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Abstract. In this paper we compare the two versions of knowledge invariant transformations of the
original Many-valued logic programs: the strict Annotated logic programs and the ’meta’ logic pro-
grams obtained by the ontological encapsulation [1]. We show that the first one has the higher-order
Herbrand interpretations, while the last can be seen as the flattening of the first one. These two knowl-
edge invariant 2-valued logic transformations of the 4-valued Belnap’s bilattice-based logic, able to
handle incompleteness and inconsistency of knowledge-base systems, are mutually inverse in Galois
connection based on predicate compression and decompression (flattening). Consequently, we can use
this Galois connection between them to establish their fixpoint semantics relationship. This results
generalize the truth-knowledge fixpoint semantics for many-valued logic programming [2].

1 Introduction

So far, research in many-valued logic programming has proceeded along different directions: Signed log-
ics [3, 4] and Annotated logic programming [5–7] which can be embedded into the first, Bilattice-based
logics, [8, 9], and Quantitative rule-sets, [10, 11]. Earlier studies of these approaches quickly identified
various distinctions between these frameworks. For example, one of the key insights behind bilattices was
the interplay between the truth values assigned to sentences and the (non classic) notion of implication in
the language under considerations. Thus, rules (implications) had weights (or truth values) associated with
them as a whole. The problem was to study how truth values should be propagated ”across” implications.
Annotated logics, on the other hand, appeared to associate truth values with each component of an impli-
cation rather than the implication as a whole. Roughly, based on the way in which uncertainty is associated
with facts and rules of a program, these frameworks can be classified into implication based (IB) and an-
notation based (AB).
In the IB approach a rule is of the form A ←α B1, .., Bn , which says that the certainty associated with
the implication is α. Computationally, given an assignment I of logical values to the Bis, the logical value
of A is computed by taking the ”conjunction” of logical values I(Bi) and then somehow ”propagating” it
to the rule head A.
That is the standard case of a many-valued Logic Programming, as for example, the fuzzy or Bilattice-
based logic where to each ground atom we can assign some value in the interval [0, 1] or of the particular
Bilattice respectively.
In the AB approach a rule is of the form A : f(β1, .., βn) ← B1 : β1, ..., Bn : βn , which asserts ”the
certainty of the atom A is least (or is in) f(β1, .., βn), whenever the certainty of the atom Bi is at least
(or is in) βi, 1 ≤ i ≤ n”, where f is an n-ary computable function and βi is either constant or a variable
ranging over many-valued logic values. The comparison in [12] shows:
1- while the way implication is treated on the AB approach is closer to the classical logic, the way rules are
fired in the IB approach has definite intuitive appeal.
2- the AB approach is strictly more expressive than IB. The down side is that query processing in the AB
approach is more complicated, e.g. the fixpoint operator is not continuous in general, while it is in the IB
approaches.
3- the Fitting fixpoint semantics for logic programs, based exclusively on a bilattice-algebra operators,
suffer two drawbacks: the lack of the notion of tautology (bilattice negation operator is an epistemic nega-
tion) leads to difficulties in defining proof procedures and to the need for additional complex truth-related
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notions as ”formula closure”; there is an unpleasant asymmetry in the semantics of implication (which is
strictly 2-valued) w.r.t. all other bilattice operators (which produce any truth value).
From the points above, it is believed that IB approach is easier to use and is more amenable for efficient
implementations, but also annotated syntax (but with IB semantics) is useful to overcome two drawbacks
above.
The drawbacks of the Fitting fixpoint semantics for logic programs are are definitely resolved by the in-
troduction [1] of the intuitionistic semantic for a many-valued implication (relative pseudocomplement)
transforming a Bilattice-based logic programs into the kind of the intuitionistic logic programs where
the implication can be used in a body of programs also. An autoepistemic version of such intuitionistic
bilattice-based logic programs is defined in [13] as the simple belief-revision solution for the management
of the mutually inconsistent information in Data Integration Systems.
In what follows we will consider the possible embedding of a bilattice-based logic into the 2-valued logic:
1. In [7] it is shown how the Fitting’s 3-valued bilattice logic can be embedded into an Annotated Logic
