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Abstract. Aggregates in answer set programming (ASP) have recently been studied quite
intensively. The main focus of previous work has been on defining suitable semantics for
programs with arbitrary, potentially recursive aggregates. By now, these efforts appear to
be converging.
An interesting feature of the respective semantics is that for programs without disjunctive
rules, the complexity of reasoning tasks increases with the presence of nonmonotone aggre-
gate atoms. The reason is that with appropriate recursive nonmonotone aggregate atoms
it is possible to simulate disjunctive rules, for which reasoning tasks are in general more
complex.
However, simple nonmonotone aggregates occur frequently in programs, for example, check-
ing whether the value of an aggregate function is equal to a constant, is nonmonotone in most
cases. But many of these aggregate atoms are not powerful enough to simulate disjunctions,
and hence reasoning tasks are in fact less complex in these cases.
In this paper we present methods for identifying “easy” nonmonotone aggregate atoms,
called polynomially decomposable nonmonotone aggregate atoms, giving also a way for trans-
lating programs with polynomially decomposable nonmonotone aggregate atoms to pro-
grams without nonmonotone aggregate atoms.

1 Introduction

The introduction of aggregate atoms [1–8] is one of the major linguistic extensions to Answer Set
Programming of the recent years. While both semantic and computational properties of standard
(aggregate-free) logic programs have been deeply investigated, so far relatively few works have
focused on logic programs with aggregates; some of their semantic properties and their computa-
tional features are still not fully clarified.

The proposal for answer set semantics in [8] seems to be receiving a consensus. Recent works,
such as [9–11] give further support for the plausibility of this semantics by relating it to established
constructs for aggregate-free programs. In particular, [9] presented a semantics for very general
programs, and showed that it coincides with both answer sets of [8] and Smodels answer sets (the
latter holds for weight constraints with positive weights only). In [10] the notion of unfounded
sets is extended from aggregate-free programs to nondisjunctive programs with a certain class of
aggregates in a conservative way, retaining important semantical and computational properties.
In [11], this concept was finally generalized to disjunctive programs with arbitrary aggregates.

A particular feature of answer sets for programs with aggregates is that for programs without
disjunctive rules, the complexity of reasoning tasks increases with the presence of so-called non-
monotone aggregate atoms. Intuitively, the reason is that with appropriate recursive nonmonotone
aggregate atoms it is possible to simulate disjunctive rules, for which reasoning tasks are in general
more complex. From this it follows that for programs with nonmonotone aggregates, more involved
evaluation mechanisms are necessary.

However, by far not all of the nonmonotone aggregate atoms give rise to an increased complex-
ity. A common example of this is an aggregate counting the number of true atoms in a set and
testing whether it is equal to a constant. While these aggregates are nonmonotone, it is not harder
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to evaluate them than monotone or antimonotone aggregates. Indeed, they can be decomposed
into a conjunction of a monotone and an antimonotone aggregate.

In this paper we present methods for identifying such “easy” nonmonotone aggregate atoms,
which we will call polynomially decomposable nonmonotone aggregate atoms. We will also give a
way for translating programs with polynomially decomposable nonmonotone aggregate atoms to
programs without nonmonotone aggregate atoms.

Summarizing, our contributions are as follows:

– We define the notion of polynomially decomposable nonmonotone aggregate atoms
– We show that reasoning over nondisjunctive programs with decomposable nonmonotone ag-

gregate atoms is less complex than with general nonmonotone aggregate atoms.
– We present a method on how to convert programs with polynomially decomposable nonmono-

tone aggregate atoms into programs without nonmonotone aggregate atoms.

2 Logic Programs with Aggregates

In this section, we recall syntax, semantics, and some basic properties of logic programs with
aggregates. For simplicity, we will only deal with ground programs, for a more general syntax, see,
e.g. [8].

