
Dijkstra’s Algorithm with Fibonacci Heaps:

An Executable Description in CHR

Jon Sneyers?, Tom Schrijvers??, Bart Demoen

Dept. of Computer Science, K.U.Leuven, Belgium
{jon,toms,bmd}@cs.kuleuven.be

Abstract. We construct a readable, compact and efficient implementation of Dijkstra’s
shortest path algorithm and Fibonacci heaps using Constraint Handling Rules (CHR), which
is increasingly used as a high-level rule-based general-purpose programming language. We
measure its performance in different CHR systems, investigating both the theoretical asymp-
totic complexity and the constant factors realized in practice.

1 Introduction

Constraint Handling Rules (CHR) [10] is a high-level programming language extension based on
multi-headed committed-choice rules. Originally designed for writing constraint solvers, it is in-
creasingly used as a general-purpose programming language. We assume that the reader is familiar
with CHR, referring to [10] for an overview. Recently, we have shown [21] that every algorithm
can be implemented in CHR with the best-known asymptotic time and space complexity. How-
ever, it remains an open problem whether classical algorithms can be implemented in CHR in an
elegant and compact way. Also, the constant factor hidden behind the notion of asymptotic time
complexity could be so huge to be completely paralyzing in practice.

Earlier work by Schrijvers and Frühwirth [20] resulted in an elegant CHR implementation of
the classical union-find algorithm which has the optimal asymptotic time complexity. In this pa-
per, we construct a readable, compact and efficient CHR program (Section 3) which implements
Dijkstra’s shortest path algorithm with Fibonacci heaps. We analyze its theoretical time complex-
ity (Section 4) and experimentally compare its performance in different CHR systems against a
low-level reference implementation in C (Section 5).

In this paper, we hope to demonstrate that CHR can be used as ‘executable pseudo-code’
for studying and designing algorithms while constructing a real program with the desired time
(and space) complexity. We also investigate the constant factor separating CHR from low-level
languages, and propose a more efficient type of constraint stores for indexing on ground integer
arguments, improving the constant factor (for our program) by 35% or more.

2 The single-source shortest path problem

The shortest path problem [26] is one of the most basic, and most studied, problems in algorithmic
graph theory. It appears as a sub-problem in many graph related algorithms, such as network
optimization algorithms. Given a weighted directed graph G = (V, E) and a source node s ∈ V ,
we are interested in the (shortest) distances from s to all other nodes of the graph. This is called
the Single-Source Shortest Path (SSSP) problem. In the rest of this paper we will use n = |V | to
denote the number of nodes and m = |E| to denote the number of edges. We assume the weights
to be nonnegative, but not necessarily integer. We also assume that the graph is connected, so n

is O(m).

? This work was partly supported by projects G.0144.03 and G.0160.02 funded by the Research Founda-
tion - Flanders (F.W.O.-Vlaanderen).

?? Research Assistant of the Research Foundation - Flanders (F.W.O.-Vlaanderen).

Dijkstra’s Algorithm with Fibonacci Heaps: An Executable Description in CHR 183

The SSSP problem with nonnegative edge weights can be solved using Dijkstra’s classical
algorithm [7]. A naive implementation of this algorithm runs in O(n2) time, which is suboptimal
for non-dense graphs. Efficient implementations use a priority queue, a data structure consisting
of a set of item-key pairs, subject to the following operations: insert, adding a new pair to the
queue; extract-min, returning and removing the pair with the minimum key; and decrease-key ,
decreasing the key of a given item. Fibonacci heaps (F-heaps) implement insert and decrease-key
in O(1) amortized time, and extract-min in O(log n) amortized time, where n is the number of
elements in the queue. Using F-heaps [9], Dijkstra’s algorithm takes O(m + n log n) time. This
combination is still the fastest known algorithm for solving this variant of the SSSP problem.

3 An executable description of the algorithms

In this section, we give a high-level description of Dijkstra’s algorithm with Fibonacci heaps
using CHR rules, which are directly executable in any CHR system. All recent CHR systems
implement the refined operational semantics [8], which implies that the rules are tried in textual
order. Correctness, termination, and complexity of the program crucially depend on this execution
strategy. This can be avoided by introducing auxiliary flag constraints, additional guards, and extra
rules, although the resulting (confluent) program would be less compact and the constant factor
in its complexity would be worse.

