
Fine-grained Parallel Implementation of the

Preflow-Push Algorithm in CHR

Marc Meister

Fakultät für Informatik, Universität Ulm, Germany
Marc.Meister@uni-ulm.de

Abstract. Constraint Handling Rules (CHR) is a concurrent, committed-choice, rule-based
language. Recently it was shown that programs for standard (operational) semantics can
be interpreted in a parallel computation model. As case study, the classical, imperative,
parallel, and non-confluent preflow-push algorithm is implemented in CHR for refined and
for standard semantics.

1 Introduction

Constraint Handling Rules (CHR) [5] is a concurrent, committed-choice, rule-based language which
was originally developed for rapid prototyping and for writing constraint solvers. The operational
semantics of a CHR program is given by a state transition system and comes in different flavours.

In refined (operational) semantics, the constraints in a state are evaluated from left-to-right
and rules are tried in textual program order. Concrete implementations, like SICStus Prolog with
CHR [14], use this refined semantics to execute rules sequentially. To the contrary, the more ab-
stract standard (operational) semantics makes no assumptions about the order constraints are
evaluated and rules are tried. As constraint removal caused by the application of a rule remains
atomic, standard semantics can be interpreted as a parallel computation model [6]. A CHR run-
time system for standard semantics can simulate a parallel random access machine (PRAM) [8],
where copies of the rules make up the asynchronous threads, and rules operate on a global con-
straint store.

As refined semantics is an instance of the standard semantics [4], any correct program for
standard semantics is also correct for refined semantics. However, only confluent programs have
this property for the reverse direction. In general, a correct program for refined semantics is not
correct in standard semantics: The CHR program (using SICStus Prolog syntax)

a \ b <=> write(’yes’).

b <=> write(’no’).

can be used to test if constraint a is present in refined semantics. In standard semantics, however,
the answer for the goal b is no even if a is present, if the second rule is chosen for execution.

Recently, classical algorithms – e.g., the classical union-find algorithm – have been implemented
in CHR for refined [13] and for standard semantics [6]. We follow this trend to use CHR as a
general-purpose programming language by investigating CHR implementations of the preflow-push
algorithm for both semantics.

The preflow-push algorithm [7] solves the maximal flow problem: Intuitively the problem can
be visualised as a system of connected water-pipes, where each pipe has a given size restricting its
capacity. The system is closed, s.t. no water can escape, except for one source and one sink valve.
Solving the maximal flow problem accounts to finding the maximal capacity the system can handle
from source to sink (and to find the routes the water actually takes). The preflow-push algorithm
consists of two local actions that are applied exhaustively. Applications for finding a maximal flow
are manifold and found in, e.g., transportation planning and resource management. In constraint
programming, the maximal flow is needed for the efficient handling of the global alldifferent and
global cardinality constraints [10, 15].



Fine-grained Parallel Implementation of the Preflow-Push Algorithm in CHR 173

We implement the (inherently non-confluent) preflow-push algorithm, both for refined and for
standard semantics. The transformation from refined to standard semantics showed several prob-
lems when implementing a classical, parallel, imperative, and non-confluent algorithm in parallel
CHR. We wanted to allow fine-grained parallel execution on disjoint parts of the graph for a high
level of parallelism.

We address problems for programming in parallel CHR. Our solutions are implemented and
tested: These include a basic for-loop control structure, concurrent locking without global control,
and some basic results how to assemble a CHR programs using parallel CHR subprograms. In our
case study, we encode sequential blocks of the parallel preflow-push algorithm by chains of for-
loops.

Parallel, imperative implementations [1] are not comparable to our work due to fundamentally
different computing models. Closest to our work is [6]: Frühwirth uses confluence analysis to prove
that a given CHR program is correct in standard semantics. In our approach, however, we split the
given (con-confluent) problem into subproblems, which have a standard semantics implementation.

This paper is organised as follows: We briefly introduce the preflow-push algorithm in Sect. 2
and the connection between standard operational semantics and parallelism in Sect. 3. We discuss
problems when making the move from refined to standard semantics and propose a loop abstraction
in Sect. 4. We present our versions of the preflow-push algorithm in CHR both for refined and for
standard semantics in Sect. 5 and then conclude.

