
Nonmonotonic Integrity Constraints

Ján Šefránek

Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University,
Bratislava, Slovakia, sefranek@fmph.uniba.sk

Abstract. Semantics of multidimensional dynamic logic programming is traditionally based on the
causal rejection principle: if there is a conflict between rules then the rule from a less preferred program
is rejected. However, sometimes it is useful to solve a conflict between the heads of rules by blocking
the body of a rule. Moreover, semantics based on the causal rejection principle, is not able to recognize
conflicts, which are not manifested as conflicts between the heads of rules.
Nonmonotonic integrity constraints are discussed in this paper. They provide alternative solutions of
conflicts (as compared with solutions based on causal rejection principle). Conceptual apparatus intro-
duced in this paper enables also to distinguish more preferred interpretations and, consequently, it is
relevant for logic programming with preferences. Nonmonotonic integrity constraints and other notions
introduced in the paper (falsified assumptions, more preferred assumptions) contribute to bridging the
gap between research in fields as belief revision or preference handling on the one hand and multidi-
mensional dynamic logic programming on the other hand.

Keywords: nonmonotonic reasoning, updates, multidimensional dynamic logic programming

1 Introduction

Multidimensional dynamic logic programming (MDyLoP) [1, 11, 12, 3] provides an interesting and promis-
ing approach to representation of dynamic aspects of knowledge in the context of logic-based knowledge
representation research. Most semantics of MDyLoP respect the causal rejection principle (CRP): if the
heads of two rules are conflicting then the less preferred rule is rejected.

Our research [16, 15, 17] is aiming to overcome some drawbacks of CRP. We are focused on as-
sumptions, dependencies on assumptions, conflicts involving assumptions or dependencies. A dependency
framework is introduced [17] in order to be able to handle assumptions and dependencies explicitly and
to solve also conflicts, which are not manifested as conflicts between the heads of rules. Nonmonotonic
(defeasible, default) assumptions play a crucial role in nonmonotonic reasoning and so the dependency
framework can be useful also for a foundational research of nonmonotonic reasoning and for a comparison
of various approaches to logic program updates (and to defeasible reasoning/argumentation). In this paper a
more detailed attention is devoted to nonmonotonic integrity constraints introduced in [17]. We address the
topic of removal of nonmonotonic integrity constraints using falsification w.r.t. more preferred assumptions
(the topic has not been detailed in [17]). If nonmonotonic integrity constraints, preference on assumptions
and falsification of assumptions are considered then disagreement of MDyLoP with other approaches rele-
vant for updates of nonmonotonic knowledge bases (NMKB) can be overcome (f.ex. with research in the
fields of belief revision, see [9, 10, 13] and others, or preference handling, see [7, 8, 5, 6] and others).

Main contributions of the paper: A detailed discussion of nonmonotonic integrity constraints. A demon-
stration that they are useful for alternative solutions of conflicts. It is shown also that other concepts
(preference on assumptions, falsification w.r.t. a set of assumptions, introduced in order to provide for
nonmonotony of integrity constraints) enable to recognize more preferred stable models. A modified non-
deterministic algorithm for computing a coherent view on a dependency relation is presented.

Roadmap: Basics of multidimensional dynamic logic programming are recapped in Section 2. Depen-
dency framework is described in Section 3. An introduction of integrity constraints is motivated in Section
4. After that, in Section 5 the dependency framework is extended and a semantics of multidimensional
dynamic logic programs based on the dependency framework is sketched in Section 6. Finally, in Section
7 main contributions of the paper and some open problems are listed.1

1 This research has been supported by grants APVV-20-P04805, VEGA 1/0173/03 and 1/3112/06.

102 Ján Šefránek

2 Preliminaries

Let A be a set of atoms. The set of literals is defined as Lit = A ∪ {not A : A ∈ A}. Literals of the form
not A, where A ∈ A are called subjective. Notation: Subj = {not A | A ∈ A}. We use not as default
negation, with intuitive meaning “it is not known that . . . ”. A convention: not not A = A.

A rule is each expression of the form L ← L1, . . . , Lk, where k ≥ 0, L,Li are literals. If r is a rule
of the form as above, then L is denoted by head(r) and {L1, . . . , Lk} by body(r). A finite set of rules is
called generalized logic program (program hereafter).