3.1 Dijkstra’s algorithm

The input graph is given as m edge/3 constraints: a (directed) edge from node A to B with weight
W is represented as edge(A,B,W). Node names are integers in [1, n] and weights are non-negative
numbers. The query consists of a sequence of edge/3 constraints followed by one dijkstra(S)

constraint, where S is the source node. The output of the algorithm consists of n distance(X,D)

constraints, where D is the distance from node S to node X.
During the execution of Dijkstra’s algorithm, each node is in one of three states: unlabeled,

labeled (with a tentative distance), or scanned (and annotated with a correct distance).
We use a global priority queue to store the labeled nodes; the item is the node name, the key

is its tentative distance. When a node X is scanned, we store its distance D as a distance(X,D)

constraint. The unlabeled nodes are not stored explicitly. We assume that the priority queue has a
decr or ins(Item,Key) operation which inserts (Item,Key) into the queue if Item is not already
in the queue; otherwise it updates the key of Item if the new key Key is smaller than the original
key (if it is larger, the operation has no effect). We also assume that there is an extract min/2

operation which returns the item with the smallest key and removes it from the queue (and fails
when the queue is empty).

Initially, every node is unlabeled except for the source node which gets tentative (and correct)
distance zero. We start by scanning the source:

start_scanning @ dijkstra(A) <=> scan(A,0).

To scan a node, we first output its final distance. Then we examine all outgoing edges to relabel
the neighbors. The candidate label for a neighbor is the sum of the distance of the scanned node
and the weight of the connecting edge:

final_dist @ scan(N,L) ==> distance(N,L).

label_neighb @ scan(N,L), edge(N,N2,W) ==> L2 is L+W, relabel(N2,L2).

Then we scan the labeled node with the smallest tentative distance (or stop if there are no
labeled nodes left):

scan_next @ scan(N,L) <=> extract_min(N2,L2) | scan(N2,L2).

scan_done @ scan(N,L) <=> true.

184 Jon Sneyers et al.

Relabeling works as follows: we do nothing if the neighbor is already scanned. If the neighbor
node N is not scanned, it is either unlabeled or labeled. Using the decr or ins operation, N gets
a label if it is unlabeled and gets a new label if the candidate label L is smaller than the original.

scanned @ distance(N,_) \ relabel(N,_) <=> true.

not_scanned @ relabel(N,L) <=> decr_or_ins(N,L).

The full program text is given in Figure 1.

3.2 Fibonacci heaps

We use Fibonacci heaps to implement the priority queue needed in Dijkstra’s algorithm. The items
and their keys are stored as nodes in a collection of heap-ordered trees. A heap-ordered tree is
a rooted tree where the key of any node is no less than the key of its parent. The number of
children of a node is called its rank. Nodes can be either marked or unmarked. Root nodes are
never marked.

A node containing the item I with key K is stored as an item(I,K,R,P,M) constraint, where
R is its rank and P is the item of its parent (or 0 if it is a root). The last argument M is u if the
node is unmarked and m if it is marked. The minimum-key pair is stored as a min/2 constraint:

keep_min @ min(_,A) \ min(_,B) <=> A =< B | true.

Insert. Inserting a new item I with key K is done by adding an unmarked isolated root node and
updating the minimum:

insert @ insert(I,K) <=> item(I,K,0,0,u), min(I,K).

Extract-min. Extracting the minimum node is done as follows. First we find and remove the min
constraint (if there is none, the heap is empty and we fail) and the corresponding item. Then we
convert the children of the minimum node to roots, which is done by the ch2rt constraint. Finally
we find the new minimum (done by the findmin constraint) and return the (old) minimum item.

extr @ extract_min(X,Y), min(I,K), item(I,_,_,_,_)

<=> ch2rt(I), findmin, X=I, Y=K.

extr_none @ extract_min(_,_) <=> fail.

c2r @ ch2rt(I) \ item(C,K,R,I,_) <=> item(C,K,R,0,u).

c2r_done @ ch2rt(I) <=> true.

