∈ P s.t. head(r) = head(d) and {T a | a ∈ body+(r)} ⊆ A
and {M a | a ∈ body−(r)} ∩A = ∅, and head(d) ̸∈ (AT ∪AF).

Intuitively, a heuristic directive is applicable iff its condition is satisfied, there
exists a currently applicable rule that can derive the atom in the heuristic direc-
tive’s head, and the atom in its head is assigned neither T nor F. If the atom
in the head is assigned M, the heuristic directive is still applicable, because any
atom with the non-final truth value M must be either T or F in any answer set.

What remains to be defined is the semantics of weight and level. Given a set
of applicable heuristic directives, one directive with the highest weight will be
chosen from the highest level.

Definition 5 (Heuristics Eligible for Choice). Given a set D of applicable
ground heuristic directives, the subset eligible for immediate choice is defined as
maxpriority(D) in two steps:

maxlevel(D) := {d | d ∈ D and level(d) = maxd∈D level(d)}
maxpriority(D) := {d | d ∈ maxlevel(D) and weight(d) = maxd∈maxlevel(D) weight(d)}

After choosing a heuristic using maxpriority, a solver makes a decision on the
directive’s head atom. Other solving procedures, e.g., deterministic propagation,
are unaffected by processing heuristics. In case no heuristic directive is applicable
or multiple directives have the same maxpriority the solver’s default heuristic
(e.g., VSIDS) makes a choice as usual.

Aggregate atoms may be employed in the condition of a heuristics di-
rective. An aggregate atom is of the form s1 ≺1 α {t : l11 , . . . , lm1

; . . . ;
t : l1n , . . . , lmn

} ≺2 s2 where t corresponds to a variable, an integer, or a ground
atom. We call t an aggregate term. α refers to some aggregate function that
is applied to the multiset of aggregate terms t that remain after evaluating the
condition l1i , . . . , lmi . The aggregate terms are treated as members of a mulitset.
Duplicates are allowed.3

The result of applying α is exploited to evaluate the comparison condition
expressed by s1 ≺1 and ≺2 s2. These conditions may be omitted. s1, s2 are terms,

3 Note that this semantics differs from the ASP semantics of aggregates employed in
rules. First, for our prototypical system t is a single term and not a tuple of terms
for simplicity reasons. Second, we allow a multiset of aggregate terms instead of a
set, i.e., we do not remove duplicates. Sets and multisets can be easily implemented.
However, the removal of duplicates may introduce additional computational costs.

Title Suppressed Due to Excessive Length 9

e.g., numbers or variables. s1 ≺1 and ≺2 s2 are called guards. For the guard
operator ≺ comparison operators such as =, ̸=,≤,≥, <,> may be employed.

If in t : l1i , . . . , lmi of an aggregate atom the term t is a variable, then this
variable must be safe. This variable is safe if it is contained in the condition or
it is a global variable. A variable in a heuristic directive d is global if it appears
in a classical atom in cond+(d) or in a guard of an aggregate atom of d where ≺
corresponds to =.

We allow aggregate functions α like #count (the number of aggregate terms)
or #sum (sum of aggregate terms).

An aggregate atom is satisfied if the value computed by the aggregate func-
tion respects the given bounds, e.g., 1 = #sum{1 : a; 1 : b} is satisfied if either a
or b is true. Let us assume that the facts a(1). a(2). b(5). are given. Evaluating
the aggregate atom X = #sum{Y : a(Y);Y : b(Y)} will bind 8 to variable X.

5 Integration into a lazy-grounding ASP solver

In search for answer sets, Alpha applies heuristics to select an active choice
point. In contrast to [4], the heuristic directives are transformed to Prolog
queries and evaluated by a Prolog interpreter. We have chosen this approach to
implement the efficient evaluation of dynamic aggregates in heuristic directives.

Query-driven heuristics are employed by Alpha if the -uqh flag is set. The
heuristic directives are removed from the input program and translated into in-
ternal data structures. These data structures comprise all the necessary informa-
tion for evaluating the heuristic directives, such as their head atom, variables,
atoms occurring inside the heuristic, and crucially, their respective Prolog
query. Thus, the heuristic directives are separately stored from the program and
are all evaluated whenever a choice is made.

As an example, the following heuristic directive

#heuristic c(X) :
x(X), not b(X), S = #sum{Y : b(Y)},
W = S ∗ 10 + X. [W@1]

is translated to the following Prolog query:
x(X), \+ b(X),

aggregate all(sum(Y), b(Y), 0), S is 0,
WEIGHT is S ∗ 10+ X, LEVEL is 1, \+ c(X).