The set of conflicting literals is defined as CON = {(L1, L2) | L1 = not L2}. Two rules r1, r2 are
called conflicting, if (head(r 1), head(r2)) ∈ CON . Notation: r1 1 r2. A set of literals S is consistent if it
does not contain a pair of conflicting literals, (S × S) ∩CON = ∅. An interpretation is a consistent set of
literals. A total interpretation is an interpretation I such that for each atom A either A ∈ I or not A ∈ I .
Let I be an interpretation. Then I− = I ∩ Subj . A literal L is satisfied in an interpretation I iff L ∈ I . A
set of literals S is satisfied in I iff S ⊆ I .

Definition 1 ([1]) A total interpretation S is a stable model of a program P iff

S = least(P ∪ S−),

where P ∪S− is considered as a Horn theory and least(P ∪S−) is the least model of the theory. A program
is coherent iff it has a stable model. 2

Definition 2 ([11]) A multidimensional dynamic logic program (also multiprogram hereafter) is a pair
P = (Π,G), where G = (V,E) is an acyclic digraph, |V | ≥ 2, and Π = {Pi : i ∈ V } is a set of
(generalized logic) programs.

We denote by i ≺ j that there is a path from i to j and i � j means that i ≺ j or i = j. We denote by
i ‖ j that i and j are incomparable w.r.t. �. If i ≺ j, we say that Pj is more preferred than Pi. 2

If G is a path, we speak about dynamic logic program.

Definition 3 (Dynamic stable model, [11]) Let P be a multiprogram. A total interpretation M is called
dynamic stable model of P iff

M = least(
⋃

i∈V

Pi \ Rejected(P,M)) ∪Defaults(P,M)), (1)

where Rejected(P,M) = {r ∈ Pi | ∃r
′ ∈ Pj (i ≺ j, r 1 r′,M |= body(r′))} and Defaults(P,M) =

{not A | ¬∃r ∈
⋃

i∈V

Pi (A = head(r),M |= body(r))}.

Refined dynamic stable model is defined in [3] similarly, with only a little difference – condition i � j

is used in the definition of rejected rules instead of i ≺ j. We will use for that modified concept notation
RejectedR(P,M)). The set of all refined dynamic stable models of P is denoted by RDSM (P). Troubles
with tautological and cyclic updates are overcome in refined semantics. However, the refined semantics is
defined only for dynamic logic programs. Refined semantics for the general case of multiprograms is not
known. The well supported semantics of multiprograms is defined in [4], in order to improve the behaviour
of semantics based on CRP.

We will use refined semantics in the analysis of examples, which contain dynamic logic programs. The
well supported semantics for MDyLoP coincides with the refined one on dynamic logic programs.

3 Dependency framework

Idea of nonmonotonic integrity constraints is based on a dependency framework presented in [17]. We
recap the basic features of the framework in this section.

Nonmonotonic Integrity Constraints 103

Definition 4 (Dependency relation) A dependency relation is a set of pairs {(L,W) | L ∈ Lit , W ⊆
Lit , L 6∈W}. Pairs of the form (L,W) are called dependencies.

A literal L depends on a set of literals W , L 6∈W , with respect to a program P (L�P W) iff there is
a sequence of rules 〈r1, . . . , rk〉 with k ≥ 1, ri ∈ P and

– head(rk) = L,
– W |= body(r1),
– for each i, 1 < i < k, W ∪ {head(r1), . . . , head(ri)} |= body(ri+1).

It is said that the dependency relation�P = {(L,W) | L�P W} is generated by the program P . 2

Definition 5 (Closure property) A closure operator Cl assigns the set of all pairs {(L,W) | L � W ∨
(∃U (L� U ∧ ∀L′ ∈ U \W (L′ �W)))} to a dependency relation�.

A dependency relation� has the closure property iff Cl(�) =�.

Proposition 6 Let P be a program. Then Cl(�P) =�P .

Proof: Suppose that L �P U,∀L′ ∈ U \ W L′ �P W . Consider a sequence of rules, satisfying the
conditions of Definition 4 such that each L′ ∈ U \W is derived from W . Concatenate a sequence deriving
L from U . We have proved L�P W ,

The converse inclusion is (yet more) trivial. 2

Dependencies on subjective literals are crucial from the viewpoint of stable semantics. Therefore the
role of (default) assumptions is emphasized.