Programming which is computationally very complex. In what follows we will use the syntactic anno-
tation of the many-valued logic into the 2-valued logic, as shown above, where a rule is of the form
A : f(β1, .., βn) ← B1 : β1, ..., Bn : βn , asserts ”the certainty of the atom A is least (or is in)
f(β1, .., βn) = β1 ∧ ... ∧ βn is the result of the many-valued logic conjunction of logic values βi ∈ B
of a bilattice B.
As we will see, such 2-valued embedding of a many-valued logic programs generates the higher-order Her-
brand interpretations.
2. The ontological embedding [1] into the syntax of new encapsulated many-valued logic (in some sense
’meta’-logic for a many-valued bilattice logic) will be 2-valued and can be seen as the flattening of the
many valued logic, where the many-valued logic value β ∈ B of an original ground atom r(c1, .., ck) is
deposited into the logic attribute of a new predicate rF , obtained by an extension of the old predicate r, so
that we obtain the ’flattened’ 2-valued ground atom r F (c1, .., ck, β).
These two knowledge invariant 2-valued logic transformations of the original many-valued logics are mu-
tually inverse: we can consider annotations as contexts for the original atoms of the logic theory. Such
context sensitive applications, with higher-order Herbrand models, can be transformed (that is, flattened)
to logic theories with basic (ordinary) Herbrand interpretations, by enlarging the original predicates with
new attributes which characterize the properties of the context: in this way the context becomes part of the
language of the logic theory, that is, becomes visible.
The inverse of flattening is the predicate compression: for instance, there are numerous applications where
we have to deal with the database compressions, that is, with a kind of database transformation where some
number of attributes of its relations are hidden(compressed) but not eliminated as in the case of ordinary
projections over relations: we still consider all inferential effects of all information contained in a database,
but with respect to the reduced number of ’visible’ attributes. The hidden attributes can be seen as trans-
formed from variables into parameters: in our case, from a logic variable into the logic annotation.
In this paper we will consider only the compression of the logic attribute of the flattened predicates: ob-
tained compressed predicates are identical to predicates from the original many-valued logic program, but
the value for their ground atoms is not value of a bilattice B but the function (higher-order value type) in
2B.
Let HF be the Herbrand base of an ontologically encapsulated Logic Program PA and Pred(HF ) be
the set of all predicate symbols. The compression of a predicate rF (x, α), rF ∈ Pred(HF ), where x =
{xj | 1 ≤ j ≤ n} is the set of ordinary attributes, and α is the logic attribute to be parameterized (trans-
formed into an annotation), generates the compressed predicate r(x) for the annotated logic program. We
will denote by W = B the domain of the logic attribute α of the predicate rF (x, α).
Notice that the compressed predicate r(x) is not a simple projection πx of the original predicate over
attributes in x, that is, r(x) 6= πxrF (x, α), because it contains also all hidden parameters, and its interpre-
tations are of higher-type: the logic values of its ground atoms are functions instead of classic logic values
in 2 = {0, 1}; these functions encapsulate the semantics of the hidden attributes.
Remark: in what follows, for simplicity, we will not make the clear formal distinction between predicate
symbol r, its predicate form r(t1, t2), where t1, t2 are terms (variables or functional forms) and a binary
relation. We will use shortly ’predicate’ for a ’predicate form’.
The plan of this paper is the following: After a brief introduction to Many-valued bilattice-based logic, in
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Section 2 we introduce the invariant knowledge transformation of predicates, based on the flattening and
compression duality; we introduce the higher-order Herbrand interpretations and its correspondent flatten-
ing into the ordinary Herbrand interpretations. This duality holds also for the fixpoint semantics of these
logic programs: given a fixpoint semantics for the first one we can derive the fixpoint semantics of the
second, and vice versa.
In Section 3 we show how these concepts can be applied to the many-valued bilattice-based logic: we show
that the annotated 2-valued transformation of the original logic program has the higher-order Herbrand
interpretation, isomorphic to the original many-valued Herbrand interpretation, while the 2-valued onto-
logical encapsulation (corresponds to flattening) of the original many-valued logic program has a standard
Herbrand interpretation over a new Herbrand base, obtained by enlarging each original predicate by a new
logic attribute.

