
Tableaux Calculi for Answer Set Programming
— Extended Abstract —

Martin Gebser and Torsten Schaub

Institut für Informatik, Universität Potsdam, Postfach 90 03 27, D–14439 Potsdam

Abstract. We introduce a family of calculi for Answer Set Programming (ASP) based on tableaux
methods. Our approach furnishes declarative and fine-grained instrumentalities for characterizing op-
erations as well as strategies of ASP-solvers. First, the granulation is detailed enough to capture the
variety of propagation and choice operations in algorithms used for ASP; this also includes SAT-based
approaches. Second, it is general enough to encompass the various strategies pursued by existing ASP-
solvers, like assat, cmodels, dlv, nomore++, smodels, etc. This provides us with a uniform framework
for comparing existing solvers. Third, the approach is flexible enough to integrate new inference pat-
terns, so to study their relation to existing ones. As a result, we obtain a new approach to computing
unfounded sets by means of loops. Furthermore, it allows us to define a backward inference for un-
founded set computation that appears to be the first of its kind. Finally, our approach allows us to
investigate the proof complexity of ASP-solvers, depending on choice operations. In particular, we
show that exponentially different best-case computations can be obtained for different ASP-solvers.

1 Introduction

Answer Set Programming (ASP;[1]) is an appealing tool for knowledge representation and reasoning. Its
attractiveness is supported by the availability of efficient off-the-shelf ASP-solvers that allow for computing
answer sets of logic programs. In contrast to the related area of satisfiability checking (SAT), ASP lacks a
formal framework for describing inferences conducted by ASP-solvers, such as the resolution proof theory
underlying SAT-solvers [2].

To this end, we introduce a family of tableaux calculi [3] for ASP: A branch in a tableau corresponds
to a successful or unsuccessful computation of an answer set. An entire tableau represents a traversal of
the search space. Our approach furnishes declarative and fine-grained instrumentalities for characterizing
operations as well as strategies of ASP-solvers. First, the granulation is detailed enough to capture the
variety of propagation and choice operations in algorithms used for ASP; this also includes SAT-based
approaches. Second, it is general enough to encompass the various strategies pursued by existing ASP-
solvers, like assat, cmodels, dlv, nomore++, smodels, etc [4–8]. This provides us with a uniform framework
for comparing existing solvers. Third, the approach is flexible enough to integrate new inference patterns, so
to study their relation to existing ones. As a result, we obtain a new approach to computing unfounded sets
by means of loops. Furthermore, it allows us to define a backward inference for unfounded set computation
that appears to be the first of its kind. Finally, our approach allows us to investigate the proof complexity of
ASP-solvers, depending on choice operations. In particular, we show that exponentially different best-case
computations can be obtained for different ASP-solvers.

Related work. Our work is inspired by the one of Jarvisalo, Junttila, and Niemelä, who use tableaux meth-
ods in [9, 10] for investigating Boolean circuit satisfiability checking in the context of symbolic model
checking. Although their target is different from ours, both approaches have many aspects in common.
First, both use tableaux methods for characterizing DPLL-type techniques.1 Second, using cut rules for
characterizing DPLL-type split operations is the key idea for analyzing the proof complexity of differ-
ent inference strategies. General investigations in propositional proof complexity, in particular, the one of
satisfiability checking (SAT) can be found in [13, 14]. From the perspective of tableaux systems, DPLL
is very similar to the propositional version of the KE tableaux calculus; both are closely related to weak

1 Davis-Putnam-Logemann-Loveland (DPLL) techniques are introduced in [11, 12].

2 Martin Gebser and Torsten Schaub

connection tableaux with atomic cut (as pointed out in [15]). Tableaux-based characterizations of logic pro-
gramming are elaborated upon in [16]. Pearce, Guzmán, and Valverde provide in [17] a tableaux calculus
for equilibrium logic based on its 5-valued semantics. Other tableaux approaches to nonmonotonic logics
are summarized in [18]. Bonatti describes in [19] a resolution method for skeptical answer set program-
ming. Operator-based characterizations of propagation and choice operations in ASP can be found in [7,
20, 21].

