
Executable denotations for concurrent languages using Concurrent
Transaction Logic

Marcus Vinicius Santos

Department of Computer Science,
Ryerson University

M5B 2K3, Toronto, Canada
p: (+1) 416.979.500 x 7062; f: (+1) 416.979.5064

m3santos@ryerson.ca

Abstract. This paper presents an approach based on a Horn fragment of Concurrent Transaction Logic
(CT R) for semantic description and execution of programming languages. The Horn notation is used
in much the same way that plain Horn logic is used to specify semantics of programming languages.
However, CT R extends that framework a deductive database language which provides a declara-
tive, logic programming framework that naturally accommodates the notions of store, store updates,
dataflow in declarative languages, data-driven concurrency, and message passing concurrency. The
contributions of this paper are twofold: it shows how the semantics of concurrent programming lan-
guages can be fully specified in a Horn-based logic framework; and it demonstrates that CT R-based
logical denotations provide a unified formal semantics for such languages, which can also serve as a
prototyping tool for the language developer.

keywords: Horn logic, Semantics, Concurrent programming languages

1 Introduction

It is known that semantic descriptions of programming languages based on Horn logic (Horn denotations,
for short) provide specifications which are easy to read and have a natural “calculational clarity” [5]. Horn
denotations are also known to provide executable specifications, thus yielding an interpreter for the lan-
guage under study. Such executable specifications are useful for both pragmatists and theorists; pragmatists
could instrument an executable specification to obtain debuggers and profilers for the programming lan-
guage; theorists could automatically verify program properties by adding preconditions and postconditions
to parts of the program denotation. These and other features of Horn denotations have made this sort of
approach potentially more attractive then denotations based on λ-calculus.

This paper proposes a framework based on a Horn fragment of Concurrent Transaction Logic (CT R)
[2] for semantic description of concurrent programming languages. In this paper we address two types of
concurrency: data-driven concurrency and message passing concurrency.

Moss presented in [9] an overview on how to completely specify a language in Prolog. Building on
this idea, Slonneger [15] convincingly demonstrated that, for the specification of denotational semantics,
Prolog can be regarded as superior to imperative languages. Gupta [5] explored how Horn logic denota-
tions lead to some interesting practical applications, such as automatic program verification and automatic
generation of compilers. More recently, Gupta [6] and Wang [16] used the logical denotational framework
introduced in [5] in combination with software component development techniques to provide language-
centric approaches to software engineering.

The semantic specification framework used here is similar to the one proposed in [5] in the sense
that we also use definite clause grammar (DCG) rules to specify the syntax of the language, and Horn
rules to specify the semantic algebras and valuation functions. One difference concerns the representation
of the store and store updates; another concerns the use of a different logic, viz. CT R, that supplies a
syntax and a semantics by which elementary database operations can be combined serially and concurrently
into complex programs. In Gupta’s framework, the store is represented as lists, which are thread through
the Horn rules via parameters. Gupta also shows in [5] an alternative approach to obtain less cluttered

72 Marcus Vinicius Santos

predicates: he uses the database to model the store, and Prolog’s primitive operators assert and retract
to specify store updates. Unfortunately, one knows that these update operators have no logical semantics.
Moreover, Prolog programs using these operators are often awkward and the most difficult to understand,
debug and maintain. These problems are all aggravated by concurrency. In CT R, however, the notion of
database state and state update is part of the logical framework. In CT R, predicates communicate via the
database. Hence, a concurrent process can read what another has written. This form of communication leads
to a programming style that is very different from that of existing concurrent logic programming languages
(CLP) [14], where concurrent processes communicate via shared variables and unification. Therefore, we
capitalize on this feature of the formalism to obtain a framework for logical denotations which not only
produces specifications which are easier to read, but also scales well when dealing with different kinds of
concurrency in programming languages.