2.1 Syntax

We assume that the reader is familiar with standard LP; we refer to the respective constructs
as standard atoms, standard literals (using the default negation symbol not), standard rules, and
standard programs. For simplicity, we will assume that strong negation (usually denoted as ¬) does
not occur in the program1. Two literals are said to be complementary if they are of the form p and
not p for some atom p. Given a literal L, not.L denotes its complementary literal. Accordingly,
given a set A of literals, not.A denotes the set {not.L | L ∈ A}. For further background, see [12,
13].

Set Terms. A DLP
Aset term is a set of pairs of the form 〈t :Conj 〉, where t is a list of constants

and Conj is a conjunction of standard atoms.

Aggregate Functions. An aggregate function is of the form f(S), where S is a set term, and f
is an aggregate function symbol. Intuitively, an aggregate function can be thought of as a (possibly
partial) function mapping multisets of constants to a constant.

Examples for aggregate function symbols are: #count (number of terms), #sum (sum of num-
bers), #times (product of numbers), #min (minimum term), #max (maximum term)#avg (aver-
age of numbers).

We also assume the presence of subset and superset aggregates, denoted ⊆I , ⊂I , ⊇I , ⊃I which
evaluate to 1 if the set of constants is a subset, strict subset, superset, strict superset, respectively,
of the set I , and to 0 otherwise.

Aggregate Atoms and Literals. An aggregate atom is f(S) ≺ T , where f(S) is an aggregate
function, ≺ ∈ {=, <, ≤, >,≥} is a predefined comparison operator, and T is a constant, referred
to as guard.

Example 1. Intuitively, the following aggregate atom holds whenever r(2) together with a(2, k) or
a(2, c) hold.

#max{〈2 : r(2), a(2, k)〉, 〈2 : r(2), a(2, c)〉} > 1

1 Note that this is no real restriction, as for the problems we consider in this paper, strong negation can
be simulated by introducing new symbols.
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An atom is either a standard atom or an aggregate atom. A literal L is an atom A or a standard
literal. Note that for simplicity we do not consider default negated aggregate atoms.

DLP
A Programs. A DLP

A rule r is a construct

a1 ∨ · · · ∨ an :− b1, . . . , bk, not bk+1, . . . , not bm.

where a1, · · · , an are standard atoms, b1, · · · , bk are atoms, bk+1, · · · , bm are standard atoms, and
n ≥ 0, m ≥ k ≥ 0. The disjunction a1 ∨ · · · ∨ an is referred to as the head of r while the
conjunction b1, ..., bk, not bk+1, ..., not bm is the body of r. We denote the set of head atoms by
H(r), and we denote the set {b1, ..., bk, not bk+1, ..., not bm} of the body literals by B(r). B+(r)
and B−(r) denote, respectively, the set of positive and negative literals in B(r).

A DLP
A program is a set of DLP

A rules. In the sequel, we will often drop DLP
A, when it is

clear from the context. A global variable of a rule r appears in a standard atom of r (possibly also
in other atoms); all other variables are local variables.

2.2 Answer Set Semantics

Universe and Base. Given a DLP
A program P , let UP denote the set of constants appearing

in P , and BP be the set of standard atoms constructible from the (standard) predicates of P

with constants in UP . Given a set X , let 2
X

denote the set of all multisets over elements from X .
Without loss of generality, we assume that aggregate functions map to I (the set of integers).

Interpretations. An interpretation for a DLP
A program P is a set of standard atoms I ⊆ BP .

The truth valuation I(A), where A is a standard literal or a standard conjunction, is defined
in the usual way. An interpretation also provides a meaning to sets, aggregate functions and
aggregate atoms, namely a multiset, a value, and a truth value, respectively. Let f(S) be an
aggregate function. The valuation I(S) of S w.r.t. I is the multiset of the first constant of the
elements in S whose conjunction is true w.r.t. I . More precisely, let I(S) denote the multiset
[t1 | 〈t1, ..., tn :Conj 〉∈S∧ Conj is true w.r.t. I ]. The valuation I(f(S)) of an aggregate function
f(S) w.r.t. I is the result of the application of f on I(S). If the multiset I(S) is not in the domain
of f , I(f(S)) = ⊥ (where ⊥ is a fixed symbol not occurring in P).