1.1 Introduction to Many-valued epistemic logic based on a Bilattice

In [14], Belnap introduced a logic intended to deal in a useful way with inconsistent or incomplete informa-
tion. It is the simplest example of a non-trivial bilattice and it illustrates many of the basic ideas concerning
them. We denote the four values as {t, f,ᵀ,⊥}, where t is true, f is false, ᵀ is inconsistent (both true
and false) or possible, and ⊥ is unknown. As Belnap observed, these values can be given two natural or-
ders: truth order, ≤t, and knowledge order, ≤k, such that f ≤t ᵀ ≤t t, f ≤t⊥≤t t, and ⊥≤k f ≤k ᵀ,
⊥≤k t ≤k ᵀ. This two orderings define corresponding equivalences =t and =k. Thus any two members
α, β in a bilattice are equal, α = β, if and only if (shortly ’iff’ ) α =t β and α =k β.
Meet and join operators under ≤t are denoted ∧ and ∨; they are natural generalizations of the usual con-
junction and disjunction notions. Meet and join under ≤k are denoted ⊗ (consensus, because it produces
the most information that two truth values can agree on) and ⊕ (gullibility, it accepts anything it’s told),
such that hold:
f ⊗ t =⊥, f ⊕ t = ᵀ, ᵀ∧ ⊥= f and ᵀ∨ ⊥= t.
There is a natural notion of truth negation, denoted ∼, (reverses the ≤t ordering, while preserving the ≤k

ordering): switching f and t, leaving⊥ and ᵀ, and corresponding knowledge negation, denoted− (reverses
the ≤k ordering, while preserving the ≤t ordering), switching ⊥ and ᵀ, leaving f and t. These two kind of
negation commute: − ∼ x =∼ −x for every member x of a bilattice.
It turns out that the operations ∧,∨ and ∼, restricted to {f, t,⊥} are exactly those of Kleene’s strong
3-valued logic. A more general information about bilattice may be found in [15]: he also defines ex-
act members of a bilattice, when x = −x (they are 2-valued consistent), and consistent members, when
x ≤k −x (they are 3-valued consistent), but a specific 4-valued consistence will be analyzed in the follow-
ing paragraphs.
The Belnap’s 4-valued bilattice is infinitary distributive. In the rest of this paper we denote by B4 a special
case of the Belnap’s bilattice.
One of the key insights behind bilattices [8, 9] was the interplay between the truth values assigned to
sentences and the (non classic) notion of implication. The problem was to study how truth values should
be propagated ”across” implications. We proposed [1] the implication based approach, which extends the
definition in [16] based on the following intuitionistic many valued implication :

→ t ⊥ f ᵀ

t t ⊥ f ᵀ

⊥ t t ᵀ ᵀ

f t t t t

ᵀ t ⊥ ⊥ t

The Herbrand base, HB , is the set of all ground (i.e., variable free) atoms. A (ordinary) Herbrand interpre-
tation is a many-valued mapping I : HB → B. If P is a many-valued logic program with the Herbrand
base HB , then the ordering relations and operations in a bilattice B are propagated to the function space
BHB , that is the set of all Herbrand interpretations (functions), IB : HP → B. It is straightforward [15]
that this makes a function space BHB itself a complete infinitary distributive bilattice.
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2 Invariant Knowledge transformation: Flattening and compression duality

The higher-order Herbrand interpretations of logic programs (for example Databases), produce models
where the true values for ground atoms are not truth constants but functions. In this section we will give
the general definitions for such higher-order Herbrand interpretation types for logic programs and their
models. We denote by A⇒ B, or BA, the set of all functions from A to B.