Definition 7 (SSOA, TSSOA) Ass ⊆ Subj is called a sound set of assumptions (SSOA) with respect to
the dependency relation� iff the set

Cn�(Ass) = {L ∈ Lit | L� Ass} ∪Ass

is non-empty and consistent.
It is said that Ass , a SSOA, is total (TSSOA) iff for each A ∈ A holds either A ∈ Cn�(Ass) or

not A ∈ Cn�(Ass). 2

Theorem 8 X is a TSSOA w.r.t.�P iff Cn�P
(X) is a stable model of P .

Let S be a stable model of P . Then there is X ⊆ Subj , a TSSOA w.r..t.�P s.t. S = Cn�P
(X).

We intend to use our framework for handling conflicting dependencies in a multiprogram. Note that
dependencies in a multiprogram are well defined.

Proposition 9 Let P be a multiprogram. Then�S

i∈V
Pi

is well defined. It holds

⋃

i∈V

�Pi
⊆�S

i∈V
Pi

,

but the converse inclusion does not hold.

Proof Sketch: Each sequence of rules from
⋃

i∈V Pi (which satisfies conditions of Definition 4) determines
a dependency of a literal on a set of literals (w.r.t. the program

⋃
i∈V Pi).

It is straightforward to show an example falsifying the converse inclusion. 2

Definition 10 (Coherent dependency relation) A dependency relation� is called coherent iff there is an
TSSOA w.r.t.�. A dependency relation is called incoherent iff it is not a coherent one. 2

104 Ján Šefránek

In general,�S

i∈V
Pi

can be incoherent. Our approach to semantics of MDyLoP is focused on looking
for sets of assumptions which can serve as a TSSOA w.r.t. a (coherent) subset of given dependency relation
�S

i∈V
Pi

. A (maximal) coherent subset of an incoherent dependency relation can be considered as a
reasonable semantic view on the dependency relation. Note that more reasonable semantic views on a set of
dependencies are possible (of course, this can be expected – stable model semantics is at the background of
our constructions). Therefore, we are aiming at finding all reasonable TSSOAs w.r.t. some corresponding
subsets of a given dependency relation.

A construction (a non-deterministic algorithm) is described in [17]. We now present the basic idea of
this construction. Later, in Section 5, we extend the construction for the case of nonmonotonic integrity
constraints.

There are essentially two possible sources of incoherence in the union
⋃

i∈V Pi:
(1) two conflicting literals depend on a set of literals;
(2) an atom A depends on a set of literals W and not A ∈W .

Hence, we apply two criteria for constructing a coherent semantic view on a set of dependencies. The
criteria specify which dependencies should be ignored.2

Definition 11 Let a dependency relation� be given. Let a finite set D = {�1, . . . ,�k}, where�i⊂�,
be specified. Suppose that an acyclic, transitive and irreflexive preference relation ρ on D is defined. If
�i,�j∈ D and �i ρ �j , it is said that �j (�i) is more (less) preferred as �i (�j). Similarly, if
d ∈�j and d′ ∈�i, it is said that d (d′) is more (less) preferred than d′ (d).

1. Let be (L1, L2) ∈ CON , d1 = L1 � W , d2 = L2 � W . If d1 is less preferred than d2 then a
minimal set of dependencies D such that d1 6∈ Cl(� \D) is ignored.

2. If A � W , not A ∈ W then a minimal set of dependencies D such that (A,W) 6∈ Cl(� \D) is
ignored.

Note that criterion 1 corresponds to the CRP, but the other criterion extends the possibilities of solving
conflicts. A more radical extension of our dependency framework is introduced in Section 5 thanks to
nonmonotonic integrity constraints.

Definition 12 Let P be a multiprogram. It is said that�S

i∈V
contains a conflict C (where C ⊆�S

i∈V
)

iff for some A ∈ A is C = {(A, Y), (not A, Y)} or C = {(A, Y)} with not A ∈ Y .
It is said that a set of dependencies D is a solution of the conflict C iff each d ∈ D is of the form

L�Pi
W and C 6⊆ Cl(�S

i∈V
\D).

D, a solution of C, is called minimal iff there is no proper subset of D which is a solution of C.
Let D and D′ be minimal solutions of C. It is said that D′ is more suitable than D iff ∀d ∈ D∃d′ ∈

D′ ((d′ = L �Pj
W) ∧ (d = L �Pi

W) ∧ j ≺ i). A minimal solution D of a conflict C is called good
solution iff there is no more suitable solution of C. 2

A solution of a conflict is focused on dependencies generated by a single program. Only elementary
pieces of a chain of dependencies are ignored (dependencies from a�Pi

). Good solutions are focused on
less preferred dependencies.