An aggregate atom A = f(S) ≺ k is true w.r.t. I if: (i) I(f(S)) 6= ⊥, and, (ii) I(f(S)) ≺ k
holds; otherwise, A is false. A rule r is satisfied w.r.t. I if some head atom is true w.r.t. I whenever
all body literals are true w.r.t. I .

Example 2. Consider the atom A = #sum{〈1:p(2, 1)〉, 〈2:p(2, 2)〉} > 1. Let S be the set in A. For
the interpretation I = {q(2), p(2, 2), t(2)}, I(S) = [2], the application of #sum over [2] yields 2,
and A is therefore true w.r.t. I , since 2 > 1.

Minimal Models. Given an interpretation I , a rule r is satisfied w.r.t. I if some head atom
is true w.r.t. I whenever all body literals are true w.r.t. I . A total interpretation M is a model
of a DLP

A program P if all r ∈ Ground(P) are satisfied w.r.t. M . A model M for P is (subset)
minimal if no model N for P exists such that N ⊂ M .

Example 3. Looking at the following program,

q(1) ∨ p(2, 2). t(1) :− q(1), #sum{〈1:p(1, 1)〉, 〈2:p(1, 2)〉}>1.
q(2) ∨ p(2, 1). t(2) :− q(2), #sum{〈1:p(2, 1)〉, 〈2:p(2, 2)〉}>1.

We can verify that I = {q(2), p(2, 2), t(2)} is a model of it. Omitting either of q(2) or p(2, 2) from
I would make one of the disjunctive rules unsatisfied, and since truth of q(2) and p(2, 2) makes the
body of the second aggregate rule true, also t(2) must be true in any model. We can thus conclude
that I is a minimal model of the program.
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Answer Sets. We now recall the generalization of the Gelfond-Lifschitz transformation and the
associated notion of answer sets for DLP

A programs from [8]: Given a DLP
A program P and

a total interpretation I , let PI denote the transformed program obtained from P by deleting all
rules in which a body literal is false w.r.t. I . I is an answer set of a program P if it is a minimal
model of PI .

Example 4. Consider interpretation I1 = {p(a)}, I2 = ∅ and two programs

P1 = {p(a) :− #count{〈a :p(a)〉} > 0.} and
P2 = {p(a) :− #count{〈a :p(a)〉} < 1.}.

We observe that P
I1

1
= P1, P

I2

1
= ∅. Furthermore, P

I1

2
= ∅, P

I2

2
= P2 hold.

I2 is the only answer set of P1 (since I1 is not a minimal model of P I1
1 ), while P2 admits no

answer set (I1 is not a minimal model of P I1
2 , and I2 is not a model of P2 = P I2

2 ).

Monotonicity. A literal ` is monotone, if for all interpretations I, J , such that I ⊆ J , we have
that: (i) ` true w.r.t. I implies ` true w.r.t. J , and (ii) ` false w.r.t. J implies ` false w.r.t. I . A
literal ` is antimonotone, if the opposite happens, that is, for all interpretations I, J , such that
I ⊆ J , we have that: (i) ` true w.r.t. J implies ` true w.r.t. I , and (ii) ` false w.r.t. I implies `
false w.r.t. J . A literal ` is nonmonotone, if it is neither monotone nor antimonotone.

Note that positive standard literals are monotone, whereas negative standard literals are anti-
monotone. Aggregate atoms may be monotone, antimonotone or nonmonotone.

Example 5. #count{S} > 1 is monotone for any S, while #count{S} < 1 is antimonotone for any
S. #count{S} = 1 is nonmonotone for any S with |S| > 1. ⊆I{S} > 0 is monotone for any I and
S. ⊂I{S} > 0 is monotone for any I and S. ⊇I{S} > 0 is antimonotone for any I and S. ⊃I{S} > 0

is antimonotone for any I and S.