There have been other approaches to provide “user-friendly” frameworks for semantic description of
programming languages. Mosses presented in [10] a hybrid semantic framework called action semantics
which aims to provide easy-to-read, useful semantics for realistic programming languages. He showed in
[11] that action semantics can also be used for providing semantic descriptions of concurrent languages.
Doh showed in [4] that such framework can be used as a basis for a method for composing a programming
language by combining action semantics modules. Unquestionably, action semantics does have interesting
pragmatic features. However, it is clear that it does not provide executable semantics, such as Horn-based
denotations; also it lacks a complete formal system which would allow one to reason about programs. The
action semantics framework is also not adequate to accommodate shared-state concurrent languages. We
conjecture that our framework can be used to provide semantic descriptions of languages with this type of
concurrency. However, due to space restrictions, we did not address this issue here. In this paper we show
that data-driven concurrency and message passing concurrency can be naturally specified in our framework.

In regards to the communication paradigm used in CT R, it is inspired by the π-calculus [8]. That
calculus is an extension of the formalism introduced by Milner in [7], designed for expressing concepts of
parallelism and mobility in computation. However, CT R is a logic for programming, while π-calculus is
an algebra for specifying and verifying finite-state concurrent systems (which databases and logic programs
are not).

This paper as organized as follows: in Section 2 we motivate the use of CT R (and its Horn fragment,
called CT RH) and explain the basic concepts underlying the logic; Section 3 illustrates the use of the
framework by giving a semantic description of a simple stateless, sequential programming language; in
Section 4 we extend that framework to address concurrency, viz. data-driven concurrency and message
passing concurrency.

Our results show that the semantics of programming languages in general, and concurrent languages in
particular, can be fully specified in the CT R logic framework. It has become apparent from our approach
that the presence of concurrency does not affect the description of other constructs in the specification. This
contrasts sharply with conventional denotational descriptions, where domains of higher-order functions
used to model concurrency and nondeterminism are radically different from those used in the specification
of sequential languages.

2 Overview of Horn Concurrent Transaction Logic

CT R is an extension of classical logic that seamlessly integrates concurrency and communication with
queries and updates. It has a purely logic semantics, including a natural model theory and a sound-and-
complete proof theory. Like classical logic, CT R has a Horn fragment, here called CT RH, with a proce-
dural interpretation, in which programs can be specified and executed. This section reviews the syntax of
CT RH and its procedural interpretation, summarizing material from [2].

2.1 Syntax

An atomic formula is a goal. If φ1 and φ2 are goals, then so are the formulas φ1⊗φ2, φ1 | φ2, and �φ. If
φ is a goal and p is an atomic formula, then p ← φ is a rule. A finite set of rules is a rulebase. A rulebase
with a goal is a program.

Executable denotations for concurrent languages using Concurrent Transaction Logic 73

For convenience, we assume that ⊗ binds more tightly than | . Thus, the expression p | q⊗ r is parsed as
p | (q⊗ r). Intuitively, goals are procedures, and rules are subroutine definitions (in the logic-programming
tradition). In particular, if α and β are goals, then

– α⊗β means “First execute α, then execute β, and commit iff both α and β commit.”
– α |β means ”Execute α and β concurrently, and commit iff both α and β commit.”
– �α means “Execute α in isolation, and commit iff α commits.”
– p← α means “An execution of α is also an execution of p, where p commits iff α commits.”

2.2 Elementary operations

In general, an elementary operation can be any activity that access a database. The precise set of elementary
operations is somewhat arbitrary, and in this paper, four are provided. These operations are simple and they
can be efficiently implemented. To represent these four operations, we use four types of expressions, to
wit:

– p, “commit iff atom p is in the database”;
– empty.p, “commit iff the database contains no atoms of the form p”;
– ins.p, “insert atom p into the database; and
– del.p, “delete atom p from the database, and commit.”

2.3 Programs

Using the aforementioned four logical operators, a programmer combines elementary operations into com-
plex processes, i.e., programs. For instance,

del.p(a)⊗ del.p(b)

is a simple program that first deletes p(a) from the database and then deletes p(b). Likewise, the goal

del.p(a)⊗ del.p(b) | ins.q(a)⊗ ins.q(b)

is a program consisting of two sequential processes that execute concurrently. CT RH can be used to pro-
gram database transactions. For example, the goal �(p(b)⊗del.p(b)) represents a transaction program
with a precondition, p(b). This program first asks if p(b) is in the database, and if so, it deletes p(b). This
program commits if p(b) is in the database at the start of the execution, and aborts otherwise. Example 1
shows the definition of a subroutine for updating a bank account balance.