Dependency framework will be finalized in Section 5 after a motivation in next section

4 Motivation

Introduction of nonmonotonic integrity constraints is in [17] motivated by an analysis of some drawbacks
of the CRP. One of the drawbacks is that CRP is not able to recognize alternative solutions of a given
inconsistency (note a striking difference w.r.t. the belief revision research).

2 Our approach does not reject or insert some rules. Its ambition is to provide a coherent view on a (possibly incoher-
ent) MDyLoP (NMKB) by ignoring some dependencies and by accepting some assumptions in the role of integrity
constraints.

Nonmonotonic Integrity Constraints 105

Example 13 3 Let P be 〈P1, P2〉, where 1 ≺ 2.

P1 = {a←; b←} P2 = {not a← b}

RDSM (P) = {{not a, b}} and RejectedR(P, {not a, b}) = {a ←}. It is not clear why a ← can be
rejected and b← cannot be rejected. There are two (if we respect the preference relation) maximal coherent
subsets of incoherent P1 ∪ P2 and two corresponding stable models – besides {not a, b} also {not b, a}.

Notice that the empty set of assumptions justifies inconsistent set of literals. Criterion 1 of Definition 11
enables to create only one coherent subset of�P1∪P2

. We have the set of dependencies�P1∪P2
as follows:

{(a, ∅), (b, ∅), (not a, {b}), (not a, ∅)}. If a�P1
∅ is ignored according to criterion 1 of Definition 11 then

the coherent subset View of�P1∪P2
is Cl(�P1∪P2

\{a�P1
∅}). So we obtain CnView (∅) = {b,not a}.

However, {a,not b} is impossible to get in such a way, even if an assumption not b is accepted. So, simple
adding of new assumptions does not work as a means for generating alternative solutions of a conflict
illustrated by our example.

If we add assumptions not a or not b in the role of (nonmonotonic) integrity constraints, we can get
alternative solutions of the inconsistency considered here. If not b is accepted in the role of an integrity
constraint then justification of b is blocked and only a and not b are justified. Similarly, if not a is accepted
then justification of a is blocked and only not a and b are justified.

A formalization of this idea is as follows. We consider two sets of subjective literals, besides assump-
tions also integrity constraints. Let accept not b as an integrity constraint (a set of integrity constraints is
denoted by IC) and Ass = ∅ as a set of assumptions. View , a subset of �P1∪P2

is obtained by ignor-
ing all dependencies of the form b �P∪U W because of the integrity constraint. Finally, we can define
ICnView ((IC | Ass)) as the set of all literals {L | (L,Ass) ∈ View ∧ not L 6∈ IC} ∪ Ass ∪ IC , hence
we obtain a reasonable model {not b, a} for IC = {not b} and Ass = ∅.

Similarly for an integrity constraint not a.
Note that nonmonotonic integrity constraints are not needed if solutions of conflicts do not respect the

preference relation on dependencies. However, we want to preserve this feature of dynamic logic program-
ming. Moreover, nonmonotonic integrity constraints can be viewed also as concise representations of some
less succinct representations of alternative conflict solutions. This topic should be understood in a more
detail. 2

The nature of integrity constraints is nonmonotonic.

Example 14 Suppose that a third, the most preferred, program P3 is added to P from Example 13. Let be
P3 = {c←; a← c; b← c} and the corresponding multiprogram be denoted by P ′.

It would be natural to reject (nonmonotonic) integrity constraints accepted for P (and also dependency
not a �P2

{b}). The first suggestion could be to reject an integrity constraint if it is “generated” by a
program Pi and falsified by a program Pj , where i ≺ j.

Similarly for P ′
3 = {a ← not c; b ← not c}. In this case we will speak about falsification w.r.t. some

(more preferred) assumptions. 2

Consider now logic programs with preferences. We sketch only the basic idea – distinguishing the more
preferred assumptions enables to distinguish (and select) more preferred TSSOAs (and, consequently, more
preferred stable models). A detailed exposition of our approach to logic programs with preferences and a
comparison with other approaches is postponed to a future paper.