Definition 1. (Higher-order Herbrand interpretation types) Let Hcom be a Herbrand base. Then, the
higher-order Herbrand interpretations are defined by Icom : Hcom → T , where T denotes the functional
space W1 ⇒ (...(Wn ⇒ 2)...), denoted also as (...((2Wn)Wn−1)...)W1 , and Wi, i ∈ [1, n], n ≥ 1,
the sets of parameters. In the case n = 1, T = (W1 ⇒ 2), we will denote this interpretation by
Icom : Hcom → 2W1 .

The interpretations Icom : Hcom → 2W are higher-order types of Herbrand interpretations: the set of
truth values for them are functions instead of constants. We pass from a flat truth structure for atoms in a
Hebrand interpretations of original database DB, to non flat functional space truth structure for atoms in
the compressed Herbrand baseHcom. The hidden parameters make ”curve” the truth space for these atoms,
as what happens when the real astronomic space curves in a presence of hidden (black) gravitational mass.
Notice that in the Def. 3, the interpretation of compressed database Icom : Hcom → 2W is the case when
n = 1 (the simplest higher type T = (W ⇒ 2) for higher Herbrand interpretations).
Now we will introduce the top-down transformation, called flattening, where the context (uncertain or
approximated information), defined as the set of possible worlds W , is fused into the Herbrand base by
enlarging original predicates of old theory with new attributes taken from the context. In this way the
hidden information of the context becomes the visible information and a visible part of the logic language.

Definition 2. (Flattening) Each higher-order Herbrand interpretation Icom : Hcom → T , where T
denotes the functional space W1 ⇒ (...(Wn ⇒ 2)...), and W = W1 × ... ×Wn cartesian product, can
be flattened into the Herbrand interpretation IF : HF → 2, where HF = {rF (d,w) | r(d) ∈ Hcom

and w ∈ W},
is the Herbrand base of predicates rF , obtained as extension of original predicates r by parameters, such
that for any rF (d,w) ∈ HF , w = (w1, ..., wn), holds that
IF (rF (d,w)) = Icom(r(d))(w1)...(wn).

We define as parameterizable database DB(y) any database such that all its relational schemas have the
common set of attributes y = {y1, y2, .., yk}. In this, most simple case of compression, we can obtain
an compressed database, denoted by DBcom(y), in the way that these common attributes become hidden
attributes.

Definition 3. (Global compression).
Let IF : HF → 2 be the 2-valued Herbrand interpretation for a parameterizable database DB with the
Herbrand base HB and the model MH = {rF (d,w) | rF (d,w) ∈ HF and IF (rF (d,w)) = 1}. Then the
interpretation for its compressed database DBcom(y) is defined by
Icom : Hcom → 2W , such that Icom = [IF ◦ is],

where W = Domy1
× ... × Domyk

is the set of all parameter tuples, Hcom is a Herbrand base for the
compressed database DBcom(y), i.e.,
Hcom = {r(d) | ∃w.rF (d,w) ∈ HF },
is : Hcom ×W ' HF is a bijection, [ ] is the curring (λ abstraction) for functions, and 2W is the set of
functions fromW to 2 = {0, 1}.

No one of subsets S ⊆ Hcom can be model for DBcom; that is, the models for compressed database are
not ordinary Herbrand models but some kind of higher-order type of Herbrand models.

Definition 4. In the case of the Global compression, in Definition [3], over variables in {w1, .., wn}, n ≥
1 with a domain W (n-tuples in the Herbrand Universe), we are able to define the following two partial
orders
1. For any two IF , I ′F ∈ 2HF we define the partial order ≤F as follows

IF ≤F I ′F iff ∀A ∈ HF (IF (A) ≤ I ′F (A)).
2. For any two Icom, I

′
com ∈ (2W)Hcom

we define the partial order ≤com as follows
Icom ≤com I ′com iff ∀A ∈ Hcom,w ∈ W (Icom(A)(w) ≤ I ′com(A)(w)).
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Obviously, the functional spaces 2HF and (2W)Hcom

of ordinary and Higher-order Herbrand interpretations
are complete lattices w.r.t. the partial orderings ≤F and ≤com respectively. We denote by (2HF ,≤F )
and ((2W)Hcom

,≤com) the flattened and compressed domains respectively.