The Prolog predicate aggregate all(+Template, : Goal, −Result) ag-
gregates bindings in Goal according to Template. Possible template values com-
prise the aggregate functions, count, sum(X), max(X), and min(X). The variable
in sum(X), max(X), and min(X) corresponds to the variable serving as aggregate
term and is instantiated by querying Goal which contains this variable. The re-
sult is bound to an anonymous variable (0 in our example) and exploited in the
aggregates’ guards. Any negated atom is preceded by the operator \+, equivalent
to not for our purposes. Finally, the negated head atom of the heuristic directive
is added to the query to exclude already assigned head atoms.

10 R. Comploi-Taupe, G. Friedrich, and T. Niestroj

During problem-solving, Alpha synchronizes the assignments with the
database of the Prolog system. Every atom assigned as true by Alpha is
inserted in the Prolog database. If such atoms are removed from the assign-
ment, the corresponding facts are retracted from the Prolog database. Atoms
assigned to false or must-be-true by Alpha are not considered since the heuristic
directives are evaluated on atoms assigned to true.

The current implementation of Alpha sources and binaries which imple-
ment query-driven heuristics can be found on https://github.com/tilmanni/

Alpha/tree/domspec_heuristics_extended_prolog.

6 Evaluation

We tested our approach to declarative domain-specific query-driven heuristics by
creating heuristics for two example domains and applying the extended Alpha
system. The two concrete domains under investigation were the Partner Units
Problem (PUP) and the Balanced Sum Problem (BSP) introduced in Section 3.

These two problems are abstracted variants of typical configuration
(sub)problems experienced in more than 25 years of applying AI technology
in the automated configuration of electronic systems [5]. To put ASP systems
under stress, we used problem encodings and instances of varying sizes, where
the larger instances were challenging to ground and/or to solve. More precisely,
traditional grounders excessively consumed space or time when grounding these
instances, and/or solving was infeasible without domain-specific heuristics.

6.1 Experimental setup

Encodings (including heuristics) and instances used for our experiments are avail-
able online.4

Alpha was used without justification analysis [1] (command-line argument
-dj) and without support for negative integers in aggregates (-dni). Apart from
that, Alpha was used in its default configuration. The JVM running Alpha was
called with command-line parameters -Xms1G -Xmx24G, thus initially allocating
1 GiB for Java’s heap and setting the maximum heap size to 24 GiB. The
Prolog interpreter swi-prolog5 [17] version 9.0.4 was integrated with Alpha
via jpl.6 For comparison, clingo7 [8] was used in version 5.6.2.

Each of the machines used to run the experiments ran Ubuntu 22.04.2 LTS
Linux and was equipped with two Intel® Xeon® E5-2650 v4 @ 2.20GHz CPUs
with 12 cores. Hyperthreading was disabled and the maximum CPU frequency
was set to 2.90GHz. Scheduling of benchmarks was done with slurm8 version

4 https://github.com/tilmanni/Alpha/tree/domspec_heuristics_extended_

prolog/Evaluation
5 https://www.swi-prolog.org/
6 https://jpl7.org/
7 https://potassco.org/clingo/
8 https://slurm.schedmd.com/

Title Suppressed Due to Excessive Length 11

21.08.5. runsolver9 v3.4.1 was used to limit time consumption to 10 minutes
per instance and memory to 32 GiB. Care was taken to avoid side effects be-
tween CPUs, e.g., by requesting exclusive access to an entire machine for each
benchmark.

All solvers were configured to search for the first answer set of each problem
instance. Finding one or only a few solutions is often sufficient in industrial use
cases since solving large instances can be challenging [5]. Therefore, the domain-
specific heuristics used in the experiments are designed to help the solver find
one answer set that is “good enough”, even though it may not be optimal.

6.2 Case Study 1: The Partner Units Problem (PUP)

The Partner Units Problem (PUP) [15] is an abstracted version of industrial con-
figuration problems. In particular, PUP deals with configuring parts of railway
safety systems. This problem is a benchmark problem for ASP systems since its
challenges for grounding and solving.

Definition 6 (PUP). The input to the (PUP) is given by a set of units U and
a bipartite graph G = (S,Z,E) (also called the input graph), where S is a set of
sensors, Z is a set of zones, and E is a relation between S and Z.

The task is to find a partition of vertices v ∈ S ∪ Z into bags ui ∈ U such
that for each bag the following requirements hold: (1) the bag contains at most
UCAP vertices from S and at most UCAP vertices from Z; and (2) the bag has
at most IUCAP adjacent bags, where the bags u1 and u2 are adjacent whenever
vi ∈ u1 and vj ∈ u2 for some (vi, vj) ∈ E.