Example 15 ([7]) This example contains explicit (“classic”) negation and names of rules are used. How-
ever, we believe that there is no problem with tracing the exposition below. Literal ¬a could be considered
as a new atom, if needed; ni is the name of rule ri, atom n3 ≺ n2 means that rule r2 is more preferred than

3 This example is due to Martin Baláž.

106 Ján Šefránek

r3.

r1 = ¬a←

r2 = b← ¬a,not c

r3 = c← not b

r4 = n3 ≺ n2 ← not d

Program containing rules r1 – r4 has two regular stable models (answer sets). M1 = {¬a, b, n3 ≺
n2,not c,not d}, M2 = {¬a, c, n3 ≺ n2,not b,not d}. However, r2 overrides r3, hence M1 is the
only preferred answer set (r2 must be used before r3, therefore r3 is blocked, it is not applicable).

The same selection of more preferred stable model (TSSOA) can be obtained using the notion of more
preferred assumptions, see Example 16. 2

Note that there is a trivial correspondence between logic programs with preferences and multidimen-
sional dynamic logic programs. Consider first static preferences (on rules). If a logic program with prefer-
ences is given as a pair ({ri | i ∈ I},≺), then the corresponding MDyLoP we obtain as a set of programs
(singletons) Pi = {ri} preserving ≺: Pi ≺ Pj iff ri ≺ rj .

Conversely, let a MDyLoP P be given. If Pi ≺ Pj then for each r ∈ Pi and each r′ ∈ Pj holds r ≺ r′.
Otherwise, rules are incomparable.

If preference relation is a dynamic one (as in Example 15, where it can be modified by rules) then a
dynamic preference relation on programs is needed. A possibility of such extension of MDyLoP is sup-
posed (f.ex. in [1]), but we are not aware of a realization of the possibility. However, it is feasible and
straightforward.

We can now to proceed to an adapted version of Example 15.

Example 16

P1 = {c← not b},

P2 = {a←; b← a,not c}.

A straightforward translation from Example 15 is possible, too. Our choice here is to present and analyze
a multiprogram 〈P1, P2〉, with P1 ≺ P2, while preserving the main features of the original program. It
means, the preference of b ← a,not c over c ← not b is preserved. What is changed as compared with
Example 15: atom a is used instead of ¬a, atoms with relational symbol ≺ are not used, so atom d is not
needed. Preference of a← over c← not b is added, but it is not an essential change: ¬a holds in Example
15 in both answer sets.
RDSM (〈P1, P2〉) = {{a, b,not c}, {a, c,not b}}. There are no conflicting rules in this multiprogram and
it is not possible to reject the less preferred model (according to the CRP).

However, the notion of more preferred assumptions enables to select the more preferred answer set
from Example 15.

Observe that b is justified in the more preferred program. Hence, “it is not known b” seems not to be
a reasonable assumption. We will consider the assumption {not c} as more preferred than assumption
{not b}. A set of assumptions can be falsified also by a more preferred set of assumptions. In our example:
the assumption {not b} is falsified w.r.t. the assumption {not c} and dependency relation �P1∪P2

. The
more preferred set of assumptions “generates” the more preferred stable model: Cn�P1∪P2

({not c}) =
{a, b,not c} and assumption {not b} is falsified in Cn�P1∪P2

({not c}).
There is an intuitive difference between updates and preferences (see [2]). However, the multidimen-

sional approach of MDyLoP should represent also “preferential” reasoning. May be, different strategies for
different dimensions are needed. Moreover, there are some problems with very notion of updates, if default
negations are allowed (even in heads of rules), see [17]. Updates of NMKB provide a challenging problem
for future research. 2

Formal definitions motivated in this section are introduced in the next section.

Nonmonotonic Integrity Constraints 107

5 Nonmonotonic integrity constraints

Definition 17 An assumption not A, where A ∈ A, is falsified in a dependency relation � iff A � ∅,
not A 6� ∅ and ∅ is a SSOA w.r.t.�.