To find the new minimum, it suffices to search the root nodes:

findmin @ findmin, item(I,K,_,0,_) ==> min(I,K).

foundmin @ findmin <=> true.

We want to make sure that the number of roots is O(log n). The following rule links trees
whose roots have the same rank, reducing the number of roots:

same_rank @ item(I1,K1,R,0,_), item(I2,K2,R,0,_) <=> K1 =< K2 |

R1 is R+1, item(I2,K2,R,I1,u), item(I1,K1,R1,0,u).

Decrease-key. The decrease-key operation removes the original item constraint and calls decr/5
if the new key is smaller (and fails otherwise).

decr @ decr(I,K), item(I,O,R,P,M) <=> K < O | decr(I,K,R,P,M).

decr_nok @ decr(I,K) <=> fail.

Dijkstra’s Algorithm with Fibonacci Heaps: An Executable Description in CHR 185

The decr or ins operation calls decr/5 if the item is on the heap and the new key is smaller
than the original. If the item is on the heap but the new key is larger, it does nothing; the item is
inserted if it is not on the heap.

doi_d @ item(I,O,R,P,M), decr_or_ins(I,K) <=> K<O | decr(I,K,R,P,M).

doi_nop @ item(I,O,_,_,_) \ decr_or_ins(I,K) <=> K >= O | true.

doi_insert @ decr_or_ins(I,K) <=> insert(I,K).

When a key is decreased, we may have found a new minimum:

d_min @ decr(I,K,_,_,_) ==> min(I,K).

Decreasing the key of a root cannot cause a violation of the heap order:

d_root @ decr(I,K,R,0,_) <=> item(I,K,R,0,u).

If the new key is not smaller than the parent’s key, there is also no problem:

d_ok @ item(P,PK,_,_,_) \ decr(I,K,R,P,M) <=> K>=PK | item(I,K,R,P,M).

Otherwise, we cut the violating node and make it a new root. The original parent is marked
to indicate that it has lost a child.

d_prob @ decr(I,K,R,P,M) <=> item(I,K,R,0,u), mark(P).

To obtain the desired time complexity, we have to make sure that when a (non-root) node
loses two of its children through cuts, it gets cut as well. This is called a cascading cut. Nodes are
marked to keep track of where to make cascading cuts. The mark constraint decreases the rank
of a node and marks it if necessary. A root node is never marked, an unmarked node becomes
marked, and an already marked node is cut and its parent is marked (cascading cut):

m_rt @ mark(I), item(I,K,R,0,_) <=> item(I,K,R-1,0,u).

m_u @ mark(I), item(I,K,R,P,u) <=> item(I,K,R-1,P,m).

m_m @ mark(I), item(I,K,R,P,m) <=> item(I,K,R-1,0,u), mark(P).

This concludes the algorithm. Figure 2 lists the full CHR program. For optimization, a pragma

passive compiler directive was added to rule c2r, the m er rule was added and the same rank

rule was reformulated without guard.

4 Time Complexity

To obtain the desired O(m + n log n) time complexity, we depend on some CHR implementation
properties, similar to the assumptions in Section 6.2 of [20]. Specifically, we require constraint
stores to allow constant time insertion, deletion, and look-up on arbitrary argument positions.

4.1 Efficiency of constraint stores

We have added type and mode declarations to allow the use of more efficient constraint store
data structures, satisfying the above assumption. Optional mode declarations were first intro-
duced in [20]. We use the extended constraint declaration syntax proposed in [22], as listed in
Figures 1 and 2. Since all stored constraints are (declared) ground, allowing constant time look-
ups using hash-tables constraint stores, the K.U.Leuven CHR system [19] realizes all of the above
properties.