Example 1 (Updating a bank account balance) To update the balance of a client’s account, “atomically”
check the current account balance, then remove it, and then insert the new balance.

updateAccBlc(Acc,Old,New)←
�(blnc(Acct,Old)⊗ del.blnc(Acct,Old)⊗ ins.blnc(Acct,New))

where blnc(x, y) is a database predicate denoting the current balance, y, of bank account x. 2

2.4 Inference system

Bonner introduced in [2] an inference system for executing CT RH programs using an SLD-style resolution
mechanism. To facilitate the understanding of the approach presented here, we show this inference system
in this section.

First, let us present the notion of hot components, i.e., the formulas which are ready to execute in a
goal. This notion is important for understanding the example shown in Table (1).

Let φ be a concurrent serial goal. Its hot components, denoted hot(φ), is defined recursively as follows:

– hot(()) = {}, where () is the empty goal;

74 Marcus Vinicius Santos

– hot(b) = {b}, if b is a atomic formula;
– hot(ψ1⊗ · · · ⊗ψk) = hot(ψ1);
– hot(ψ1 | ψ2 | · · · | ψk) = hot(ψ1) ∪ · · · ∪ hot(ψk).
– hot(�ψ) = �ψ.

The inference system manipulates expressions called sequents, which have the form P,D... ` (∃)φ
, where P is a program, D is any database state, and φ is a goal. The informal meaning of such a sequent
is that, based on program P , the formula (∃)φ can be proved from state D. Let the concurrent serial goal
clause be the expression←G0, whereG0 is the sequent P,D1... ` (∃)φ. A SLD-style refutation of←G0

is a sequence of goal clauses←G0 · · · ←Gn where Gn is the empty clause, i.e., the sequent P,Dn... ` (),
where Dn is a database state, and () denotes the empty formula. This sequent is an axiom of the inference
system, and this axiom states that the empty formula is true on any database state. Each←Gi+1 is obtained
from←Gi by using the the axiom and inference rules introduced in [2].

Axiom: P,D... ` (), for any state D

Inference rules: In rules 1-3, σ is a substitution, ψ and ψ′ are goals, and a is an element (randomly)
selected from hot(ψ).

1. Applying rule definitions: Suppose b← β is a rule in P whose variables have been renamed so that the
rule shares no variables with ψ. If a and b unify with mgu σ, then

P,D... ` (∃)ψ′σ

P,D... ` (∃)ψ

where ψ′ is obtained from ψ by replacing a by β.
2. Querying the database: If Od(Di) |=

c (∃)aσ, and aσ and ψ′σ share no variables, then

P,D... ` (∃)ψ′σ

P,D... ` (∃)ψ

where Od denotes a mapping from states to formulas that are true of the state (see [2]); ψ′ is obtained
from ψ by removing a.

3. Executing elementary updates: If Ot(D1,D2) |=
c (∃)aσ, and aσ and ψ′ share no variables, then

P,D2... ` (∃)ψ′σ

P,D1... ` (∃)ψ

where Ot is a mapping from pair of states to an atomic ground formula; ψ′ is obtained from ψ by
removing a.

4. Executing atomic transactions: If �α is a hot component in ψ, then

P,D... ` (∃) (α⊗ψ′)
P,D1... ` (∃)ψ

where ψ′ is obtained from ψ by removing a hot occurrence of �α.

Each inference rule consists of two sequents, and has the following interpretation: if the upper sequent
(Gi+1) can be inferred, then the lower sequent (Gi) can also be inferred.

To illustrate how the resolution mechanism operates, Table (1) shows a program and a deduction of a
goal.

A program A deduction for the goal s

s← p | q
p← ins.r(a)
q ← ins.r(b)

Sequents Inf. rule Hot components
P, {} ` s 1 {s}
P, {} ` p | q 1 {p, q}
P, {} ` p | ins.r(b) 3 {p, ins.r(b)}
P, {r(b)} ` p 1 {p}
P, {r(b)} ` ins.r(a) 3 {ins.r(a)}
P, {r(a), r(b)} ` () Axiom { }

(1)

Executable denotations for concurrent languages using Concurrent Transaction Logic 75

3 Denotations for sequential languages using CT R
H

Denotational semantics of a language consists of three components:

– syntax: specified as a context free grammar;
– semantic algebra: defines the basic domains and the associated operations; meaning of a program is

expressed in terms of these basic domains
– valuation functions: provide a mapping from abstract syntax trees of language constructs to values in

the basic domains of the semantic algebra

Gupta presented in [5] a semantics specification framework, called Horn (logical) denotations, in which
one uses DCG rules to specify the syntax of a source language, and Horn rules to specify the semantic
algebras and valuation functions. For sequential languages, the most noticeable differences between our
approach and that of [5] regard the framework used to specify semantic algebras and valuation functions.