2 Generic Preflow-Push Algorithm

We recall the necessary notation from graph theory before explaining the generic preflow-push
algorithm [7] (see, e.g., [3] for a detailed introduction).

A flow network is a complete, directed graph G = (V, E), with vertices V and edges E, where
each edge (u, v) ∈ E = V ×V is assigned a non-negative capacity c(u, v). A flow network contains
the two distinguished vertices source and sink. A flow in a flow network is a function f : E → R
obeying

– capacity restriction ∀u, v ∈ V : f(u, v) ≤ c(u, v),
– skew symmetry ∀u, v ∈ V : f(u, v) = −f(v, u), and finally
– flow conservation ∀u ∈ V \ {source, sink} :

∑
v∈V

f(u, v) = 0.

A solution to the maximum-flow problem is given by a valid flow which maximises the flow
value

∑
u∈V

f(u, sink) (which is equal to
∑

u∈V
f(source, u)) of a flow network. Usually, there

are several valid flows for a flow value.
Instead of the augmentation path (Ford-Fulkerson) algorithms which examine the complete

network, we focus on the more localised preflow-push algorithms, which relax the flow conservation
property and allow vertices to overflow during the computation: Vertices may overflow during the
execution of the algorithm, i.e., for all u ∈ V the excess flow e(u) =

∑
v∈V

f(v, u) can be positive.
However, upon termination for all u ∈ V \ {source, sink}, the excess flow must be zero in order
to make the preflow f a valid flow.

The preflow-push algorithms employ a global label height h : V → N and the actions push and
lift, which are applied in arbitrary order – hence “generic” preflow-push algorithm. The general
preflow-push algorithm is given in Fig. 1. When no action is applicable any more, the preflow f is
a valid flow with maximal flow value.

For every edge (u, v) ∈ E the residual capacity r(u, v) is defined by c(u, v)− f(u, v) where f is
a preflow. We call an edge (u, v) ∈ E

– a flow edge if f(u, v) > 0,
– a residual edge if r(u, v) > 0, and finally
– a downward residual edge if r(u, v) > 0 and h(u) > h(v).

The preflow-push algorithm has two important properties: The vertex heights never decrease
throughout the computation and for all residual edges (u, v) the invariant h(u) ≤ h(v) + 1 holds.



174 Marc Meister

Initialisation:

– f ← 0, except for f(source, u)← c(source, u) (u ∈ V ).
– h← 0, except for h(source)← #V − 2.
– e← 0, except for e(u)← c(source, u) (u ∈ V ).

Apply exhaustively (until no more change):

“push(u,v)” applies when e(u) > 0, r(u, v) > 0, and h(u) > h(v).
Then do push p← min{e(u), r(u, v)} units of flow from u to v. Update by subtracting p from e(u),
f(v, u), and r(u, v) while adding p to e(v), f(u, v), and r(v, u).

“lift(u)” applies when e(u) > 0, ∀v ∈ V : r(u, v) > 0⇒ h(u) ≤ h(v), and u 6= source, u 6= sink.
Then do lift vertex u to height h(u)← 1 + min{h(v) : r(u, v) > 0, v ∈ V }.

Fig. 1. Generic preflow-push algorithm

Simultaneous actions of the preflow-push algorithm, working on disjoint parts of the flow
graph, allow for parallel execution. The preflow-push algorithm is therefore inherently parallel.
However, each push or lift action consists of a sequential program, e.g., compute the minimum
height before updating the height. For integral capacities the maximal parallelism is bounded by
the sum of possible excess flow. Parallelisation can worsen the performance: Consider a flow graph
with exactly one path from source to sink.

3 Constraint Handling Rules (CHR)

Constraint Handling Rules (CHR) [5] is a concurrent, committed-choice, rule-based language. We
assume basic familiarity about CHR (for an introduction visit the CHR web page [12]).

3.1 Standard and Refined Operational Semantics

The standard operational semantics of CHR is given by a transition system. For a query (a
conjunction of user and built-in constraints) rules are applied until a fix-point is reached. For
each kind of CHR rule, a transition is given: A simplification rule H ⇔ G | B can apply in
state (H ′ ∧ C), if built-in constraints Cb of C entail that H ′ matches the head H and the guard
(Fig. 2). A simplification rule replaces instances of CHR constraints. A simplification rule to avoid
non-termination.