We say a unit ui is connected to a sensor/zone iff the sensor/zone is in
ui. Two units are connected iff they are adjacent. Connections correspond to
physical connections in an assembled configuration.

Figure 1 shows an example of a PUP instance. The bipartite graph comprises
six sensors and six zones. Each of the three units can be adjacent to at most
two other units, and each unit can contain at most two sensors and two zones.
Connections of sensors, zones, and units that satisfy all PUP requirements are
presented in Figure 1.

Encodings and instances. To show the application and effectiveness of query-
driven heuristics, we focus on the PUP instances employed in the ASP compe-
tition [10]. Heuristics allow exploiting knowledge about properties of classes of
problem instances. We concentrate on the double and double-variant classes of
PUP instances. For these instances, domain-specific heuristics were formulated.

Figure 2 shows the basic structure of the double instances. There are two
rows of rooms connected by doors. Each room corresponds to a zone, and each
door represents a sensor. For each room and the doors of this room, there is an
edge in the bipartite graph G, i.e., the zone and its doors are connected through
an edge. The double instances’ sizes vary depending on the number of columns

9 https://github.com/utpalbora/runsolver

12 R. Comploi-Taupe, G. Friedrich, and T. Niestroj

Fig. 1: PUP instance and one of its so-
lutions [4]

Fig. 2: Double and
double-variant in-
stances

of rooms. The structure depicted in Figure 2 shows three columns of rooms. The
bipartite graphs G of the double-variant instances comprise the nodes and edges
of the double instances. However, each dotted rectangle represents an additional
zone (i.e., the dotted rectangle clusters rooms). Each door (i.e., a sensor) next to
a dotted rectangle (i.e., a zone) is connected by an edge in G. Note that there is
no edge between a door surrounded by a rectangle and the zone corresponding
to this rectangle.

Heuristics. The double PUP instances can be solved efficiently without back-
tracking by formulating the following heuristic directives, which employ dynamic
aggregates.

#heuristic assigned sensor unit(S,U) :
assignable sensor unit(S,U), not sensor blocked on unit(S,U),
Deg sensor dyn = #count{Z : zone2sensor(Z,S), assigned zone unit(Z,)},
Forbidden placement total = #max{N : num forbidden places of sensors(S,N)},
Assigned sensors unit = #count{SN : assigned sensor unit(SN,U)},
Direct con zones = #count{Z : assigned zone unit(Z,U), zone2sensor(Z,S)},
W = Deg sensor dyn ∗ 10000+ Forbidden placement total ∗ 1000+

Assigned sensors unit ∗ 100+ Direct con zones ∗ 10.[W@0]

The atom assignable sensor unit(S,U) is true if a sensor is ready to be as-
signed, i.e., if a sensor is connected to a zone in the input graph and this zone
is connected to a unit. The atom sensor blocked on unit(S,U) is true if sensor
S cannot be connected to unit U. The variable Deg sensor dyn is assigned to
the number of zones connected to sensor S in the input graph and which are
already assigned to a unit. The atom zone2sensor(Z,S) encodes the edges of the
input graph (i.e., connections between zones and sensors). Values of the vari-
able Deg sensor dyn express the number of constraints put on placing sensor S.
We prefer connecting sensors to units with a higher number of constraints. The
atom num forbidden places of sens(S,N) represents the number of connections
to units that are not possible for S for a given set of connections between sensors,
zones, and units (e.g., the configuration in a specific partial assignment). Rules

Title Suppressed Due to Excessive Length 13

qh-alpha (10) clingo (3) h-clingo (5)

(a) Solver configurations, with numbers of solved instances

1 2 3 4 5 6 7 8 9 10

Number of instances

102

103

104

105

N
u
m
b
er

of
gu

es
se
s

(b) Number of guesses

1 2 3 4 5 6 7 8 9 10

Number of instances

0

1

2

3

R
ea
l
ti
m
e
(m

in
u
te
s)

(c) Time consumption

1 2 3 4 5 6 7 8 9 10

Number of instances

0

2

4

6

8

10

12

M
em

or
y
(G

iB
)

(d) Memory consumption

Fig. 3: Resource consumption for solving each PUP Double instance

compute different numbers depending on the connections. We prefer connecting
sensors to units with a higher number of forbidden places (i.e., connections). The
variable Assigned sensors unit counts the number of sensors connected to unit
U. The variable Direct con zones counts the number of zones that are connected
to unit U and which are connected to sensor S in the input graph. All these
numbers are added with different weights resulting in the final weight of the
heuristic directive expressing the priority to connect S and U. The design of the
heuristic directive follows the principle of preferring assignments of connections
that are most constrained in the spirit of heuristics of heuristics for constraint
satisfaction problems (CSPs) such as “fail-first” or “degree” [14].