Semantic algebras: Suppose we want to specify the semantics of a declarative, stateless programming
language, calledM. We model the store using the elementary operations introduced in Section 2.2. To rep-
resent a store entity we use the database predicate store(K,V), which associates a variable K with its cur-
rent value V . For example, suppose the database includes the following predicates: store(x1, unbound),
store(x2, 9). Then x1 is unbound and x2 is bound to the value 9. Moreover, we assume the following
elementary operations are also defined: empty.store(K,V), ins.store(K,V) and del.store(K,V).

Suppose the syntax ofM specifies program blocks, e.g., sequences of statements delimited by begin,end.
Generally, this kind of control structure is used in programming languages for defining scopes. We model
the environment using the database predicate env(Id,X) to associate a variable identifier Id with a store
entity X; and we use the elementary operations empty.env(Id,X), ins.env(Id,X), and del.env(Id,X),
which have meanings similar to the ones used to model the store.

Based on the above considerations, we present in Figure 1 the semantic algebra forM. Because of space
restrictions, we have omitted the definitions of helper predicates newVar, getVal, getVar, and bindInStore.
The reader may find in [12] more information regarding the design of single-assignment stores. For the
purposes of this paper, it should suffice to know that predicate newVar instantiates its parameter with a
new variable; getVal gets the value bound to a given variable; getVar gets the variable to which a given
variable identifier is mapped; and bindInStore updates the store to reflect bindings which are made between
variables or between a variable and a value.

initializeStoreEnv ← initEnv⊗ initStore

initEnv ← empty.env(I, X)
initEnv ← env(Id, X)⊗ del.env(Id, X)⊗ initEnv

initStore← empty.store(I, V)
initStore← store(Id, V)⊗ del.store(Id, V)⊗ initStore

addV arToEnv(V arId)← createV ar(V ar, unbound)⊗
rmBindingFromEnv(V arId)⊗ ins.env(V arId, V ar)

createV ar(V ar, Content)← newV ar(V ar)⊗ ins.store(V ar, Content)
access(V arId, V al)← env(V arId, V ar)⊗ getV al(V ar, V al)
bind(V arId1, V arId2)← getV ar(V arId1, V ar1)⊗

getV ar(V arId2, V ar2)⊗ bindInStore(V ar1, V ar2)
valCreate(V arId, V al)← createV ar(NewV ar, V al)⊗

getV ar(V arId, V ar)⊗ bindInStore(V ar, NewV ar)

Fig. 1. Semantic algebra forM

If the reader compares the approach we have used to obtain the semantic algebra presented in Figure
1 with the approach Gupta used in [5], you will notice we do not resort to lists to represent the store and
the environment. Instead, both notions are defined in terms of database elementary operations, combined

76 Marcus Vinicius Santos

with typical logic programming techniques. Obviously, one may use Prolog’s database operators assert
and retract to do the same thing. However, it is known such operators have no logical semantics.

Valuation predicates: In a denotational semantics framework, valuation functions (predicates) impart
meaning to the syntactic structures of the language. Below we present the grammar rule (in BNF notation)
and the valuation predicates for a binding statement inM. Notice that a predicate associates a given abstract
syntax tree to a procedure, i.e., the tail of its respective Horn rule, which defines the semantics of the
syntactic structure.

〈binding〉 ::= 〈id〉 = 〈Expr〉 stmtvp(bind(V 1, V 2))← expr(V 2, V al)⊗
V al = unbound⊗ bind(V 1, V 2)

stmtvp(bind(V 1, V 2))← expr(V 2, V al)⊗
V al <> unbound⊗ valCreate(V 1, V al)

Again, when compared to the approach presented in [5], the only novelty introduced in the specifi-
cation presented in the valuation predicates above is a more clean formulation, which does not use extra
parameters, thread through the Horn rules, to represent the store and the environment.