Any rule that is applicable can be applied and rule application cannot be undone (because
CHR is a committed-choice language). Standard semantics allows unfair rule application.

The refined (operational) semantics is an instance of the standard semantics [4], curbing non-
determinism. In refined semantics, the constraints in a state are evaluated from left-to-right, rules
are tried in textual program order, and constraint insertion (of body constraints of executed
rules) is left-to-right. Hence, any correct program for standard semantics is also correct for refined
semantics. However only confluent programs have this property for the reverse direction. In general,
a correct program for refined semantics is not correct in standard semantics.

Orthogonal to the aspect of the operational semantics is the aspect of the declarative semantics
of a CHR program, which is not the topic of this paper.

3.2 Parallelisation for free in Standard Semantic

Strong parallelism of CHR [6] formalises that rule applications may share constraints if they leave
these constraints unchanged, c.f. Fig. 3 where Bi,Hi, and C are conjunctions of constraints. We
assume that constraint removal in standard semantics, caused by a rule application, is atomic: If
two rules are applicable to remove a given constraint, then only one can succeed. Opposed to the



Fine-grained Parallel Implementation of the Preflow-Push Algorithm in CHR 175

IF H ⇔ G | B is a fresh variant of a rule with variables x̄

AND CT |= ∀(Cb → ∃x̄(H = H ′ ∧G))
THEN (H ′ ∧ C) 7→ (B ∧G ∧H = H ′ ∧ C)

Fig. 2. Simplify state transition computation

IF H1 ∧ C 7→ B1 ∧ C

AND H2 ∧ C 7→ B2 ∧ C

THEN H1 ∧H2 ∧ C 7→ B1 ∧B2 ∧ C

Fig. 3. Strong parallelism of CHR

refined semantics, we impose no order on the constraint insertion, caused by a rule application.
This means, that the insertion of a sequence of constraints can happen in any order (e.g., all at
once) and is not due until all other computation quiesces.

Clearly, any program for standard semantics can enjoy strong parallelism. We emphasise can,
as the level of parallelism depends on the actual problem representation and program rules. A CHR
program enjoys fine-grained parallel execution only, if the actual implementation allows rules to
remove (disjoint sets of) constraints simultaneously. Encoding the complete problem into a single
constraint voids the effort of any parallelism.

Refined operation semantics can be interpreted as a sequential execution model, while, on the
other hand, standard operational semantics can be identified with a parallel execution model.
Available compilers (like SICStus Prolog with CHR [14]) use the refined semantics. Standard
semantics can be simulated in a CHR program for refined semantics as an interleaving semantics.

4 Programming in Standard Semantics

In this section we explore implications for implementing classical imperative algorithms in CHR
for standard semantics, i.e., what is programming in parallel CHR like.

4.1 From Refined to Standard Semantics

Any confluent CHR program automatically enjoys strongly parallelism. So taking the effort to
prove a program to be confluent pays off. Performing a confluence analysis, the programmer has
to keep an eye on the problem structure in order to actually allow parallelism, i.e., allow multiple
(copies) of rules to work on shared constraints. With the necessary insight, this approach proved
successful for the union-find algorithm [6].

Usually, CHR programs implemented as prototypes rely on the refined semantics, e.g., on the
order rules are tried. Often, a rule is deliberately put at the end of the program, as it must
not apply if some rule (which comes before in textual program order) is applicable. However, if
the implemented algorithm itself turns out to be inherently non-confluent, like e.g., the preflow-
push algorithm which returns only a valid maximal flow, a confluent and fine-grained parallel
implementation is not obvious.

In this paper, we split the classical, imperative algorithm in subproblems – where each sub-
problem can be implemented in standard semantics – and compose the resulting subproblems. This
compossible programming style easily fits with imperative programs (which are usually composed
from a number of basic operations). Therefore our general goal in implementing problems in CHR
for standard/parallel semantics is re-usability : A CHR program for standard semantics can serve
as subprogram in another (not necessarily parallel) program.

4.2 Problems and Solution with Standard Semantics

We propose to categorise CHR constraints according to their behaviour in terms of their life-span,
whether they might be updated by changing their parameters, and by the number of copies in the
store during execution. This showed to be convenient when reasoning about CHR programs.

Backbone constraints are unique (there is only a single copy) and remain unchanged in the
constraint store during execution.