A set of assumptions Ass ⊆ Subj is falsified in� iff it contains a literal falsified in�. 2

Definition 18 Let be S(not A) = {i ∈ V | ∃r ∈ Pi not A ∈ body(r)}.
Let be L,L′ ∈ Subj . The assumption L is preferred at least as the assumption L′ iff for each maximal

i ∈ S(L′) and each maximal j ∈ S(L) holds either i � j or i ‖ j.
L is more preferred than L′ iff L is preferred at least as L′ and for at least one pair i, j holds i ≺ j.
A set of subjective literals S is more preferred than the set of subjective literals S ′ iff each L ∈ S \ S′

is preferred at least as each L′ ∈ S′ \ S and there is an L ∈ S \ S′ more preferred as each L′ ∈ S′ \ S. 2

Definition 19 Let P = (Π,G) be a multiprogram, G = (V,E), let be i, s, t ∈ V .
It is said that a set of assumptions Ass is falsified w.r.t. a more preferred set of assumptions X and a

dependency relation View ⊆�S

i�s
Pi

iff

– X is a TSSOA w.r.t. View ,
– there are L1 ∈ X and L2 ∈ Ass such that not L2 ∈ Cn�View

(X),
– X is not falsified and it is also not falsified w.r.t. some Y and some View′ ⊆�S

i�t
Pi

, where s ≺ t,

View ⊆ View ′, Y is a TSSOA w.r.t. View ′. 2

Example 20 Consider Example 16. S(not b) = {1} and S(not c) = {2}, hence not c is more preferred
than not b.

Further, {not c} is a TSSOA w.r.t.�P1∪P2
, it is neither falsified nor falsified w.r.t. a more preferred

set of assumptions and a dependency relation and finally, b ∈ Cn�P1∪P2
({not c}).

Therefore, {not b} is falsified w.r.t. {not c} and�P1∪P2
. 2

We have introduced some new features (for the dependency framework):

– notions of falsification and falsification w.r.t. a set assumptions and a dependency relation,
– preferences on (sets of) assumptions.

We are going to extend the dependency framework by nonmonotonic integrity constraints.
Assumptions with integrity constraints (we will use “i-assumption” as a shorthand) are pairs of the form

(X | Y), where X,Y ⊆ Subj . Literals from X are called (nonmonotonic) integrity constraints.

Definition 21 (ISSOA, ITSSOA) Let (X | Y) be i-assumptions and � be a dependency relation. Let
Cn�(Y) be a SSOA w.r.t. � and X,Y be not falsified or falsified w.r.t. a set of assumptions and a
dependency relation. Then

ICn�((X | Y)) = {L ∈ Lit | L ∈ Cn�(Y) ∧ not L 6∈ X} ∪X

It is said that ICn�((X | Y)) obeys integrity constraints X . If ICn�((X | Y)) is not empty then
(X | Y) is dubbed ISSOA w.r.t.� (ITSSOA in the case of total interpretation). 2

A remark: it is straightforward to reconcile notions of SSOA (TSSOA) with ISSOA (ITSSOA); X is an
SSOA w.r.t.� iff (∅ | X) is an ISSOA w.r.t.�.

Example 22 Remind Example 13. ICnView (({not a} | ∅)) = {not a, b}, similarly, ICnView (({not b} |
∅)) = {not b, a}. 2

Similarly, Example 20 can be re-interpreted in terms of ITSSOAs using (∅, {not c}) instead of {not c}.
Of course, some modifications of our formalization are required: Definition 19 have to be modified and a
preference relation on pairs of sets of assumptions have to be defined. It is possible to combine Examples
13 and 16 in order to show that non-empty integrity constraints can play a role in preferential reasoning (in

108 Ján Šefránek

logic programs with preferences). Nonmonotonic integrity constraints together with notions of falsification
or falsification w.r.t. to a set of assumptions and a dependency relation enable to recognize more preferred
ITSSOAs and, therefore, more preferred stable models. Application of the dependency framework to a
semantic characterization of logic programs with preferences will be detailed in a forthcoming paper.

6 Semantics based on the dependency framework

Semantics of a multiprogram P in the dependency framework is a mapping Σ which assigns the set of
pairs of the form ((X | Y),View), where (X | Y) is an ITSSOA w.r.t. View , to the multiprogram.