4 Denotations for concurrency

The logical denotations presented in Section 3 provide a framework to specify the semantics of stateless,
sequential programming languages. This section extends that framework to address concurrency in pro-
gramming languages.

4.1 The Data-driven concurrent language M1

In this section we show a logical denotation based on CT RH for a simple data-driven concurrent pro-
gramming language calledM1. Data-driven concurrency is found in declarative, “stateless” programming
languages.

The variables ofM1 support dataflow execution, i.e., an operation waits until all arguments are bound
before executing. We assume dataflow execution without exception handling. That is, if an argument is
required for a computation but a value is never bound to it, then the execution will result in failure.

Concurrency is denoted inM1 via the concurrent block delimiters cobegin, coend. The BNF rule
for a concurrent block is given below:

stmt ::= cobegin stmtListcoend

In programming languages with this sort of control structure, it is expected that each statement in the
concurrent block runs using its own environment. Therefore, we cannot use a semantic algebra which
defines a global environment as the one specified forM (see Figure 1). To obtain the semantic algebra for
M1, we simply represent the environment as a list of mappings env(I,X), thread through the valuation
predicates (see valuation predicates below). We should also define predicates for inserting and removing
bindings from the environment. Notice, however, that the store can still be a global data structure. Below
we show the valuation predicates for a concurrent block:

stmtvp(coBlock(C), E)← stmtvp(C,E)
stmtvp(coBlock(stmts(C1, C2)), E)← stmtvp(C1, E) | stmtvp(coBlock(C2), E)

The intended meaning provided by the above valuation predicates is very clear: the statements within a
concurrent block should run concurrently. Moreover, each statement runs using its own environment.

Executable denotations for concurrent languages using Concurrent Transaction Logic 77

Example 2 (Dataflow synchronization) This example illustrates how concurrent instructions communi-
cate through dataflow synchronization.

begin var B;
cobegin
B=1;
if B then

output B
else

output 0
coend

end

2

To analyze Exampe 2, let us skip the initial computation steps and go directly to the situation when the
binding (denoted by the ’=’ operator) and if statements are the two hot components of the execution.

As seen in Section 2.4, at each resolution step, any element of the hot components set can be selected
for execution. If the if statement is selected, then the deduction of the if statement will fail, because the
value of B is undetermined. CT RH’s inference system would then backtrack and attempt another path by
picking the statement B=1 for execution. This amounts to waiting until the argument of the if is bound
before executing.

4.2 The message passing concurrent language M2

In this section we present a logical denotation for a simple message passing concurrent language called
M2. In this language, a program is a set of named communicating processes, i.e., processes that send and
receive messages amongst themselves. Example 3 illustrates one of such processes.

Example 3 (A message passing process) Definition of a process, sum, which receives two numbers from
a process p, adds them up, and sends the result to process q.

process sum(in p, out q);
beginp

begin local a, b;
receive a from p;
receive b from p;
send a+b to q

end
endp

2

Figure 2 shows the BNF grammar ofM2.

Semantic algebra for M2: In Figure 2, the names listed in the heading of a process, under 〈connections〉,
after the words in and out, define the set of processes with which it communicates. To represent that, we
make slight changes to the definition of store and environment introduced in Section 3. To model the
store, we also use the following elementary operations: proc(I, C), empty.proc(I, C), ins.proc(I, C),
and del.proc(I, C), where proc(I, C) is a database predicate denoting a store entity which associates a
process identifier, I , with its connections C = conn(In,Out), where In, out are the lists of processes
from which I receives input and sends output, respectively. We also assume an environment includes the
term rproc(P), which denotes a running process P .