176 Marc Meister

Info constraints map fixed key-arguments to the remaining value-arguments (we assume keys to
be unique). An updating rule that removes an info constraint reinserts it in its body (uncon-
ditionally).

Flag constraints are created and removed during runtime and describe integral values by the
corresponding number of copies in the store.

By this “separation of concerns”, a rule which, e.g., removes an info constraint without rein-
serting it again, is easily marked as possible programming error.

We encountered the following main problems, when moving from refined to standard semantics.
For each problem we propose a solution.

(P1) The constraint store can no longer be seen as a query-able data-structure. We cannot detect
the absence of the CHR constraint. As remedy we propose to explicity store the absence of a
property as a constraint (introductory example, ok/1 constraint in Tab. 1).

(P2) If a rule should be tried for application when a constraint becomes absent, we propose to trail
the number of copies of the constraint that are in the store. Trailing is done by info-constraints
and the corresponding info-constraints are added to the head of the rule (down/2 constraint
in Tab. 1).

(P3) Concurrent activity can change the store during the execution of several rules in ways which
are hardly predictable: Counting the number of constraints (of some type) which are in the
store might result in too large numbers, as some of the constraints are changed by concurrent
activity. As remedy we introduce backbone-constraints which remain (unchanged) during the
execution and operate on copies of them (Ex. 1).

(P4) In order to implement a sequential (sub)problem in CHR for parallel semantics we propose
to use a set of transition rules to move on from one phase to the next. In our case, a phase
consists of an instance of a for-loop (described in the following section), which is started by
posting a for/3 constraint and the successful completion is indicated by the presence of the
corresponding done/3 constraint. A transition rule simply removes the answer constraints of
one phase and posts constraints creating the following phase. This allows to encode explicit
control flow for sequential parts in standard semantics easily (Fig. 7).

Usually, backbone constraints represent the (fixed) underlying problem structure (P3), info
constraints take program variables (to allow for non-logical updates) (P2), and flag constraints
are used mainly to guide the control flow (P1).

4.3 A for-Loop Control Abstraction for Standard Semantics

As CHR lacks even basic control structures (known from imperative programming) and to promote
general purpose programming in CHR, we propose a basic for-loop control abstraction composed
of the CHR rules in Fig. 4.

for_zero @ for(Id,0,Info) <=> done(Id,0,Info).

for_intro @ for(Id,S,_) ==> S > 0 | id(Id).

for_step @ inc(Id) <=> count(Id,1).

for_count @ count(Id,A), count(Id,B) <=> C is A+B, count(Id,C).

for_done @ id(Id), for(Id,N,Info), count(Id,N) <=> done(Id,N,Info).

Fig. 4. for-loop rules (standard semantics)

A for-loop which is to iterate at most n ≥ 0 times over a user-provided loop-body is initialised
by posting the flag for(Id,n,Info) where, the first argument is an unique identifier Id. During
the life-span of the loop, the flag id(Id) is present and rules for the loop step – provided by the
user – post exactly n copies of the flag inc(Id), where each copy of the flag inc(Id) indicates



Fine-grained Parallel Implementation of the Preflow-Push Algorithm in CHR 177

that one loop step is finished. The flag done(Id,n,Info) (as the only remaining constraint from
the abstraction) indicates that the loop is finished. The loop abstraction interacts with other rules
via the constraints for, id, inc, and done as demonstrated in Ex. 1.

Note that a loop is defined by constraints (and not tied to a specific place in the source code as
in an imperative languages). While the rules in the loop abstraction increment the loop variable,
the user-provided rules take care of the loop initialisation and the loop body as shown in the
following examples.

Example 1. We calculate the minimum of all n > 0 program variables. A program variable
with name x and value v(x) is stored in a backbone constraint cname(x) and an info constraint
cdata(x,v(x)) (these are considered to be the only constraints in the store). As concurrent activity
might change values during the life-span of the loop, we make a copy of the backbones in rule
e2 and the flags pie(Id-min,x) are consumed (“eaten”) for retrieving the values v(x) in rule e3

(Problem P3). Loop initialisation is done by rules e1 and e2 and the loop step rules consist of
rules e3 and e4.

e1 @ id(Id-min) ==> min(Id-min,+inf).

e2 @ id(Id-min), cname(X) ==> pie(Id-min,X).

e3 @ cdata(X,V)\ pie(Id-min,X) <=> min(Id-min,V).

e4 @ min(Id-min,A)\ min(Id-min,B) <=> A =< B | inc(Id).