The crucial argument positions for which constant time look-ups are necessary are the first
argument of edge/3, the first argument of distance/2, and the first and fourth argument of
item/5. Constant time look-ups on these arguments can be implemented using hash-table con-
straint stores. We can improve the constant factors of the constraint store operations by using

186 Jon Sneyers et al.

dijkstra.chr
:- module(dijkstra,[edge/3,dijkstra/1]).
:- use_module(library(chr)).
:- use_module(fib_heap).
:- constraints

edge(+dense_int,+int,+number), distance(+dense_int,+number),
dijkstra(+int), scan(+int,+number), relabel(+int,+number).

start_scanning @ dijkstra(A) <=> scan(A,0).
final_dist @ scan(N,L) ==> distance(N,L).
label_neighb @ scan(N,L), edge(N,N2,W) ==> L2 is L+W, relabel(N2,L2).
scan_next @ scan(N,L) <=> extract_min(N2,L2) | scan(N2,L2).
scan_done @ scan(N,L) <=> true.
scanned @ distance(N,_) \ relabel(N,_) <=> true.
not_scanned @ relabel(N,L) <=> decr_or_ins(N,L).

Fig. 1. Dijkstra’s algorithm, implemented in CHR.

fib heap.chr
:- module(fib_heap,[insert/2,extract_min/2,decr/2,decr_or_ins/2]).
:- use_module(library(chr)).
:- constraints

insert(+int,+number), extract_min(?int,?number), mark(+int),
decr(+int,+number), decr_or_ins(+int,+number), ch2rt(+int),
decr(+int,+number,+int,+int,+mark), min(+int,+number),
item(+dense_int,+number,+int,+dense_int,+mark), findmin.

:- chr_type mark ---> m ; u.

insert @ insert(I,K) <=> item(I,K,0,0,u), min(I,K).

keep_min @ min(_,A) \ min(_,B) <=> A =< B | true.

extr @ extract_min(X,Y), min(I,K), item(I,_,_,_,_) <=> ch2rt(I), findmin, X=I, Y=K.
extr_none @ extract_min(_,_) <=> fail.

c2r @ ch2rt(I) \ item(C,K,R,I,_)#X <=> item(C,K,R,0,u) pragma passive(X).
c2r_done @ ch2rt(I) <=> true.

findmin @ findmin, item(I,K,_,0,_) ==> min(I,K).
foundmin @ findmin <=> true.

same_rank @ item(I1,K1,R,0,_), item(I2,K2,R,0,_)
<=> R1 is R+1, (K1 < K2 -> item(I2,K2,R,I1,u), item(I1,K1,R1,0,u)

; item(I1,K1,R,I2,u), item(I2,K2,R1,0,u)).

decr @ decr(I,K), item(I,O,R,P,M) <=> K < O | decr(I,K,R,P,M).
decr_nok @ decr(I,K) <=> fail.

doi_d @ item(I,O,R,P,M), decr_or_ins(I,K) <=> K < O | decr(I,K,R,P,M).
doi_nop @ item(I,O,_,_,_) \ decr_or_ins(I,K) <=> K >= O | true.
doi_insert @ decr_or_ins(I,K) <=> insert(I,K).

d_min @ decr(I,K,_,_,_) ==> min(I,K).
d_root @ decr(I,K,R,0,_) <=> item(I,K,R,0,u).
d_ok @ item(P,PK,_,_,_) \ decr(I,K,R,P,M) <=> K >= PK | item(I,K,R,P,M).
d_prob @ decr(I,K,R,P,M) <=> item(I,K,R,0,u), mark(P).

m_rt @ mark(I), item(I,K,R,0,_) <=> R1 is R-1, item(I,K,R1,0,u).
m_m @ mark(I), item(I,K,R,P,m) <=> R1 is R-1, item(I,K,R1,0,u), mark(P).
m_u @ mark(I), item(I,K,R,P,u) <=> R1 is R-1, item(I,K,R1,P,m).
m_er @ mark(I) <=> writeln(error_mark), fail.

Fig. 2. Fibonacci heap, implemented in CHR.

Dijkstra’s Algorithm with Fibonacci Heaps: An Executable Description in CHR 187

plain array-based constraint stores instead: these arguments are nonnegative integers that can be
directly used as array positions, avoiding collisions and hash value computations. We have imple-
mented an additional built-in type, called dense int. Look-ups on ground arguments of this type
are compiled to array constraint stores. The space usage of an array constraint store is not optimal
if the array is sparse, hence the name of the type: it is intended for storing Ω(k) (asymptotic lower
bound) constraints whose argument of type dense int has values in [0, k].