The second heuristic for assigning zones to units in double PUP instances can
be formulated shorter than the presented one. We prefer assignments of zones
to units U, where the number of connected zones to U is high, and the number
of possible connections for sensors to U and its adjacent units is large.

Results. Figure 3 shows performance data for experiments with the double PUP
instances. Cactus plots were created in the usual way. In Figure 3c, the x-axis
gives the number of instances solved within real (i.e., wall-clock) time, given on
the y-axis. Similarly, Figure 3b shows the number of guesses needed and Fig-
ure 3d shows the memory consumed to solve the instances. In all plots, data
points are sorted by y-values. Figure 3a contains a legend with all solver con-
figurations. The number of instances solved by each system is shown next to its
name (in parentheses).

One curve was drawn for each solver configuration: Alpha with query-
driven evaluation of domain-specific heuristics (qh-alpha), and clingo with
(h-clingo) and without domain-specific heuristics.

Figure 4 shows the results for the double-variant instances in exactly the
same way. Alpha was used with encodings and heuristics designed to achieve a

14 R. Comploi-Taupe, G. Friedrich, and T. Niestroj

qh-alpha (5) clingo (3) h-clingo (0)

(a) Solver configurations, with numbers of solved instances

1 2 3 4 5

Number of instances

102

103

104

105

106

107

N
u
m
b
er

of
gu

es
se
s

(b) Number of guesses

1 2 3 4 5

Number of instances

0

1

2

3

4

5

6

7

8

R
ea
l
ti
m
e
(m

in
u
te
s)

(c) Time consumption

1 2 3 4 5

Number of instances

0

1

2

3

4

5

6

7

8

M
em

or
y
(G

iB
)

(d) Memory consumption

Fig. 4: Resource consumption for solving each PUP DoubleV instance

good performance as described above. clingo was used with the “new” encoding
from the Fifth ASP competition10 [3]. h-clingo used the domain-specific heuris-
tics devised in previous work [4]. Both systems used the same sets of problem
instances, which consisted of 10 instances of the “double” class (with a number
of units ranging between 20 and 200), and 6 instances of the “double-variants”
class (with 30–180 units).

Substantial differences can be observed. The curves for qh-alpha reach far-
thest to the right, meaning that Alpha with query-driven heuristics solved the
highest number of instances (all 10 double, 5 of 6 double-variants). clingo
needed more time and thus solved fewer instances. Apparently, the domain-
specific heuristics used with h-clingo were not useful for solving the double-
variants instances.

6.3 Case Study 2: The Balanced Sum Problem (BSP)

The second evaluation case deals with the BSP. In configuring, sub-problems
arise where quantities such as power consumption should be equally distributed.

Encodings and instances. As the encoding of the problem, we use the ASP code
introduced in Section 3. To strain the problem-solving, we increment the number
of x/1 atoms and adapt the constant in the rules for sumB/1 and sumC/1.

Results. Results obtained for BSP are shown in Figure 5, which was generated in
the same way as for PUP (cf. Section 6.2). clingo was used with the encoding
presented in Section 3, while Alpha used an alternative representation of the

10 https://www.mat.unical.it/aspcomp2014/\#Participants.2C_Encodings.2C_

Instance_Sets

Title Suppressed Due to Excessive Length 15

qh-alpha (100) clingo (14)

(a) Solver configurations, with numbers of solved instances

0 15 30 45 60 75 90

Number of instances

101

102

103

104

105

N
u
m
b
er

of
gu

es
se
s

(b) Number of guesses

0 15 30 45 60 75 90

Number of instances

0

1

2

3

4

5

6

7

8

R
ea
l
ti
m
e
(m

in
u
te
s)

(c) Time consumption

0 15 30 45 60 75 90

Number of instances

0

2

4

6

8

10

M
em

or
y
(G

iB
)

(d) Memory consumption

Fig. 5: Resource consumption for solving each BSP instance

sum constraints that the lazy-grounding system could evaluate more efficiently.
Since heuristics in the non-dynamic semantics are not known for this problem,
clingo was only used without domain-specific heuristics. A hundred instances
with n ∈ {10, 20, . . . , 990, 1000} were used for the experiments.