Calculation is started by posting the flag for(Id-min,n,’’) and the minimum m is claimed
by removing done(Id-min, , ), min(Id-min,m). Altogether n + 1 copies of the flag min/2 are
generated and after n applications of rule e4 the loop is finished.

Example 2. Similarly, the following three rules allow to sum up the values.

a1 @ id(Id-add), cname(X) ==> pie(Id-add,X).

a2 @ cdata(X,V)\ pie(Id-add,X) <=> add(Id-add,V).

a3 @ add(Id-add,A), add(Id-add,B) <=> C is A+B, add(Id-add,C), inc(Id).

The third parameter of the for/3 and done/3 constraints can be used when several for-loops
are chained by transition rules and some information needs to passed along (c.f. Fig. 7). We re-
use both the minimum loop and the addition loop as confluent subroutines in our preflow-push
algorithm for standard semantics.

5 Preflow-Push in CHR

In this section we present our implementations of the preflow-push algorithm in CHR. While the
refined/sequential version is straightforward, the standard/parallel version is somewhat involved
(with only parts of it shown, due to lack of space). However the complete source code is available [9].

5.1 Modelling the Flow Problem

We restrict ourselves to unit capacities c(u, v) ∈ {0, 1} (these are needed for the bipartite matching
underlying the alldifferent implementation) and assume (by prepossessing and adding up capacities
between same vertices) that c(u, v) + c(v, u) ≤ 1 holds for all u, v ∈ V . Positive excess flow
is stored as e(u) copies of the flag constraint e(u). Nevertheless these (apparent) restrictions
can easily be overcome be storing capacity and excess flow in info constraints. Unit capacities
(and only these are needed for bipartite matching in an alldifferent implementation) make each
edge (u, v) with c(u, v) = 1 or c(v, u) = 1 either a residual edge r(u, v) = 1 ∧ f(u, v) = 0 or a
flow edge f(u, v) = 1 ∧ r(u, v) = 0 (therefore we can skip the minimum computation in the push
action, c.f. Fig. 1).

Thus, we can used the following representation of the current preflow f which is updated
repeatedly during run-time: We only consider edges (u, v) with capacity c(u, v) = 1 and for every
such edge, we use a flag constraints res/2 to discriminate flow edges from residual edges:



178 Marc Meister

– res(u,v) iff (u, v) is a residual edge, and
– res(v,u) iff (u, v) is a flow edge.

By pushing flow along the residual edge (u, v), the flag res(u,v) is replaced by res(v,u).
To model the flow problem and to record the current state of the preflow-push algorithm, we

use the constraints given in Tab. 1.

Table 1. Modelling the preflow-push algorithm in CHR constraints

Constraint Category Description

h(u,h(u)) info height h(u) of vertex u

e(u) flag (one unit of) excess flow in vertex u

res(u,v) flag residual edge (u, v)
cap(u,v) backbone c(u, v) > 0
vertex(u,n(u)) backbone n(u) = #{v ∈ V : c(u, v) > 0 ∨ c(v, u) > 0}
down(u,d(u)) info d(u) ≥ #{v ∈ V : r(u, v) > 0, h(u) > h(v)}
lock(u,v,l(u, v)) info edge lock l(u, v) ∈ {u, v, clear}
ok(u) flag vertex u is not lifting

5.2 Preflow-push in Refined Semantics

The key insight for the concise implementation (Fig. 5) of the preflow-push algorithm for refined
semantics is that vertex u (neither source nor sink) can lift iff no push is possible from u.