4.2 Complexity of dijkstra.chr

Dijkstra’s algorithm starts with an empty heap, performs n− 1 insert operations, m−n decrease-
key operations and n extract-min operations. Because we have constant-time access to the list
of outgoing edges from a given node in rule label neighb, the total time complexity of the
algorithm is O(nI + mD + nE), where I , D and E are the amortized time complexities of one
insert, decrease-key and extract-min operation, respectively.

4.3 Complexity of fib heap.chr

Under the above assumptions, the analysis of [9] remains valid. Insert and decrease-key take con-
stant amortized time, and extract-min takes logarithmic amortized time. In the original description
of Fibonacci heaps [9], the linking step (corresponding to the same rank rule) is only performed
during an extract-min operation (corresponding to the extr rule), just before the finding the new
minimum (findmin). In the variant presented here, the same rank rule is triggered each time a
node becomes a root or a new root is added. This does not affect the amortized time bounds, but
it does improve performance in practice.

To analyze the amortized running times of the Fibonacci heap operations, we assign a potential
to every possible heap configuration. The amortized time of an operation is its actual running time
plus the net increase it causes in the potential. Hence, the actual time of a sequence of operations
is equal to the total amortized time plus the total net decrease in potential. We define the potential
of a heap to be the total number of trees it contains plus twice the number of marked nodes. The
initial potential is zero, and the potential is always nonnegative, so the total amortized time of a
sequence of operations is an upper bound on the total actual time.

Corollary 1 in [9] states that in a F-heap, nodes of rank k have at least Fk+2 descendants,
where Fi is the i-th Fibonacci number. Because the Fibonacci numbers grow exponentially, this
result implies that in a F-heap with N items, the maximal rank of any node is O(log N), and
that the number of roots is also O(log N) if no two roots have the same rank. In the worst case,
there can be n − 1 items in the heap, so we get a O(log n) bound on the rank and number of
roots. Performing one link (i.e. finding a partner constraint for the same rank rule and executing
its body) takes constant time, and since one root becomes child, the potential decreases by one.

Insert. The insert operation adds a new root node, increasing the potential by one minus the
number of links performed. This takes actual time proportional to the number of links performed.
It may then trigger the keep min rule, which takes constant time. Hence the amortized time for
the insert operation is O(1).

Extract-min. The extract-min operation either fails in constant time, or it finds the minimum
item in constant time. In the latter case, it first converts O(log n) children to roots, which takes
O(log n) amortized time. The potential increases by the number of new roots minus twice the
number of children that were marked. This is clearly bounded by O(log n). Then findmin goes
through the O(log n) new roots to find the new minimum. Hence the amortized time for the
extract-min operation is O(log n).

188 Jon Sneyers et al.

Decrease-key. If decreasing the key of an item does not violate heap order, the decrease-key
operation does not affect the potential and clearly takes only constant time. In the other case,
a new root is added (adding one to the potential), followed by a number of cascading cuts (rule
m m, which decreases the potential by one, since it adds a root (+1) and unmarks a previously
marked node (-2)), and finally marking an unmarked node (m u, adding two to the potential) or
doing nothing (m rt). So the net increase of the potential is at most three minus the number of
cascading cuts. Since every cut can be done in constant time, the actual time is proportional to
the number of cascading cuts. Hence the amortized time for the decrease-key operation is O(1).
Clearly, the “decrease-key or insert” operation also takes constant amortized time.

From the above it follows that the total time complexity of our CHR implementation of Dijk-
stra’s algorithm with Fibonacci heaps is O(m + n log n).

5 Experimental results

We have tested our program on sparse graphs consisting of a Hamiltonian cycle of n edges with
weight 1 from node i to node i + 1 (and node n to node 1) and 3n random weight edges, 3 from
every node to some randomly chosen other node. Such graphs essentially correspond to the “Rand-
4” family of [3]. All tests were performed on a Pentium 4 (1.7 GHz) machine with 512 Mb RAM
running Debian GNU/Linux (kernel version 2.6.8) with a low load.