Computational Complexity We briefly recall the complexities of various tasks associated with
logic programs with aggregates. We assume familiarity with standard complexity terminology, in
particular classes P (polynomial time) NP/CONP , and ΣP

2 /ΠP
2 (cf. [14]).

On the left of Table 1, the complexities of model checking (i.e., given a ground program P
and an interpretation I , check whether I is an answer set of P) are reported for various classes of
programs. There, the rows indicate the kinds of aggregates (m – monotone, a – antimonotone, n
– nonmonotone) allowed in programs, while the columns vary over the presence of negation and
disjunction. All co-NP entries are completeness results. The results in the first row are well-known
results of the literature (cf. [15]), the P entries for {m, a} follow from recent results in [10], and
the co-NP entries have been shown in [11]. It becomes clear from this table that a complexity
increase occurs with the presence of either disjunction or nonmonotone aggregates, and that these
two factors together do not cause a further increase.

On the right hand side of Table 1, we have summarized results from the literature (see [15, 8,
10]) for the problem of cautious reasoning (i.e., given a ground program P and a ground standard
atom a, check whether a is in all answer sets of P). We observe that the complexity increase occurs
at the same places, and indeed one can blame the necessity of co-NP checks for the ΠP

2 results.

Checking ∅ {not } {∨} {not ,∨}
∅ P P co-NP co-NP

{m, a} P P co-NP co-NP
{m, a, n} co-NP co-NP co-NP co-NP

Cautious ∅ {not } {∨} {not ,∨}

∅ P co-NP ΠP

2 ΠP

2

{m, a} co-NP co-NP ΠP

2 ΠP

2

{m, a, n} ΠP

2 ΠP

2 ΠP

2 ΠP

2

Table 1. Complexity of Answer Set Checking (left) and Cautious Reasoning (right)
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3 Polynomially Decomposable Nonmonotone Aggregate Atoms

It is striking that from Table 1 it appears that a single, apparently “innocent”, aggregate like
#count{< 1 : a >, < 2 : b >} = 1 will sensibly increase the reasoning complexity. Indeed, this aggre-
gate could be equivalently replaced by a conjunction

#count{< 1 : a >, < 2 : b >} ≤ 1, #count{< 1 : a >, < 2 : b >} ≥ 1,

of monotone and antimonotone aggregates, thus eliminating the nonmonotone aggregate.
In fact, such a decomposition is possible for each nonmonotone aggregate, if one allows the use

of custom aggregates (rather than a limited set of fixed aggregates), especially subset and superset
aggregates, and the introduction of new symbols. However, this operation is only polynomial (and
hence effective) if the number of the truth value changes of the nonmonotone aggregate in the
lattice of total interpretations induced by < is polynomially bounded.

Intuitively, for each change from false to true, one has to use a corresponding custom monotone
aggregate, and symmetrically for transitions from true to false a custom antimonotone aggregate.
Each of these custom aggregates gives rise to a rule with only the respective aggregate in its body,
the heads consist of a new atom, the same for each of these rules. Occurrences of the original
nonmonotone aggregate are then replaced by a new symbol.

Definition 1. Given an aggregate atom `, an exclusive truth interval (I, J) consists of two in-
terpretations I < J , such that ` is false w.r.t. both I and J , and for each interpretation K such
that I < K < J , ` is true w.r.t. K. An exclusive truth interval (I, J) is non-empty if some
interpretation K exists such that I < K < J .

An inclusive truth interval [I, J ] for ` consists of two interpretations I ⊆ J such that ` is true
for all interpretations K such that I ⊆ K ⊆ J . An inclusive truth interval [I, J ] is maximal if no
inclusive truth interval [K, L] exists such that K < I and J ⊆ L or K ⊆ I and J < L holds.