In the BSP experiments, qh-alpha greatly outperformed clingo, showing
the benefits of domain-specific heuristics evaluated in a query-driven way within
a lazy-grounding ASP solver. While qh-alpha solved all 100 instances within at
most 2.33 minutes per instance, clingo reaches the grounding bottleneck very
quickly and is not able to solve instances larger than n = 140.

7 Conclusions and future work

Dynamic heuristics are an effective means for formulating domain-specific heuris-
tics to speed up problem-solving. We have introduced dynamic aggregates, al-
lowing us to reason about the current problem-solving state. E.g., we can reason
about second-order properties of this state, such as the number of atoms with
specific properties or summing quantities over sets of atoms or computing the
maximum/minimum of such quantities. We have provided the prototypical im-
plementation qh-alpha by integrating Prolog with the lazy-grounding system
Alpha. This system was evaluated on two problems related to configuration, i.e.,
the double and double variant cases of the well-known Partner Units Problem,
and the Balanced Sum Problem. However, dynamic aggregates are a general
concept that knowledge engineers can apply to other problem domains. The
evaluation shows that dynamic aggregates employed in domain-specific heuris-
tics can considerably improve solving performance.

16 R. Comploi-Taupe, G. Friedrich, and T. Niestroj

References

1. Bogaerts, B., Weinzierl, A.: Exploiting justifications for lazy grounding of answer
set programs. In: IJCAI. pp. 1737–1745. ijcai.org (2018)

2. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T.,
Leone, N., Maratea, M., Ricca, F., Schaub, T.: ASP-Core-2 input language format.
Theory Pract. Log. Program. 20(2), 294–309 (2020)

3. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the
fifth answer set programming competition. Artif. Intell. 231, 151–181 (2016).
https://doi.org/10.1016/j.artint.2015.09.008

4. Comploi-Taupe, R., Friedrich, G., Schekotihin, K., Weinzierl, A.: Domain-specific
heuristics in answer set programming: A declarative non-monotonic approach. J.
Artif. Intell. Res. 76, 59–114 (2023)

5. Falkner, A.A., Friedrich, G., Haselböck, A., Schenner, G., Schreiner, H.: Twenty-
five years of successful application of constraint technologies at Siemens. AI Mag-
azine 37(4), 67–80 (2016)

6. Falkner, A.A., Friedrich, G., Schekotihin, K., Taupe, R., Teppan, E.C.: Industrial
applications of answer set programming. Künstliche Intell. 32(2-3), 165–176 (2018)

7. Gebser, M., Kaminski, R., Kaufmann, B., Lindauer, M., Ostrowski, M., Romero,
J., Schaub, T., Thiele, S., Wanko, P.: Potassco guide version 2.2.0 (2019), https:
//github.com/potassco/guide/releases/tag/v2.2.0

8. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. Theory Pract. Log. Program. 19(1), 27–82 (2019)

9. Gebser, M., Kaminski, R., König, A., Schaub, T.: Advances in gringo series 3.
In: LPNMR. Lecture Notes in Computer Science, vol. 6645, pp. 345–351. Springer
(2011)

10. Gebser, M., Maratea, M., Ricca, F.: The seventh answer set programming compe-
tition: Design and results. Theory Pract. Log. Program. 20(2), 176–204 (2020)

11. Lefèvre, C., Béatrix, C., Stéphan, I., Garcia, L.: ASPeRiX, a first-order forward
chaining approach for answer set computing. Theory Pract. Log. Program. 17(3),
266–310 (2017)

12. Liu, L., Pontelli, E., Son, T.C., Truszczynski, M.: Logic programs with abstract
constraint atoms: The role of computations. In: ICLP. Lecture Notes in Computer
Science, vol. 4670, pp. 286–301. Springer (2007)

13. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient SAT solver. In: DAC. pp. 530–535. ACM (2001)

14. Russell, S.J., Norvig, P.: Artificial Intelligence – A Modern Approach, Fourth Edi-
tion. Pearson Education (2022)

15. Teppan, E.C.: Solving the partner units configuration problem with heuristic con-
straint answer set programming. In: Configuration Workshop. pp. 61–68 (2016)

16. Weinzierl, A.: Blending lazy-grounding and CDNL search for answer-set solving.
In: LPNMR. Lecture Notes in Computer Science, vol. 10377, pp. 191–204. Springer
(2017)

17. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: Swi-prolog. Theory Pract.
Log. Program. 12(1-2), 67–96 (2012). https://doi.org/10.1017/S1471068411000494