Definition of coherent dependency relation is adapted to ITSSOA in [17]. Our approach to semantics
of MDyLoP described in [17] is focused on looking for i-assumptions which can serve as a(n I)TSSOA
w.r.t. a (coherent) subset of a given dependency relation �S

i∈V
Pi

. An ITSSOA (X1 | Y1) is called
a good sound set of assumptions (GSSOA) iff there is no ITSSOA (X2 | Y2) such that Y2 ⊂ Y1,
i.e. ITSSOAs with minimal sets of assumptions are preferred. A construction of coherent dependency
relation from an incoherent �S

i∈V
Pi

is proposed. The construction is described in terms of a non-
deterministic algorithm. The constructed relation represents – in a sense – a coherent semantic view on
an incoherent multiprogram. The construction is in the spirit of answer set programming: all consequences
are derived from a set of (i-)assumptions Ass via non-conflicting dependencies on Ass (integrity con-
straints can block some derivations). If the set of all GSSOAs of a multiprogram P is {Z1, . . . , Zk} w.r.t.
{View1, . . . ,Viewk}, respectively, where Zi = (Xi, Yi), then there is a canonical program of the form
{L ←| L ∈ Xi} ∪ {L ← Yi | L ∈ ICnViewi

(Zi)}, i = 1, . . . , k. It holds that the set of all stable models
of the canonical program coincide with the set of sets {ICnViewi

(Zi) | Zi is a GSOA w.r.t. View i}.
Finally, we present in Figure 1 a modified non-deterministic algorithm constructing an ITSSOA w.r.t.

a View ⊆�S

i∈V
Pi

. It is assumed that there is a set Ω containing pairs of the form (Z,View), where
Z are i-assumptions and View is a dependency relation. Initially. i-assumptions are of the form (∅, Y),
where Y is neither falsified in�S

i∈V
Pi

nor falsified w.r.t. a more preferred set of assumptions and View

is�S

i∈V
Pi

. Nonmonotonic integrity constraints are added to i-assumptions by the algorithm. A strategy
for generating nonmonotonic integrity constraints IC is as follows: if a dependency of an atom A on a set
of literals W belongs to the set D then not A is included into IC ; similarly, View is reduced.

INPUT: a pair (Z,View) from Ω, where Z = (X | Y), View ⊆�S

i∈V Pi

OUTPUT: a pair (ZT ,View), where ZT is an ITSSOA w.r.t. View or the decision that it is not possible to construct
an ITSSOA from Z

begin
if Z is an ITSSOA w.r.t. View then RETURN (Z,View) fi
ZT := Z; XT = X,View

T := View

REPEAT
if View

T contains a conflict C of View
T then

SELECT ALL pairs π of the form (IC, D), where D is a good solution of C

and IC are integrity constraints fi
i := 0;
for each (IC, D) ∈ π do

if XT ∪ IC is not falsified or falsified w.r.t. a more preferred set of assumptions then
i := i + 1; XT

i := XT ∪ IC; ZT

i := (XT

i | Y);View
T

i := Cl(View
T \ D) fi

if i > 1 then Ω := Ω ∪ (ZT

i ,View
T

i) fi;
od
View

T := View
T

1 ; ZT := ZT

1 ; XT := XT

1

if i = 0 then FAILURE := true else FAILURE := false fi
UNTIL ICnViewT (ZT) is an ITSSOA w.r.t. View

T or FAILURE
if not FAILURE then RETURN (ZT ,View

T) else RETURN FAILURE fi
end

Fig. 1. Non-deterministic algorithm removing conflicts and computing ITSSOAs

Nonmonotonic Integrity Constraints 109

7 Discussion, conclusions

First, we will show that integrity constraints introduced in the dependency framework are nonmonotonic
and that our framework enables to distinguish more preferred models (ITSSOAs) of logic programs (with
preferences).

Example 14 illustrates nonmonotony of our integrity constraints. In general, nonmonotonic integrity
constraints can be falsified or falsified w.r.t. more preferred assumptions when some rules are added to the
corresponding multiprogram. This fact follows in a very straightforward way from our framework.

Fact 23 Let P be a multiprogram with G = (V,E). Let (X|Y) be ITSSOA w.r.t. a View ⊆�S

i∈V
Pi

.
Then (X|Y) are nonmonotonic i-assumptions in the sense as follows:

– There is a multiprogram P ′, an extension of P by a program Pz , where for each i ∈ V is i ≺ z and
View ∩ �Pz

= ∅.
– X is falsified (or falsified w.r.t. some i-assumptions (X ′|Y ′) and�i∈V ′ , where V ′ = V ∪ {z}). 2

Of course, i-assumptions cannot be ITSSOAs if their integrity constraints are falsified.

Fact 24 Let� be a dependency relation. Let X and Y be sets of assumptions such that both are SSOAs
w.r.t.�, i.e. Cn�(X) and Cn�(Y) are consistent, but for some atom A ∈ Cn�(Y) holds that not A ∈
X .