2 Answer Set Programming

Given an alphabet P , a (normal) logic program is a finite set of rules of the form p0 ←
p1, . . . , pm,not pm+1, . . . ,not pn, where n ≥ m ≥ 0 and each pi ∈ P (0 ≤ i ≤ n) is an atom. A
literal is an atom p or its negation not p. For a rule r, let head(r) = p0 be the head of r and body(r) =
{p1, . . . , pm,not pm+1, . . . ,not pn} be the body of r. Furthermore, we let body+(r) = {p1, . . . , pm} and
body−(r) = {pm+1, . . . , pn}. The set of atoms occurring in a logic program Π is given by atom(Π). The
set of bodies in Π is body(Π) = {body(r) | r ∈ Π}. For regrouping rule bodies sharing the same head
p ∈ atom(Π), define body(p) = {body(r) | r ∈ Π, head(r) = p}.2 A program Π is called positive if
body−(r) = ∅ for all r ∈ Π . Cn(Π) denotes the smallest set of atoms closed under positive program Π .
The reduct, ΠX , of Π relative to a set X of atoms is defined by ΠX = {head(r) ← body+(r) | r ∈
Π, body−(r)∩X = ∅}. A set X of atoms is an answer set of a logic program Π if Cn(ΠX) = X . As an
example, consider Program Π1 = {a ←; c ← not b, not d; d ← a, not c}; it has two answer sets {a, c}
and {a, d}.

An assignment is a partial mapping of objects in a program Π into {T ,F }, indicating whether a
member of the domain of A, dom(A), is true or false, respectively. In order to capture the whole spectrum
of ASP-solving techniques, we fix dom(A) to atom(Π) ∪ body(Π). We define AT = {v ∈ dom(A) |
A(v) = T } and AF = {v ∈ dom(A) | A(v) = F }. We also denote an assignment A by a set of signed
objects: {T v | v ∈ AT } ∪ {F v | v ∈ AF }. For instance with Π1, the assignment mapping a to T and b to
F is represented by {T a,F b}; c and d remain undefined. Following up this notation, we call an assignment
empty if it leaves all objects undefined.

We define a set U ⊆ atom(Π) as an unfounded set [22] of a program Π wrt a partial assignment A, if,
for every rule r ∈ Π such that head(r) ∈ U , either

(body+(r) ∩AF) ∪ (body−(r) ∩AT) 6= ∅ (1)

or body+(r) ∩ U 6= ∅. (2)

We define the greatest unfounded set of Π wrt A, denoted GUS (Π,A), as the union of all unfounded sets
of Π wrt A. Loops are sets of atoms that circularly depend upon each other in a program’s positive atom
dependency graph [4]. In analogy to external support [23] of loops, we define the external bodies of a loop
L in Π as EB(L) = {body(r) | r ∈ Π, head(r) ∈ L, body+(r)∩L = ∅}. We denote the set of all loops in
Π by loop(Π). In Sections 4 and 6, we take a closer look on solvers and tableaux rules working on greatest
unfounded sets or loops, respectively.

3 Tableaux calculi

We describe calculi for constructing answer sets from logic programs. Computations are characterized by
binary trees called tableaux [3]. The nodes of the trees are (mainly) signed propositions, that is, propositions
preceded by either T or F , indicating an assumed truth value for the proposition. A tableau for a logic
program Π and an initial assignment A is a binary tree such that the root node of the tree consists of the
rules in Π and all members of A.3 The other nodes in the tree are entries of the form T v or F v, where
v ∈ dom(A),4 generated by extending a tableau using the rules in Figure 1 in the following standard

2 For convenience, we overload function body for denoting sets of associated bodies.
3 Without set notation of A: T v (or F v) for each v ∈ dom(A) such that A(v) = T (or A(v) = F).
4 The Cut rule may, in principle, introduce more general entries; this would however necessitate additional decom-

position rules, leading to an extended calculus.

Tableaux Calculi for Answer Set Programming 3

p← l1, . . . , ln
tl1, . . . , tln

T {l1, . . . , ln}

F {l1, . . . , li, . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li
(a) Forward True Body (FTB) (b) Backward False Body (BFB)

p← l1, . . . , ln
T {l1, . . . , ln}

T p

p← l1, . . . , ln
F p

F {l1, . . . , ln}
(c) Forward True Atom (FTA) (d) Backward False Atom (BFA)

p← l1, . . . , li, . . . , ln
f li

F {l1, . . . , li, . . . , ln}
T {l1, . . . , li, . . . , ln}

tli
(e) Forward False Body (FFB) (f) Backward True Body (BTB)