This global coordination between push actions applied exhaustively, followed by exactly one lift
action, and returning for further push actions is implemented by a flag constraint phase(Phase).
Phase is either push, lift, or update: Rule r_push encodes a push and the rules r_lift1, r_mcalc,
r_minit, and r_lift2 encode a lift action. As long as push actions apply (in phase push), flow
is pushed downwards, replacing a residual edge with a residual edge in the opposed direction.
By temporarily removing phase(push) in rule r_push, we prohibit possible overlapping instances
of rule r_push. Rule r_trans applies when no push is possible (as rule r_push comes before in
textual order). In phase lift, either rule r_lift1 applies when a lift action is possible, or the
computation terminates with a valid maximal flow. In phase update, the minimum height of the
residual neighbours is calculated by the rules r_mcalc and r_minit. Again we exploit the refined
semantics (as rules r_mcalc and r_minit come before in textual program order and are therefore
no longer applicable). Rule r_lift2 then updates to the new height and returns phase(push) to
allow for further push actions.

r_push @ h(U,UH), h(V,VH)\ e(U), res(U,V), phase(push) <=>

UH > VH | res(V,U), e(V), phase(push).

r_trans @ phase(push) <=> phase(lift).

r_lift1 @ e(U)\ h(U,HU), phase(lift) <=> U\=source, U\=sink | getmin(U), phase(update).

r_mcalc @ minimum(A)\ minimum(B) <=> A =< B | true.

r_minit @ getmin(U), res(U,V), h(V,H) ==> minimum(H).

r_lift2 @ getmin(U), minimum(M), phase(update) <=> M1 is M+1, h(U,M1), phase(push).

Fig. 5. Preflow-push algorithm (refined semantics)

In our sequential implementation of the preflow-push algorithm in CHR we rely on the fixed
order of constraint visits and rule tries in refined semantics for means of control.



Fine-grained Parallel Implementation of the Preflow-Push Algorithm in CHR 179

Example 3. To calculate the maximum flow for the simple flow graph V = {source, sink, x} with
positive capacities c(source, x) = c(x, sink) = 1, note how the initialisation and the representation
is encoded in the CHR query.

?- res(x,source), res(x,sink), h(source,1), h(x,0), h(sink,0), e(x), phase(push).

res(x,source), res(sink,x), h(source,1), h(x,1), h(sink,0), e(sink), phase(lift)?

By tracking back residual edges in the answer – starting from the sink – we find the maximal
flow: From source via vertex x (lifted to height h(x) = 1) to sink with maximal flow value one.

5.3 From Refined to Standard Semantics

Our challenge is: Implement the push and lift actions which a high-level of parallelism. To this
end, guarantee that parallel push actions do not interfere with lift actions, and parallel lifting
only applies at disjoint parts of the flow graph. While a push can be encoded as a single rule
(thus enjoying the atomic removal property) this is not the case for the lift action. Lifting a
vertex requires a sequential program by calculating the new height before actually lifting. As
standard semantics provides no means to control atomicity spanning the execution of several
rules, precautions have to be taken that parallel activity does not interfere with lifting. To disallow
any two neighbouring vertices from entering the critical phase while lifting at the same time we
implemented a locking mechanism.

We encode the necessary sequential (sub)program by phase transition rules. While the main
rules (Sect. 5.4) of our implementation for parallel semantics are easy, concurrent locking (Sec. 5.5)
and destructive updates are rather tedious.

5.4 Push and Lift in Standard Semantics

The s_push and s_lift rules for the standard semantics in Fig. 6 resemble closely the push and
lift actions from Fig. 1. The presence of the flag constraint ok(u) indicates that vertex u is not
lifting and therefore, u may push and receive flow (Problem P1). The info constraint down(u,d(u))
trails an upper bound of the number of downward residual edges d(u). When down(u,0) becomes
present, no downward residual edges are available and we can check, if vertex u is liftable (Prob-
lem P2). The backbone constraint vertex/2 stores the number of neighbours for a vertex in the
graph (Problem P3). Initially, all vertices have zero downward residual edges and are endowed
with the flag ok/1.

s_push @ h(U,UH), h(V,VH), ok(U), ok(V)\ res(U,V), e(U), down(U,UM)

<=> UH > VH | UM1 is UM-1, res(V,U), e(V), down(U,UM1).

s_lift @ e(U), vertex(U,N), down(U,0)\ ok(U)

<=> U\=source, U\=sink | add(U-try,0), for(U-try,N,’’).

Fig. 6. Rules s push and s lift (standard semantics)

When pushing flow from vertex u, the number of downward residual edges d(u) is decremented
in rule s_push. When s_lift executes for vertex u, the flag ok(u) is removed to prevent u from
participating in (concurrent) push actions and from multiple lifting. Vertices with no ok/1 flag
are invisible to the rules of Fig. 6.