The following CHR systems were used: the K.U.Leuven CHR system [19] in SWI-Prolog 5.5.31
[25] and hProlog 2.4.12-32 [6], the K.U.Leuven JCHR system 1.0.3 [24] (Java 1.5.0), and the
reference CHR implementations [14, 13] in SICStus 3.12.2 [2] and YAP 5.0.0 [5].

In the SICStus and YAP versions we have inserted extra pragma passive directives to avoid
redundant rule trials. They are detected and added automatically by the optimizing K.U.Leuven
CHR compilers.

We have also measured the performance of dikf, an efficient C implementation of the Dijkstra
algorithm with Fibonacci heaps. It is part of SPLIB 1.4 [3].

The results are tabled and plotted in Figure 3. In SICStus and YAP, types and modes of
constraint arguments cannot be declared. In JCHR, type and mode declarations are obligatory. In
the K.U.Leuven CHR system, they are optional. Three versions of the SWI-Prolog and hProlog
CHR program were considered: one without any type and mode declaration; one with type and
mode declarations, but without using the new dense int type (“. . . +type/mode”); and one with
the declarations as in Figures 1 and 2 (“. . . +type/mode+array”).

Asymptotic behavior. Without type/mode declarations, the program exhibits a quadratic time
complexity, caused by using general data structures which do not allow constant time look-ups.
When type and mode information is available, the optimal O(n log n) time complexity is achieved.

Constant factors. Without mode declarations, the SWI-Prolog version is about 5 to 8 times
slower than the the hProlog version, and about 3 to 4 times slower than the SICStus and YAP ver-
sions. These differences are largely explained by differences in the underlying Prolog systems (see
e.g. Appendix B in [18]). The K.U.Leuven JCHR version (which has type and mode declarations
but no array constraint store) is about 1.6 times faster than the corresponding SWI-Prolog version
and about 3.5 times slower than the corresponding hProlog version. However, the generated Java
code already ran out of memory for modestly sized input graphs of 16k nodes, most likely because
of garbage collection issues. Using arrays instead of hash-tables improves performance by about
35% in hProlog and about 40% in SWI-Prolog. In this test, the fastest CHR system clearly is
the K.U.Leuven CHR system in hProlog. The gap between the hProlog CHR program and the
SPLIB implementation is a constant factor of less than 20. Major reasons for this gap are data
structure overhead (using Prolog terms to represent CHR constraint stores) and the overhead of
interpreting WAM code.

Dijkstra’s Algorithm with Fibonacci Heaps: An Executable Description in CHR 189

C hProlog CHR SWI-Prolog CHR JCHR YAP SICStus
n (SPLIB) t/m+a t/m none t/m+a t/m none CHR CHR

1k < 0.01 0.10 0.17 3.33 0.57 1.03 21.61 0.60 5.94 6.42
4k 0.01 0.47 0.76 46.61 2.45 4.27 360.88 2.55 96.77 96.89
8k 0.02 0.97 1.53 190.94 5.10 8.68 time 5.42 350.18 373.48
16k 0.07 1.99 3.18 780.10 10.48 18.13 mem time time
64k 0.42 8.35 13.05 time 43.34 76.04
128k 0.94 17.13 26.51 89.30 152.76
256k 2.06 35.44 54.92 mem mem

 0.01

 0.1

 1

 10

 100

 1000

 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

R
un

tim
e

(e
xc

lu
di

ng
 g

ar
ba

ge
 c

ol
le

ct
io

n)
 in

 s
ec

on
ds

 (
lo

gs
ca

le
)

Nodes (logscale) (m=4n)

SW
I C

H
R

SI
C

St
us

 C
H

R

YA
P

C
H

R

hP
ro

lo
g

C
H

R SW
I C

HR+typ
e/m

od
e

SW
I C

HR+typ
e/m

od
e+

ar
ra

y

KULe
uv

en
 JC

HR

hP
ro

log
 C

HR+typ
e/m

od
e

hP
ro

log
 C

HR+typ
e/m

od
e+

ar
ra

y

C (S
PLI

B)

O(n**2) O(n log n)

Fig. 3. Comparing the performance of the Dijkstra CHR program with Fibonacci heaps, on random sparse
graphs, using different CHR systems. Programs were aborted after 1000 seconds (“time”); fatal stack or
heap overflows are indicated with “mem”.