FB1, . . . , FBm

(§)F p

T p

FB1, . . . , FBi−1, FBi+1, . . . , FBm

(§)TBi

(g) Forward False Atom (FFA) (h) Backward True Atom (BTA)

FB1, . . . , FBm

(†)F p

T p

FB1, . . . , FBi−1, FBi+1, . . . , FBm

(†)TBi

(i) Well-Founded Negation (WFN) (j) Well-Founded Justification (WFJ)

FB1, . . . , FBm

(‡)F p

T p

FB1, . . . , FBi−1, FBi+1, . . . , FBm

(‡)TBi

(k) Forward Loop (FL) (l) Backward Loop (BL)

(][X])Tφ | Fφ

(m) Cut (Cut[X])

(§) : body(p) = {B1, . . . , Bm}
(‡) : p ∈ L, L ∈ loop(Π),

EB(L) = {B1, . . . , Bm}

(†) : p ∈ GUS({r ∈ Π | body(r) 6∈ {B1, . . . , Bm}}, ∅)
(][X]) : φ ∈ X

Fig. 1. Tableaux rules for answer set programming.

4 Martin Gebser and Torsten Schaub

way [3]: Given a tableaux rule and a branch in the tableau such that the prerequisites of the rule hold in
the branch, the tableau can be extended by adding new entries to the end of the branch as specified by the
rule. If the rule is the Cut rule in (m), then entries Tφ and Fφ are added as the left and the right child to
the end of the branch. For the other rules, the consequent of the rule is added to the end of the branch. The
application of rules makes use of two conjugation functions, t and f . For a literal l, define:

tl =

{

T l if l ∈ P
F p if l = not p for a p ∈ P

f l =

{

T p if l = not p for a p ∈ P
F l if l ∈ P

Some rule applications are subject to provisos. (§) stipulates that B1, . . . , Bm constitute all bodies of rules
with head p; (†) requires that p belongs to the greatest unfounded set induced by all rules whose body is not
among B1, . . . , Bm. (‡) makes sure that p belongs to a loop, all of whose external bodies are B1, . . . , Bm.
Finally, (][X]) guides the application of the Cut rule in (m), by restricting cut formulas to members of
X . Different tableaux calculi are obtained from different rule sets. When needed this is made precise by
enumerating the tableaux rules. Of particular interest are the following tableaux calculi:

Tcomp = {(a)-(h), Cut[atom(Π) ∪ body(Π)]}, (3)

Tsmodels = {(a)-(i), Cut[atom(Π)]}, (4)

TnoMoRe = {(a)-(i), Cut[body(Π)]}, (5)

Tnomore++ = {(a)-(i), Cut[atom(Π) ∪ body(Π)]}. (6)

An exemplary tableau of Tsmodels is given in Figure 2. We indicate rule applications by either letters or

a←
c← not b, not d

d← a, not c

T ∅ (a)
T a (c)
F b (g)

T c F c

T {not b, not d} (h) F {not b, not d} (d)
F d (f) T d (b)

F {a, not c} (e) T {a, not c} (a)

(Cut [atom(Π)])

Fig. 2. Tableau for Π1 and the empty assignment.

rule names, like (a) or (Cut [atom(Π)]). Both branches comprise Π1 along with a complete assignment
for atom(Π1) ∪ body(Π1); the left one represents answer set {a, c}, the right one gives answer set {a, d}.

A branch in a tableau is contradictory, if it contains both T v and F v entries for some v ∈ dom(A).
A branch is complete, if it is contradictory, or if the branch contains either the entry T v or F v for each
v ∈ dom(A) and is closed under all rules in a given calculus, except for the Cut rule in (m). For instance,
both branches in Figure 2 are complete and non-contradictory.

For each v ∈ dom(A), we say that entry T v (or F v) can be deduced by a set R of tableaux rules in a
branch, if the entry T v (or F v) can be generated from nodes in the branch by applying rules inR only. Note
that every branch corresponds to a pair (Π,A) consisting of a program Π and an assignment A, and vice
versa;5 we draw on this relationship for identifying branches in the sequel. Accordingly, we let TR(Π,A)
denote the set of all entries deducible by rule set R in branch (Π,A). Moreover, CR(Π,A) represents
the set of all entries in the smallest branch extending (Π,A) and being closed under R. When dealing
with tableaux calculi, like T , we slightly abuse notation and write TT (Π,A) (or CT (Π,A)) instead of
TT \{(m)}(Π,A) (or CT \{(m)}(Π,A)), thus ignoring Cut. We mention that C{(a),(c),(e),(g)}(Π,A) corresponds
to Fitting’s operator [24]. Similarly, we detail in the subsequent sections that C{(a)-(h)}(Π,A) coincides with