While (copies of) the rules s_push and s_lift can apply in parallel, the actual lifting (ini-
tialised by an application of s_lift) could not be encoded in a single rule as the new height h(u)
needs to be computed before the affected down/1 constraints can be updated.

During lifting vertex u, neighbours must not increase their height, as the down/2 constraint
of u must be updated and this can be done only after u increased its height; the limbo in between
must be protected from parallel inference. This is done by requiring vertex u to be locked (and



180 Marc Meister

preventing any two neighbours to lock at the same time) before entering these critical parts of
lifting. Locking is initialised by posting (add(u-try,0), for(u-try,n(u),’’)) by rule s_lift

and discussed in the following section. After vertex u locks successfully in the minimum height
is calculated in a phase u-min, reusing the code from Example 1 before a transition rule moves
on to phase u-update where affected down/2 constraints are updated. Finally, the lock is released
in phase u-unlock and ok(u) is restored. Correctness of Implementation:r The rules s_push and
s_lift (Fig. 6) correspond to the generic push and lift actions. Therefore, we can rely on the
termination and correctness properties of the generic preflow-push algorithm:

– When the flags ok(u) and ok(v) are present, the height-invariant along the residual edge (u, v)
holds. Therefore s_push operates on a valid preflow.

– When u has no downward residual edges and ok(u) is present, eventually down(u,0) is present,
making the necessary condition for application of s_lift available.

– A vertex u, selected by rule s_lift for lifting, eventually succeeds to lock.
– A flag ok(u), removed by the s_lift-rule, is eventually restored after u finished lifting. We

have to show that the phases u-min, u-update, and u-unlock do not depend on the phases of
other vertices and terminate eventually.

5.5 Locking in Standard Semantics

Compared to refined semantics, where locking was not an issue due to sequential execution, locking
in standard semantics is an issue due to parallel execution. By locking vertices, we temporarily
rule out some computations, i.e., we disallow neighbouring vertices to be both in the critical phase
during lifting. We solved the problem of concurrent locking without global control by building a
dependency graph recording failed locking attempts. To this end we re-used the for-loop ab-
straction repeatedly and encoded sequential control decision as transition rules. While tricky, the
implementation is necessary as CHR does not offer higher-level synchronisation features.

t0 @ id(U-try), cap(U,V) ==> pie(U-try,U-V).

t1 @ id(U-try), cap(V,U) ==> pie(U-try,V-U).

t2 @ lock(A,B,clear), pie(U-try,A-B) <=> lock(A,B,U), add(U-try,1).

t3 @ lock(A,B,V)\ pie(U-try,A-B) <=> V \= clear, U \= V | pie(U-retry,V), inc(U-try).

t4 @ done(U-try,N,_), add(U-try,S) <=> (S=N -> for(U-min,N,’’) ; for(U-cancel,S,N)).

c1 @ id(U-cancel)\ lock(A,B,U) <=> lock(A,B,clear), inc(U-cancel).

c2 @ done(U-cancel,S,N) <=> R is N-S, for(U-retry,R,N).

r1 @ ok(V)\ pie(U-retry,V) <=> inc(U-retry).

r2 @ id(V-retry)\ pie(U-retry,V) <=> V@<U | inc(U-retry).

r3 @ done(U-retry,_,N) <=> add(U-try,0), for(U-try,N,’’).

Fig. 7. Locking rules (standard semantics)

Our locking mechanism consists of the phases try, cancel, and retry: If vertex u could not
successfully claim all edges in u-try, then, after some cleanup in phase u-cancel and after all
dependencies are cleared in u-retry, it returns to phase u-try for another try (Fig. 7). For each
backbone capacity constraint cap(u,v), the info constraint lock(u,v,l(u, v)) indicates (in the
third argument) if (u, v) is claimed by u, claimed by v, or is clear. Vertex u is locked when it can
claim all edges (u, v), thus neighbouring vertices cannot lock at the same time.