If Y is more preferred than X and Y is neither falsified nor falsified w.r.t. a set of assumptions and a
dependency relation then (∅, Y) is an ISSOA w.r.t.� and (∅, X) is not an ISSOA w.r.t.�.

Fact 24 can be generalized to i-assumptions (with non-empty integrity constraints).
Main contributions of the paper are as follows. A more detailed analysis of nonmonotonic integrity con-

straints as compared with [17] is given. It is shown also that our dependency framework enables preference
handling. A modified non-deterministic algorithm for computing ITSSOAs is presented.

The paper is a product of a research devoted to semantics of MDyLoP based on dependencies and as-
sumptions. The semantics is aiming to overcome some drawbacks of semantics based on CRP. Current state
of our research is presented in [17], where the dependency framework is introduced, irrelevant updates are
defined, a coherent semantic view on a multiprogram is specified, a non-deterministic algorithm producing
such coherent view is presented.

Some open problems: Comparisons of other approaches to updates of NMKB and to defeasible rea-
soning (argumentation) from the dependency framework point of view. Comparison with the abductive
framework of [14]. Rethinking relation of updates and revisions in NMKB. It is shown in [17] that pos-
tulates for updates of Katsumo and Mendelzon [10] cannot be understood literally in the context of logic
program updates because of the presence of nonmonotonic assumptions, therefore a much more careful
approach to the difference between updates and revisions is needed. Also a detailed application of pre-
sented framework to logic programs with preferences and a characterization of computational aspects of
the framework are intended (and needed).

References

1. Alferes, J.J., Leite, J.A., Pereira, L.M., Przymusinska, H., Przymusinski, T.C.: Dynamic logic programming. In:
Procs. of KR’98. (1998) 98–109

2. Alferes, Pereira Updates and preferences. Proc. of JELIA 2000. Springer.
3. Alferes, J.J., Banti, F., Brogi, A., Leite, J.A.: The refined extension principle for semantics of dynamic logic

programming. Studia Logica 1 (2005)
4. Banti, F., Alferes, J.J., Brogi, A., Hitzler, P.: The well supported semantics for multidimensional dynamic logic

programs. LPNMR 2005, LNCS 3662, Springer, 356-368
5. Brewka, G.: Well-Founded Semantics for Extended Logic Programs with Dynamic Preferences. Journal of Artifi-

cial Intelligence Research, 4 (1996),19-36
6. Brewka, G., Eiter, T.: Preferred answer sets for extended logic programs. Artificial Intelligence, 109 (1-2):297-

356,1999

110 Ján Šefránek

7. Delgrande, J., Schaub, T., Tompits, H.: A Framework for Compiling Preferences in Logic Programs, Theory and
Practice of Logic Programming 3(2), 2003, pp. 129-187

8. Delgrande, J., Schaub, T., Tompits, H., Wang, K.: A classification of preference handling approaches in nonmono-
tonic reasoning. Computational Intelligence 20:2, 2004, 308-334

9. Gärdenfors, P., Rott, H.: Belief revision. In: Handbook of Logic in Artificial Intelligence and Logic Programming,
vol. 4 (Epistemic and Temporal Reasoning), Claredon Press. Oxford 1995

10. Katsuno, H., Mendelzon, A.O.: On the difference between updating a knowledge base and revising it. Proc. of
KR’91

11. Leite, J.A., Alferes, J.J., Pereira, L.M.: Multi-dimensional dynamic logic programming. In: Procs. of CLIMA’00.
(2000) 17–26

12. Leite, J.A.: Evolving Knowledge Bases: Specification and Semantics. IOS Press (2003)
13. Liberatore, P., Schaerf, M.: The compactness of belief revision and update operators. Fundamenta Informaticae

XX (2004), 1-17, IOS Press
14. Sakama, C., Inoue, K.: Updating extended logic programs through abduction. Logic Programming and Nonmono-

tonic Reasoning. LNAI 1730, Springer, 1999
15. Šefránek, J.: Semantic considerations on rejection. In: Procs. of NMR 2004.
16. Šefránek, J.: A Kripkean semantics for logic program updates. : In M. Parigot, A. Voronkov (eds.), Logic for

Programming and Automated Reasoning. Springer 2000, LNAI 1955
17. Šefránek, J.: Rethinking semantics of dynamic logic programming. Submitted.