In this kind of programming language, processes communicate via communication channels, using
send and receive statements such as the ones shown in Figure 2. To model channels we use the run-of-
the-mill insert, delete, and empty primitives applied on the database predicate channel(Q,Msg), which

78 Marcus Vinicius Santos

〈program〉 ::= 〈processList〉.
〈processList〉 ::= 〈process〉 | 〈process〉; 〈processList〉
〈process〉 ::= process〈id〉〈connections〉;

beginp

〈stmtList〉
endp

〈connections〉 ::= 〈empty〉 | (〈inputs〉〈outputs〉)
〈inputs〉 ::= 〈empty〉 | in 〈idList〉
〈outputs〉 ::= 〈empty〉 | out 〈idList〉
〈idList〉 ::= 〈id〉 | 〈id〉, 〈idList〉
〈stmtList〉 ::= 〈statement〉 | 〈statement〉; 〈stmtList〉
〈statment〉 ::= 〈send〉 | 〈receive〉 | 〈assignment〉
〈send〉 ::= send 〈expression〉 to 〈procRef〉 | send to 〈procRef〉
〈receive〉 ::= receive 〈id〉 from 〈procRef〉 | receive from 〈procRef〉
〈assignment〉 ::= 〈id〉 := 〈expression〉

Fig. 2. DCG rules forM2

means: “the channel Q contains message Msq.” In the semantic algebra ofM2 we implement send and
receive in terms of predicates sendC and receiveC.

To accommodate the above and obtain the semantic algebra forM2, we modify the semantic algebra
presented in Figure 1 as follows:

initializeStoreEnv([])← empty.store(I, V)⊗ empty.rProc(P)
initializeStoreEnv(E)← store(Id, V al)⊗del.store(Id, V al)⊗

initializeStoreEnv(E)
initializeStoreEnv(E)← rProc(P)⊗del.rProc(P)⊗ initializeStoreEnv(E)
addProcToEnv(ProcId,E,NewE)← NewE = [rproc(ProcId)|E]
sendC(Q,Msg)← ins.channel(Q,Msg)
receiveC(Q,Msg)← �(channel(Q,Msg)⊗ del.channel(Q,Msg))

Valuation predicates: Figure 3 presents the valuation predicates forM2. Notice thatM2 does not in-
clude procedure definition or procedure call. Instead, it includes the send and receive statements to provide
process input and output operations. Notice that predicates receivevp and sendvp, along with CT R’s res-
olution mechanism, specify the intuitive semantics for statements receive and send, which is: receive
waits for a value to be sent to it by the process referred to in the statement. Then the value is assigned to the
variable identified in the statement. If no variable is specified, then receive simply waits until the process
referred to sends it a value and then discards it. This allows processes to synchronize their activities without
updating variables. send simply sends a message to a process.

5 Discussion

An approach which provides a denotational semantics based on a Horn fragment of Concurrent Transaction
Logic (CT R) was presented.

We have showed that the semantics of a class of concurrent programming languages can be fully spec-
ified in a Horn-based logic framework. The proposed framework seamlessly integrates with the notions
of environment, store, store updates, dataflow in declarative languages, data-driven concurrency, message
passing concurrency, and synchronization between concurrent processes. It has become apparent from our
approach that the presence of concurrency does not affect the description of other constructs in the specifi-
cation. This contrasts sharply with conventional denotational descriptions, where domains of higher-order
functions used to model concurrency and nondeterminism are radically different from those used in the
specification of sequential languages.

Executable denotations for concurrent languages using Concurrent Transaction Logic 79

progEval(P)← initializeStoreEnv(E)⊗ processList(X, E).
processList(P, E)← process(P, E).
processList(par(P1, P2), E)← process(P1, E) | process(P2, E).
process(proc(Id, Conn, nodecl, Bdy), E)←

addProcToEnv(Id, E, NE)⊗ ins.proc(Id, Conn)⊗
stmtvp(Bdy, NE).

receivevp(receive(noV al, Proc), E)←
�(checkHeader(in, Proc, E)⊗ receiveC(Proc,)).

receivevp(receive(Proc, V arId), E)← V arId <> noV al⊗
�(checkHeader(in, Proc, E)⊗ receiveC(Proc, V al)⊗
valCreate(V arId, V al, E)).

sendvp(send(Proc, noV al), E)←
�(checkHeader(out, Proc, E)⊗ sendC(Proc, unit)).

sendvp(send(Proc, Expr), E)← Expr <> noV al⊗
�(expr(Expr, V al, E)⊗ checkHeader(out, Proc)⊗
sendC(Proc, V al)).

checkHeader(in, Proc, E)←
procInScope(E, PId)⊗ proc(Proc, conn(, Out))⊗
checkProcId(PId, Out).

checkHeader(out, Proc)←
procInScope(E, PId)⊗ proc(Proc, conn(In,))⊗
checkProcId(PId, In).

procInScope([proc(PId)|], P Id).
procInScope([X|R], P Id)← X <> rproc()⊗ procInScope(R, PId).
checkProcId(Proc, identif(Proc)).
checkProcId(Proc, vList(iddentif(Proc), R)).
checkProcId(Proc, vList(, R))← checkProcId(Proc, R).