190 Jon Sneyers et al.

6 Conclusion

We have presented a readable, compact, and efficiently executable CHR description of Dijkstra’s
algorithm with Fibonacci heaps. We have analyzed it theoretically and experimentally to investi-
gate its time complexity.

The Fibonacci heap data structure is quite complex and difficult to implement correctly. Im-
plementations in imperative languages (e.g. [3]) typically take at least some 300 lines of hard-
to-understand code. Even the pseudo-code description of F-heaps given in [4] is 63 lines long. In
contrast, the program we have constructed is directly executable and consists of just 22 CHR rules,
or about 40 lines including declarations and whitespace.

6.1 Related work

As far as we know, this is the first implementation of Fibonacci heaps in a declarative language.
King [15] constructed a functional implementation of the simpler and asymptotically slower

binomial queues [23], using about 45 lines of Haskell code (for the operations needed in Dijkstra’s
algorithm). Okasaki [17] and Brodal [1] constructed functional implementations of many variants
of priority queues, including binomial queues (in 36 lines of Standard ML code plus 17 signature
lines), leftist heaps, and pairing heaps (but not F-heaps), but they all lack the decrease-key oper-
ation. They conclude [1] that further research is needed to implement the decrease-key operation
efficiently in a purely functional setting without increasing the bounds for the other operations.

King notes in [15] that Fibonacci heaps do not lend themselves to a natural functional encoding,
because of their heavy usage of pointers. Imperative implementations of F-heaps usually store at
least four pointers with every item in the heap: parent, left and right sibling, and one of the
children. They are used for efficient access to the children of a particular node. In CHR, there
is no need to store all these pointers explicitly, since the compiler automatically constructs the
appropriate indexes. For example, the c2r rule does a look-up on the fourth argument of item to
find the children of a node. In the code generated by the CHR compiler, a hash-table (or array)
index on this argument is maintained.

McAllester introduced a pure logic programming algorithmic model [16], which was extended
with rule priorities and deletion [11]. Generalizing this model to include rules with a variable prior-
ity, Ganzinger and McAllester construct a very compact implementation of Dijkstra’s algorithm in
just three rules [12]. They theoretically construct an interpreter on a RAM machine for their logic
programming model which can run their implementation of Dijkstra’s algorithm in O(m log m)
time, which is worse than the O(m + n log n) implementation presented in this paper. However,
they do not provide an implementation of Fibonacci heaps (or any other priority queue) in their
logic programming formalism. The priority queue used in Dijkstra’s algorithm is not explicitly
implemented: it is hidden in the variable priority of the neighbor (re-)labeling rule. In their theo-
retical construction of the interpreter, they suggest using Fibonacci heaps to implement variable
priority rules.

6.2 Future work

We consider CHR to be one of the most suitable languages to describe – and design – algorithms.
It allows significantly more compact and readable formulations of algorithms that focus on the
high-level structure, since low-level implementation issues like efficiency of look-ups are automat-
ically handled by the CHR compiler. Using the optional type and mode declarations, the CHR
program can be compiled to efficient Prolog (or Java) code which has the desired asymptotic
time complexity, with a constant factor only about one order of magnitude worse than that of
hand-crafted specialized low-level implementations.

We are confident that it is possible – and an interesting challenge – to further improve the
constant factor by generating more specialized and inlined code. Another interesting idea would
be to implement a CHR system for the host-language C, perhaps by using ideas from the Java
CHR systems. The combination of both would allow high-level algorithm descriptions in CHR to
be only marginally slower than direct low-level imperative implementations.

Dijkstra’s Algorithm with Fibonacci Heaps: An Executable Description in CHR 191

References

1. Gerth S. Brodal and Chris Okasaki. Optimal purely functional priority queues. J. Functional Pro-
gramming, 6(6):839–857, 1996.

2. Mats Carlsson et al. The SICStus Prolog home page. http://www.sics.se/sicstus/.
3. Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik. Shortest paths algorithms: The-

ory and experimental evaluation. Mathematical Programming, 73:129–174, 1996. SPLIB software:
http://www.avglab.com/andrew/soft.html.

4. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001.