Proposition 1 Let α : 2HF → (2W)Hcom

, and β : (2W)Hcom

→ 2HF , be the two mappings such that
- for any IF ∈ 2HF the α(IF ) is the mapping, such that for each r(d) ∈ Hcom and w ∈ W , holds that
α(IF )(r(d))(w) = IF (rF (d,w));
- for any Icom ∈ (2W)Hcom

the β(Icom) is the mapping, such that for each rF (d,w) ∈ HF , holds that
β(Icom)(rF (d,w)) = Icom(r(d))(w);
Then the following three conditions define a Galois connection between the flattened and compressed
domains:
1. α = [ ◦ is] and β = [ ]−1 ◦ is−1 are monotonic functions.
2. ∀Icom ∈ (2W)Hcom

(α(β(Icom)) ≤com Icom).
3. ∀IF ∈ 2HF (β(α(IF )) ≤F IF ).

Proof: α = [ ◦ is] and β = [ ]−1 ◦ is−1 come from Definition 3 and 2 respectively. Let us prove
that α is monotonic, and suppose that IF ≤F I ′F , than from point 3 in Definition 4 we have that for
any rF (d,w) ∈ HF holds IF (rF (d,w)) ≤ I ′F (rF (d,w)), that α(IF )(r(d))(w) ≤ α(I ′F )(r(d)))(w,
or, for r(d) ∈ Hcom,w ∈ W holds α(IF )(r(d))(w) ≤ α(I ′F )(r(d)))(w, thus ∀A ∈ Hcom,w ∈
W (α(IF )(A)(w) ≤ α(IF )(A))(w)), and, consequently, than from point 3 in Definition 4 we have that
α(IF ) ≤com α(I ′F ). The same holds for β. Points 2 and 3 hold because β is inverse of α. 2

Galois connections give us the formal framework to prove the equivalency (the α and β transformations are
inverse so that we have the particular case when the property 2 and 3 in the Galois conditions are equations)
and mutual-inversion property between the flattened and Higher-order Herbrand interpretations: that is the
reason that we informally defined, in Definition 2, the flattening as inverse of data compression.
Informally, the inverse monotonic homomorphisms in Galois connection,
α : (2HF ,

⋃
F )→ ((2W)Hcom

,
⋃

com), and β : ((2W)Hcom

,
⋃

com)→ (2HF ,
⋃

F ),
which represent the mutually-inverse operations of predicate compression and flattening, are information-
conservative transformations: by compression we only hide (but do not eliminate) a part of information,
by flattening we render such hidden information visible (withot addition of new information). Thus, if we
have some monotonic ”immediate consequence operator” in one of these two join-semilattice algebras,
then intuitively, must exist such one operator also in the other algebra. This intuition can be formalized as
follows:

Proposition 2 (Fixpoint adjunction)
Let TP : 2HF → 2HF be a monotonic ”immediate consequence operator” in the space of Herbrand
interpretations, then ΦP = [TP ([ ]−1)] : (2W)Hcom

→ (2W)Hcom

is the monotonic operator in the
higher-order Herbrand space (2W)Hcom

.
Viceversa, let ΦP : (2W)Hcom

→ (2W)Hcom

be the monotonic operator in the higher-order Herbrand
space. Then TP = [ΦP ([ ◦ is])]−1 ◦ is−1 : 2HF → 2HF is the monotonic operator in the Herbrand space.