Fig. 3. Valuation predicates forM2

For future work we intend to further experiment with this framework to test the adequacy of the com-
munication paradigm of CT R for description of other flavours of concurrency, e.g., shared-state and soft
real-time. We conjecture shared-state concurrency should naturally and easily follow from our approach.
To address this type of concurrency, one would need to first define the notion of a mutable store based on
the notion of single-assignment store presented here. Then define a suitable semantic algebra that operates
on this store. After that, use logic programming techniques in CT RH to implement valuation predicates
which specify coarse-grained atomic actions, e.g., locks, monitors, or transactions.

Bonner and Kifer introduced in [3] how to reason about state changes in Transaction Logic [1]. There
they provide a declarative semantics for axioms specifying the preconditions and effects of state updates.
Drawing on [3], Santos presented in [13] a computational method to reason about robot actions specified
as Transaction Logic formulas. Based on these works, we intend to explore methods for doing program
verification and reasoning in our framework.

References

1. A.J. Bonner and M. Kifer. Transaction logic programming (or a logic of declarative and procedural knowledge).
Technical Report CSRI-323, University of Toronto, November 1995. http://www.cs.toronto.edu/
˜bonner/transaction-logic.html.

2. A.J. Bonner and M. Kifer. Concurrency and communication in transaction logic. In Joint Intl. Conference and
Symposium on Logic Programming, pages 142–156, Bonn, Germany, September 1996. MIT Press.

3. A.J. Bonner and M. Kifer. Results on reasoning about action in transaction logic. In B. Freitag, H. Decker,
A. Voronkov, and M. Kifer, editors, Transactions and Change in Deductive Databases, Lecture Notes in Artificial
Intelligence. Springer Verlag, 1998.

4. Kyung-Goo Doh and Peter D. Mosses. Composing programming languages by combining action-semantics mod-
ules. Sci. Comput. Program., 47(1):3–36, 2003.

80 Marcus Vinicius Santos

5. G. Gupta. Horn logic denotations and their applications. In Workshop on Current trends and Future Directions in
Logic Programming Research, 1998.

6. Gopal Gupta. A language-centric approach to software engineering: Domain specific languages meet software
components. In Proceedings of the CoLogNet Workshop Series on Component-based Software Development and
Implementation Technology for Computational Logic Systems, Madri, Spain, 2002.

7. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
8. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, II. Information and Computation, 100(1):41–

77, September 1992.
9. Chris D. Moss. How to define a language using prolog. In Acm Symposoium on Lisp and Functional Programming,

pages 67–73, 1982.
10. P. D. Mosses. Action semantics. Cambridge University Press, 1992.
11. Peter D. Mosses. On the action semantics of concurrent programming languages. In Proceedings of the REX

Workshop on Semantics: Foundations and Applications, pages 398–424, London, UK, 1993. Springer-Verlag.
12. P. Van Roy and S. Haridi. Concepts, techniques, and models of computer programming. MIT Press, 2004.
13. Marcus V. Santos. Specifying and reasoning about actions in open worlds using transaction logic. In ECAI:

Workshop on Cognitive Robotics, August 2000.
14. E. Shapiro. A family of concurrent logic programming languages. ACM Computing Surveys, 21(3), 1989.
15. Ken Slonneger. Implementing denotational semantics with logic programming. In CSC ’92: Proceedings of the

1992 ACM annual conference on Communications, pages 337–344, New York, NY, USA, 1992. ACM Press.
16. Qian Wang and Gopal Gupta. A logic programming-based environment for integrating architecture description

languages. In Proceedings of the 3rd International Workshop on Multiparadigm Constraint Programming Lan-
guages MultiCPL’04, Saint-Malo, France, 2004.