Any literal admitting a non-empty exclusive truth interval is clearly nonmonotone.

Example 6. Let `1 be #count{< 1 : a >,< 2 : b >} = 1, we can observe that `1 is false w.r.t. ∅, true
w.r.t. {a} and {b}, and false w.r.t. {a, b}. Therefore, (∅, {a, b}) is a non-empty exclusive truth
interval, while [{a}, {a}] and [{b}, {b}] are the maximal inclusive truth intervals of `1.

For `2 being #count{〈1 : a〉, 〈2 : b〉, 〈3 : c〉, 〈4 : d〉} = 2 we obtain

({a}, {a, b, c}) ({a}, {a, b, d}) ({a}, {a, c, d})
({b}, {a, b, c}) ({b}, {a, b, d}) ({b}, {b, c, d})
({c}, {a, b, c}) ({c}, {a, c, d}) ({c}, {b, c, d})
({d}, {a, b, d}) ({d}, {a, c, d}) ({d}, {b, c, d})

as exclusive truth intervals, and

[{a, b}, {a, b}] [{a, c}, {a, c}] [{a, d}, {a, d}]
[{b, c}, {b, c}] [{b, d}, {b, d}] [{c, d}, {c, d}]

as maximal inclusive truth intervals.

Definition 2. Given an aggregate atom `, it admits an initial truth interval up to J , if [∅, J ] is
a maximal inclusive truth interval for `.

Symmetrically, ` admits a final truth interval from J on, if [J, BP ] is a maximal inclusive truth
interval.

Monotone literals admit a final truth interval, while antimonotone literals admit an initial
truth interval.

Definition 3. An inclusive truth interval [I, J ] and an exclusive truth interval (K, L) are non-
overlapping if for no interpretation H both I ⊆ H ⊆ J and K < H < L holds.
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Definition 4. A decomposition of an aggregate atom α w.r.t. a program P using subset aggre-
gates and fresh atoms is defined as follows: Let S = {I1, . . . , In} be a set of non-overlapping truth
intervals (exclusive or inclusive), such that there is no other non-overlapping truth interval for α.
For each inclusive truth interval [I, J ] ∈ S, we create a rule with the head atom ti[I,J], which is

assumed to be a new symbol. BP
BP represents a sequence of tuples 〈a : a〉 for all elements a of BP .

ti[I,J] :− ⊇I{BP : BP} > 0,⊆J{BP : BP} > 0.

In a similar way, for each exclusive truth interval (I, J) ∈ S, we create the following rule, assum-
ing again that ti(I,J) is a new symbol.

ti(I,J) :− ⊃I{BP : BP} > 0,⊂J{BP : BP} > 0.

Finally, we create the following rule:

decompα :− tiI1 , . . . , tiIn
.

For any program P , a decomposed program P d(S) is obtained by replacing each aggregate atom α
by decompα and adding a decomposition of α.

The intuition is that each truth interval can be covered by the conjunction of two subset
aggregates, and that the truth of the whole aggregate atom is the conjunction of all truth intervals.
Any decomposed program consists only of monotone and antimonotone literals. We point out that
deciding whether a subset or superset aggregate is true is clearly polynomial in the size of the
aggregate. A decomposed program has the same answer sets as the original one, when projected
on the atoms of the original programs.

Proposition 1. Any program P can be rewritten into a program P ′ containing only monotone
and antimonotone literals, such that its answer sets coincide on the symbols of P .

Proof. Any program possesses a decomposed program P d(S), which consists only of monotone
and antimonotone literals, satisfying the conditions. In P d(S), any atom decompα is true in all
interpretations in which α is true, since these interpretations are characterised precisely by the set
of truth intervals S.

Example 7. Consider the program

a ∨ b :− #count{< 1 : a >, < 2 : b >} = 1.