Proof: Form the Galois connection and Proposition 1 We have that ΦP = α ◦ TP ◦ β = [ ◦ is] ◦
TP ◦ [ ]−1 ◦ is−1 = [TP ◦ [ ]−1 ◦ is−1 ◦ is] = [TP ([ ]−1)], where α, β are monotonic operators.
Thus if TP is monotonic then also ΦP is monotonic. Analogously, we have that TP = β ◦ ΦP ◦ α =
[ ]−1 ◦ is−1 ◦ ΦP ◦ [ ◦ is] = [ΦP ([ ◦ is])]−1 ◦ is−1. 2

3 Predicate Compression and Flattening in Many-valued Logic Programming

It is obvious that the immediate-consequence monotonic operator in the Herbrand join-semilattice is w.r.t.
the truth ordering ≤F ; but its ”dual” operator in the higher-order join-semilattice can have different from
truth ordering. For instance, in the case of normal logic programs and its 3-valued fixpoint semantics WFS
(Well-Founded Semantics for normal programs) based on the strong Kleene 3-valued logic, such semantics
can not be formalized in the ordinary Herbrand join-semilattice algebra- that means that, in some way, the
WFS must be embedded into the higher-order Herbrand join-semilattice with knowledge ordering ≤com.
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Interesting point, analyzed in less general framework, is that the flattening of such knowledge (higher-
order) monotonic operator into ordinary Herbrand space of interpretations must be truth ordered [2]. Such
flattening of the original many-valued bilattice based program into the 2-valued logic is denominated by
ontological-encapsulation, where encapsulation of original many-valued logic program into the 2-valued
”meta” logic program corresponds to the flattening process described here so that also the logic values in
the Belnap’s bilattice B from hidden become visible values in this ”meta” logic program, and is developed
in a number of papers [17, 1].
Here we will present a slightly modified version of this ontological encapsulation of a many-valued logic
program.
We assume that the Herbrand universe is ΓU = Γ

⋃
Ω, where Γ is ordinary domain of database constants,

andΩ is an infinite enumerable set of marked null values,Ω = {ω0, ω1, ....}, and for a given logic program
P composed by a set of predicate and function symbols, PS , FS respectively, we define a set of all terms,
TS , and its subset of ground terms T0. Then the atoms are defined as:
AS = {p(c1, .., cn) | p ∈ PS , n = arity(p) and ci ∈ TS}.

We introduce [17] the program encapsulation (flattening) transformation E :

Definition 5. (Flattening of Many-valued Logic Programs)
Let P be a many-valued logic program with the set of predicate symbols PS , Herbrand base HB , and for
any predicate p ∈ PS we introduce a mapping κp : T

arity(p)
0 → B. The translation E in the encapsulated

syntax version PF is as follows:
1. Each positive literal in P , we introduce a new predicate pF as follows
E(p(x1, .., xn)) = pF (x1, .., xn, κp(x1, .., xn));

2. Each negative literal in P , we introduce a new predicate pF as follows
E(∼ p(x1, .., xn)) = pF (x1, .., xn,∼ κp(x1, .., xn));

3. E(φ ∧ ϕ) = E(φ) ∧ E(ϕ); E(φ ∨ ϕ) = E(φ) ∨ E(ϕ) ;
4. E(φ ← ϕ) = E(φ) ←A E(ϕ) , where←A is a symbol for the implication at the encapsulated 2-valued
’meta’ level. Thus, the obtained ’meta’ program is equal to PF = {E(φ) | φ is a clause in P}, with the
2-valued Herbrand base
HF = { pF (c1, .., cn, α) | p(c1, .., cn) ∈ HB and α ∈ B}.