5. Lúıs Damas, V́ıtor Santos Costa, Rogério Reis, and Rúben Azevedo. YAP User’s Manual. Universidade
do Porto. Home page at http://www.ncc.up.pt/ vsc/Yap/.

6. Bart Demoen. The hProlog home page. http://www.cs.kuleuven.ac.be/˜bmd/hProlog/.
7. Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,

1(4):269–271, 1959.
8. Gregory J. Duck, Peter J. Stuckey, Maŕıa Garćıa de la Banda, and Christian Holzbaur. The re-

fined operational semantics of Constraint Handling Rules. In Proc. 20th Intl. Conference on Logic
Programming (ICLP’04), pages 90–104, St-Malo, France, September 2004.

9. Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM, 34(3):596–615, 1987.

10. Thom Frühwirth. Theory and practice of Constraint Handling Rules. Journal of Logic Programming,
37(1–3):95–138, October 1998.

11. Harald Ganzinger and David A. McAllester. A new meta-complexity theorem for bottom-up logic
programs. In Proc. 1st Intl. Joint Conference on Automated Reasoning (IJCAR’01), pages 514–528,
Siena, Italy, 2001.

12. Harald Ganzinger and David A. McAllester. Logical algorithms. In Proc. 18th Intl. Conference on
Logic Programming (ICLP’02), pages 209–223, Copenhagen, Denmark, 2002.

13. Christian Holzbaur and Thom Frühwirth. CHR reference manual. Technical Report TR-98-01,
Österreichisches Forschungsinstitut für Artificial Intelligence, Wien, 1998.

14. Christian Holzbaur and Thom Früwirth. A Prolog Constraint Handling Rules Compiler and Runtime
System. Special Issue J. Applied Artificial Intelligence on Constraint Handling Rules, 14(4), 2000.

15. David J. King. Functional binomial queues. In Proc. Glasgow Workshop on Functional Programming,
Ayr, Scotland, 1994.

16. David A. McAllester. The complexity analysis of static analyses. In Proc. 6th Intl. Symposium on
Static Analysis (SAS’99), pages 312–329, Venice, Italy, 1999.

17. Chris Okasaki. Purely Functional Data Structures. PhD thesis, School of Computer Science, Carnegie
Mellon University, 1996.

18. Tom Schrijvers. Analyses, Optimizations and Extensions of Constraint Handling Rules. PhD thesis,
K.U.Leuven, Leuven, Belgium, June 2005.

19. Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR system: Implementation and application.
In Selected Contributions, 1st Workshop on Constraint Handling Rules, Ulm, Germany, May 2004.

20. Tom Schrijvers and Thom Frühwirth. Optimal union-find in Constraint Handling Rules. Theory and
Practice of Logic Programming, 2005. To appear.

21. Jon Sneyers, Tom Schrijvers, and Bart Demoen. The computational power and complexity of Con-
straint Handling Rules. In Proc. 2nd Workshop on Constraint Handling Rules (CHR’05), pages 3–17,
Sitges, Spain, October 2005.

22. Jon Sneyers, Tom Schrijvers, and Bart Demoen. Guard and continuation optimization for occurrence
representations of CHR. In Proc. 21st Intl. Conference on Logic Programming (ICLP’05), pages 83–97,
Sitges, Spain, October 2005.

23. Jean Vuillemin. A data structure for manipulating priority queues. Communications of the ACM,
21(4):309–315, 1978.

24. Peter Van Weert, Tom Schrijvers, and Bart Demoen. K.U.Leuven JCHR: a user-friendly, flexible and
efficient CHR system for Java. In Proc. 2nd Workshop on Constraint Handling Rules (CHR’05), pages
47–62, Sitges, Spain, October 2005.

25. Jan Wielemaker. An overview of the SWI-Prolog programming environment. In Fred Mesnard and
Alexander Serebrenik, editors, Proc. 13th Intl. Workshop on Logic Programming Environments, pages
1–16, Heverlee, Belgium, 2003. Home page at http://www.swi-prolog.org.

26. Uri Zwick. Exact and approximate distances in graphs – a survey. In Proc. 9th European Symposium
on Algorithms (ESA’01), pages 33–48, Århus, Denmark, 2001.