6 Conclusion

We follow the trend to use CHR as a general purpose programming language. We implemented
the preflow-push algorithm in CHR both for the refined (sequential) and the standard (parallel)



Fine-grained Parallel Implementation of the Preflow-Push Algorithm in CHR 181

semantics, tailored to allow fine-grained parallel execution. Implementing a well studied classical
algorithm in parallel CHR is by no means easy, as CHR lacks basic control features like loops. Prob-
lems encountered for programming in standard semantics were addressed. A parallel loop-control
abstraction and a fine-grained locking mechanism were proposed, implemented, and successfully
used. Our quest for a hight level of parallelism turned out to be somewhat involved – altogether
the find-grained parallel implementation required 29 rules as opposed to the six rules in refined
semantics.

In this exploratory work we gained some insight into how to implement a classical, parallel,
imperative, and non-confluent algorithm in parallel CHR. We found that re-usability of the parallel
loop-control abstraction actually pays off.

The achieved parallelism can (up to now) not be reflected in actual speedup, as no appropriate
compiler/hardware for the standard semantics is available. When extending CHR with control
structures for standard semantics, our loop abstraction and locking mechanism may prove useful.
The lack of syntactic sugar, which makes the expression of loops verbose, has already been noted
for multiset rewriting in GAMMA [2] and motivated a loop abstraction for Prolog [11].

Future work should explore the simulation of standard semantics as interleaving semantics in
refined semantics. Also, the semaphore-like locking mechanism needs further investigation.

Regarding the preflow-push algorithm, termination, correctness and complexity (how much
parallelism is achieved) need to be investigated. Future work should extend the implementation
both with the gap heuristic and with the periodic global relabelling heuristic [1] in CHR. A long-
term goal is the efficient and parallel implementation of Régin’s alldifferent constraint in CHR,
which uses maximal matching (a special instance of the maximal-flow problem).

References

1. Richard J. Anderson and João C. Setubal. On the parallel implementation of goldberg’s maximum
flow algorithm. In Proceedings of the fourth annual ACM symposium on Parallel algorithms and
architectures, pages 168–177, 1992.

2. Jean-Pierre Banâtre and Daniel Le Métayer. Programming by multiset transformation. Commun.
ACM, 36(1):98–111, 1993.

3. Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction to
Algorithms. McGraw-Hill Higher Education, 2001.

4. Gregory J. Duck, Peter J. Stuckey, Maŕıa J. Garćıa de la Banda, and Christian Holzbaur. The refined
operational semantics of constraint handling rules. In ICLP, volume 3132 of LNCS, pages 90–104.
Springer, 2004.

5. Thom Frühwirth. Theory and practice of constraint handling rules. J. Log. Program., 37(1-3):95–138,
1998.

6. Thom Frühwirth. Parallelizing union-find in constraint handling rules using confluence. In M. Gab-
brielli and Gupta G., editors, Logic Programming: 21st International Conference, ICLP 2005, volume
3668 of Lecture Notes in Computer Science, pages 113–127. Springer-Verlag, October 2005.

7. Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum-flow problem. J. ACM,
35(4):921–940, 1988.

8. Michael T. Goodrich. Parallel algorithms column 1: models of computation. SIGACT News, 24(4):16–
21, 1993.

9. Marc Meister, Nov 2005. http://www.informatik.uni-ulm.de/pm/index.php?id=126.
10. Jean-Charles Régin. A filtering algorithm for constraints of difference in csps. In AAAI, pages 362–367,

1994.
11. Joachim Schimpf. Logical loops. In Peter J. Stuckey, editor, ICLP, volume 2401 of Lecture Notes in

Computer Science, pages 224–238. Springer, 2002.
12. T. Schrijvers and T. Frühwirth. The Constraint Handling Rules (CHR) webpage, Nov 2005. http:

//www.cs.kuleuven.ac.be/~dtai/projects/CHR/.
13. Tom Schrijvers and Thom Frühwirth. Analysing the chr implementation of union-find. In Armin Wolf,

Thom Frühwirth, and Marc Meister, editors, W(C)LP, volume 2005-01 of Ulmer Informatik-Berichte,
pages 135–146. Universität Ulm, Germany, 2005.

14. SICStus Prolog Homepage, Dec 2004. SICStus 3.11.2, http://www.sics.se/sicstus.
15. W.J. van Hoeve. The alldifferent constraint: A survey. In K.R. Apt, R. Bartak, E. Monfroy, and

F. Rossi, editors, Proceedings of the 2001 ERCIM Workshop on Constraints, Prague, 2001.