This embedding of the many-valued logic program P into a 2-valued ’meta’ logic program PF is an onto-
logical embedding: it views formulae of P as beliefs and interprets the negation ∼ p(x1, .., xn) in rather
restricted sense - as belief in the falsehood of p(x1, .., xn), rather as not believing that p(x1, .., xn) is
true (like in an ontological embedding for classical negation). Like Moore’s autoepistemic operator, the
encapsulation operator E (restricted to atoms), Eφ intends to capture the notion of, ”I know that φ has a
value vB(φ) ”, for a given valuation vB of the many-valued logic program.
Notice, that with the transformation of the original many-valued logic program P into its encapsulated
’meta’ version program PF we obtain a positive logic program, thus with a unique minimal Herbrand
model IF : HF → 2.
Now we will show how many-valued logic can be transformed into 2-valued logic with higher-order Her-
brand interpretations.
Let us consider an original many-valued logic clause (bold variables denote a tuple of variables)
A(x) ← B1(x1), .., Bk(xk),∼ Bk+1(xk+1), ...,∼ Bk(xk).

Its transformation into an annotated clause will be the following
A(x) : ψ ← B1(x1) : β1, .., Bk(xk) : βk, Bk+1(xk+1) : βk+1, ..., Bk(xk) : βn

where ψ is a bilattice algebra term (β1 ∧ ..∧ βk∧ ∼ βk+1 ∧ ..∧ ∼ βn). So that the interpretation (true or
false) of each ground annotated atom Bi(ci) : βi is a mapping IA : HB ×B → 2, such that IA(Bi(ci), βi)
has the true or false value in 2, or equivalently (by λ-abstraction), Icom = λ(IA) : HB → 2B, with
Icom(Bi(ci)) = h : B → 2 a function from B into the set of truth values 2.

The image of this mapping is a subset, denoted by Bδ ⊂ 2B, such that its cardinality is equal to the
cardinality of B, that is |Bδ| = |B|, defined as follows:

Definition 6. (Higher-order Belnap’s bilattice)
We define the functional version of the Belnap’s bilattice Bδ as follows,
Bδ = {δκ : B → 2, κ ∈ B such that δκ(υ) = 1 if υ = κ; 0, otherwise } ⊆ 2W ,
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with truth order, ≤t, and knowledge order, ≤k, such that δf ≤t δᵀ ≤t δt, δf ≤t δ⊥ ≤t δt, and δ⊥ ≤k

δf ≤k δᵀ, δ⊥ ≤k δt ≤k δᵀ.

This functional Belnap’s bilattice Bδ is interchangeable with original Belnap’s bilattice B because of the
following isomorphism:

Proposition 3 (Belnap’s isomorphism) There exists the isomorphism δ : B ' Bδ , such that for any
υ ∈ B, δ(υ) = δυ , and δ−1(δυ) = υ.

Let IB : HB → B, that is, IB ∈ BHB , be a many-valued interpretation for a normal logic program P with a
Herbrand base B. Such many-valued interpretation can be transformed into the many-valued interpretation
J : HB → Bδ ⊆ 2B, where the original Belnap’s 4-valued knowledge-ordered lattice B is replaced by the
4-valued lattice Bδ by the δ : B ' Bδ bijection, κ 7→ δκ, which preserves the knowledge ordering, so that
for any ground atom A ∈ HB , J(A) = δIB(A).
We denote by �k its extension to the functional space (2B)HB such that:
J �k J ′ iff ∀A ∈ HB (J(A) ≤k J ′(A)).

The following proposition demonstrates that by such many-valued logic transformation we obtain the logic
program with higher-order Herbrand models type.

Proposition 4 Let P be a normal logic program with a Herbrand base HB , over the lattice B with knowl-
edge ordering≤k and the Fitting’s monotonic ”immediate-consequence operator” ΨP : BHB → BHB . Let
denote by ΦP the same monotonic operator obtained by replacing the original lattice B with equivalent to
it lattice Bδ . Then this operator is monotonic operator over the join-semilattice ((2W)Hcom

,
⋃

com), where
W = B and Hcom = HB .