As shown in Example 6 above, the maximal inclusive truth intervals of the aggregate atom
#count{< 1 : a >, < 2 : b >} = 1 are [{a}, {a}] and [{b}, {b}]. The decomposed program is then

a ∨ b :− decomp`.
ti[{a},{a}] :− ⊆{a}{〈a : a〉, 〈b : b〉} > 0,⊇{a}{〈a : a〉, 〈b : b〉} > 0.
ti[{b},{b}] :− ⊆{b}{〈a : a〉, 〈b : b〉} > 0,⊇{b}{〈a : a〉, 〈b : b〉} > 0.
decomp` :− ti[{a},{a}], ti[{b},{b}].

Alternatively, we may use the non-empty exclusive truth intervals, in this case leading to the more
concise program

a ∨ b :− decomp`.
ti(∅,{a,b}) :− ⊂∅{〈a : a〉, 〈b : b〉} > 0,⊃{a,b}{〈a : a〉, 〈b : b〉} > 0.
decomp` :− ti(∅,{a,b}).
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Unfortunately, such a decomposition can be very large, in the worst case there may be expo-
nentially many truth intervals. A practical decomposition must therefore be bounded. In order to
guarantee tractability of the translation, a polynomial bound is needed.

Definition 5. An aggregate atom ` is polynomially decomposable w.r.t. a program P, if its num-
ber of non-empty exclusive truth intervals or maximal inclusive truth intervals is polynomial in
the size of P.

Proposition 2. Any program P with polynomially decomposable nonmonotone aggregate atoms
(with given truth intervals) can be transformed into a program P ′ without nonmonotone aggregates
in polynomial time, possibly using new symbols and subset aggregates.

From the construction, the following proposition can easily be derived:

Proposition 3. The complexity of reasoning tasks for programs all of whose nonmonotone ag-
gregate atoms are polynomially decomposable is the same as for programs with monotone and
antimonotone aggregate atoms, assuming that the truth intervals of all nonmonotone aggregates
are known.

The notion of polynomially decomposable nonmonotone aggregate atoms is not intended to be
a notion which is tested during answer set computations, as checking whether an aggregate atom
has a polynomially bounded number of truth intervals is in general intractable. Such a test would
therefore compromise the advantages brought about by the knowledge that only polynomially
decomposable aggregate atoms are present in a program. Instead, one can analyze classes of
aggregates in order to test whether they are polynomially decomposable. In the following, we
provide two examples of such classes.

Proposition 4. Aggregate atoms #count{S} = k are polynomially decomposable for any S and k.

Proof. If |S| = n, the number of inclusive truth intervals is
(

n
k

)

, which is of the order nk, where k
is a given constant.

Proposition 5. Aggregate atoms #sum{S} = k are polynomially decomposable for S consisting of
positive integers and k.

Proof. The number of positive summands for k out of a multiset of cardinality n is also bounded
by

(

n

k

)

, therefore these aggregates have at most nk inclusive truth intervals.

A similarly general statement cannot be made for #sum, when general integers are involved,
as we cannot guarantee that the number of subsets of S for which the sum equals k is bounded
by a polynomial. To see this, consider aggregate atoms like #sum{〈0 : a1〉, . . . , 〈0 : an〉, 〈1 :
an+1〉} = 0 and consider that other b1, . . . , bn standard atoms are present. Then there exists an
exponential number of truth intervals for this aggregate atom. Similar considerations hold for
average aggregates.

4 Conclusion

In this paper, we have defined a class of programs with nonmonotone aggregates, for which, in the
case of nondisjunctive programs, the complexity of cautious reasoning does not jump from co-NP
to ΣP

2 . In fact, these programs can be rewritten as programs without nonmonotone aggregates in
polynomial time, if the use of “custom” aggregates (as opposed to a fixed set of aggregates), and
in particular of subset and superset aggregates, is allowed. Reasoning tasks are therefore always of
the same complexity as for programs in which only monotone and antimonotone aggregate atoms
are allowed.
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