5 Given a branch (Π, A) in a tableau for Π and initial assignment A0, we have A0 ⊆ A.

Tableaux Calculi for Answer Set Programming 5

unit propagation on a program’s completion [25], C{(a),(c),(e),(g),(i)}(Π,A) amounts to propagation via well-
founded semantics [22], and C{(a)-(i)}(Π,A) matches smodels’ propagation, that is, well-founded semantics
enhanced by backward propagation. In fact, all deterministic rules in Figure 1 are answer set preserving;
this also applies to the Cut rule when considering both resulting branches.

A tableau is complete if all its branches are complete. A complete tableau is closed if all its branches
are contradictory. A closed tableau for a program and the empty assignment is called a refutation for the
program; it means that the program has no answer set, as exemplary shown next for smodels-type tableaux.

Theorem 1. Let Π be a logic program and let ∅ denote the empty assignment. Then, the following holds
for Tableaux Calculus Tsmodels:

1. Program Π has no answer set iff any complete tableau for Π and ∅ is closed.
2. Program Π has an answer set X iff some tableau for Π and ∅ has a complete and non-contradictory

branch (Π,A) such that X = AT ∩ atom(Π).

The same results are obtained for other tableaux calculi, like TnoMoRe and Tnomore++. Notably, all of them
are sound and complete for ASP (as detailed in the full paper).

4 Characterizing existing ASP-solvers

In this section, we discuss the relation between our tableaux rules in Figure 1 and well-known ASP-solvers.
As it turns out, our tableaux rules are well-suited for describing a wide variety of ASP-solvers. In particular,
we cover all of the leading approaches to computing answer sets of normal logic programs. We start with
SAT-based solvers, assat and cmodels, then go on with literal-based solvers, smodels and dlv, and end with
hybrid solvers, working on literals as well as bodies.

SAT-based solvers. The basic idea of SAT-based solvers is to use some SAT-solver as model generator and
to afterwards apply an unfounded set check to the generated model(s). In [4], it is shown that the answer
sets of a normal logic program Π coincide with models of the propositional logic translation Comp(Π) ∪
LF (Π), where

Comp(Π) = {p ≡ (
∨

k=1...m

∧

l∈Bk
l) | p ∈ atom(Π), body(p) = {B1, . . . , Bm}},

LF (Π) = {¬(
∨

k=1...m

∧

l∈Bk
l)→

∧

p∈L ¬p | L ∈ loop(Π),EB(L) = {B1, . . . , Bm}}.
6

This translation constitutes the backbone of the SAT-based ASP-solvers assat [4] and cmodels [5]. Since
LF (Π) requires exponential space in the worst case [26], both assat and cmodels add loop formulas from
LF (Π) incrementally to Comp(Π), whenever some model of Comp(Π) not representing an answer set
has been computed by the underlying SAT-solver. We first describe tableaux capturing the proceedings of
the underlying SAT-solver and then go on with unfounded set checks.

Models of Comp(Π) correspond to tableaux as follows.

Theorem 2. Let Π be a logic program. Then, M is a model of Comp(Π) iff there is a complete and
non-contradictory branch (Π,A) in some tableau of Tcomp such that M = AT ∩ atom(Π).

Tableaux Rules (a)-(h) correspond to unit propagation on a program’s completion. Note that assat
and cmodels introduce propositional variables for bodies in order to obtain a polynomially-sized set of
clauses equivalent to a program’s completion [27]. Due to the fact that atoms and bodies are represented
as propositional variables, allowing both of them as branching variables in Tcomp (via Cut [atom(Π) ∪
body(Π)]; cf. (3)) makes sense.

After a model of Comp(Π) has been computed by the underlying SAT-solver, assat and cmodels apply
an unfounded set check for deciding whether the computed model is an answer set.7 If it fails, unfounded
loops whose atoms are true (so-called terminating loops [4]) are determined and their loop formulas are
added to the completion in order to eliminate the computed model of Comp(Π). assat’s and cmodels’
unfounded set check can be captured by Rules FL and FFB ((k) and (e) in Figure 1) as follows.