Proof: From the definitions above we have that Icom = J and that the the extension of the knowledge
ordering, �k is equal to the partial ordering ≤com, so, by replacing original lattice B by the equivalent
”functional’ lattice Bδ , we obtain the logic program with higher-order Herbrand models. 2

Notice that the initial interpretation IB0
: HB → B for many-valued fixpoint operator ΨP : BHB → BHB is

a bottom knowledge element in the lattice of the many-valued interpretationsBHB (such that for any ground
atom A ∈ HB , IB0

(A) =⊥), corresponds to the initial higher-order interpretation Icom0
: HB → 2B,

which is a bottom element in the join-semilattice ((2B)HB , �k) = ((2W)Hcom

, ≤com), such that
Icom0

(A) = δ⊥. So, the reducibility of the knowledge fixpoint semantics to the truth fixpoint semantics,
described in [2] where is defined also the transformation of the original many-valued logic programs into
2-valued ”meta” logic programs (at the level of Herbrand bases it equals to the flattening), is the direct
consequence of the propositions 2 and 4.
In fact, let IB : HB → B be the least fixpoint many-valued Herbrand model of a many-valued logic pro-
gram P, and Icom : Hcom → 2W be the least fixpoint in the joint- semilattice ((2W)Hcom

,
⋃

com) obtained
from the many-valued Herbrand model IB by replacing the logic values in B with their correspondent val-
ues in Bδ .
Then, for the Herbrand interpretation IF = β(Icom) : HF → 2, the consistent 2-valued flattened model is
equal to:
MF = {rF (d, υ) | Icom(r(d)) = δυ} = {rF (d, υ) | IF (rF (d, υ)) = 1}.

The consistency of the flattened model M F means that cannot exist two ground atoms rF (d, υ} and
rF (d, υ1} in MF such that υ 6= υ1. Such consistency correspond to the fact that each ground atom
r(d) ∈ HB in the original many-valued program P can have only one value in the Belnap’s bilattice B.
Vice versa, given a consistent 2-valued ’meta’ model MF , we can define the compressed Herbrand inter-
pretation Icom : Hcom → 2W , by:
Icom(r(d)) = δυ iff rF (d, υ) ∈MF

so that a many-valued Herbrand model IB : HB → B can be obtained from Icom by replacing the logic
values in Bδ by correspondent values in B.
This correspondence between the many-valued Herbrand model IB : HB → B of the original many-
valued logic program, with the two 2-valued knowledge invariant transformations, annotated program with
a higher-order Herbrand model Icom : HB → 2B and flattened (ontologically encapsulated) ’meta’ logic
program with a Herbrand model IF : HF → 2 (over an enlarged Herbrand base HF ), can be briefly repre-
sented by the following table:
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PROGRAM Original program P Annotated program PA ’meta’ program PF

(ontological encapsulation)
LOGIC Many-valued logic 2-valued logic 2-valued logic

HERBRAND Many-valued Higher-order Standard
MODEL IB : HB → B Icom : HB → Bδ ⊂ 2B, IF : HF → 2, with

(bijection B ' Bδ) HF = {pF (c, α)|p(c) ∈ HB , α ∈ B}
GALOIS compression flattening

so that for any ground atom p(c) ∈ HB hold

Icom(p(c))(IB(p(c))) = IF (p(c, IB(p(c)))) = 1, and
Icom(p(c))(α) = IF (p(c, α)) = 0, if α 6= IB(p(c)),

which express the knowledge invariancy between program transformations.

4 Conclusion

In this paper we have shown how the implication-based Many-valued logic programs can be equivalently
transformed into the Annotated logic programs with higher-order Herbrand interpretations. We have shown
that the flattening of such higher-order Herbrand interpretations leads to the two-valued logic programs,
identical to ’meta’ logic programs obtained by an ontological encapsulation of the original Many-valued
logic programs [17, 1].
Consequently, the Galois connection of the fixpoint semantics between higher-order Herbrand interpreta-
tions and their flattening into ordinary two-valued Herbrand interpretations, is the more general version of
the knowledge-truth correspondence [2] between the fixpoint semantics of the original Many-valued logic
programs and their ontologically encapsulated two-valued logic programs.
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