6 Note that a default negated literal not p is translated as ¬p.
7 Note that every answer set of Π is a model of Comp(Π), but not vice versa [28, 29].

6 Martin Gebser and Torsten Schaub

Theorem 3. Let Π be a logic program, let M be a model of Comp(Π), and let A = {T p | p ∈M}∪{F p |
p ∈ atom(Π) \M}. Then, M is an answer set of Π iff (T{FL}(Π,T{FFB}(Π,A)))F ∩M = ∅.

The drawback of SAT-based solvers is that, for deciding unsatisfiability, exponentially many loop for-
mulas must be added to a program’s completion in the worst case [26]. In view of Theorem 3, this means
that, in order to close a tableau, exponentially many branches have to be completed by unfounded set
checks.8

Literal-based solvers. We now describe the relation between smodels [8] and dlv [6, 20] on the one side
and our tableaux rules on the other side. We first concentrate on characterizing smodels and then sketch
how our characterization applies to dlv on normal logic programs.

Given that only literals are explicitly represented in smodels’ assignments, whereas truth and falsity
of bodies is determined implicitly, one might consider rewriting tableaux rules to work on literals only,
thereby, restricting the domain of assignments to atoms. For instance, Rule (g) in Figure 1 would then turn
into:

f l1, . . . ,f lm ({r ∈ Π | head(r) = p, body(r) ∩ {l1, . . . , lm} = ∅} = ∅)
F p

Observe that, in such a reformulation, we again refer to bodies by determining their values in the proviso
associated with an inference rule. So reformulating tableaux rules to work on literals only complicates
provisos and is not beneficial for practical considerations. In [30], additional variables for logic programs’
rules are even explicitly introduced for comparing smodels with DPLL [11, 12], working on clauses.9

Propagation in smodels is accomplished by two functions, called atleast and atmost [8].10 Roughly,
the former computes deterministic consequences by applying forward and backward propagation ((a)-(h)
in Figure 1), the latter falsifies greatest unfounded sets (WFN ; (i) in Figure 1).

The following result captures propagation via atleast .

Theorem 4. Let Π be a logic program and let A be an assignment such that AT ∪ AF ⊆ atom(Π). Let
AS = atleast(Π,A) and AT = CTcomp

(Π,A). If AT

S ∩AF

S 6= ∅, then AT

T ∩AF

T 6= ∅; otherwise, we have
AS ⊆ AT .

Observe that function atleast derives consequences of unit propagation on a program’s completion
(CTcomp

). If atleast derives a contradiction, so does Tcomp . Otherwise, Tcomp derives at least as much
as atleast . In addition, bodies’ values are inferred, which might lead to inferring atoms’ values not inferred
by atleast , because of redundant representation of rules’ bodies in smodels. (The same body can occur in
several rules.) So Tcomp does not fully comply with atleast but approximates its behavior close enough for
our purposes.

Propagation via atmost (which returns the set of still potentially derivable atoms) is captured by WFN

applied to bodies containing some false literal.

Theorem 5. Let Π be a logic program and let A be an assignment such that AT ∪ AF ⊆ atom(Π). We
have (T{WFN}(Π,T{FFB}(Π,A)))F ∪AF = atom(Π) \ atmost(Π,A).

Note that smodels adds literals {not p | p ∈ atom(Π) \ atmost(Π,A)} to an assignment A. If this leads
to a contradiction, so does T{WFN}(Π,T{FFB}(Π,A)).

We have seen that smodels’ propagation functions, atleast and atmost , can be described by Tableaux
Rules (a)-(i). By adding Rule Cut [atom(Π)], we thus get Tableaux Calculus Tsmodels (cf. (4)). Note that
smodels’ lookahead can also be described by means of Cut [atom(Π)]: If lookahead yields a decision on

8 Note that fully describing the interplay of model generation and unfounded set checks requires additional tableaux
rules for dealing with explicitly represented loop formulas. Such loop formulas are added to a tableau in reaction to
a failed unfounded set check.

9 In fact, representing a program’s completion without introducing additional variables for either rules or bodies does
not properly reflect smodels’ propagation. For instance, if a ← b, c and a ← b, d are the only rules with head
atom a, smodels does not infer literal b from literal a. In contrast, clause ¬a ∨ b allows inferring literal b by unit
propagation.

10 Here, atleast and atmost are taken as defined on sets of signed propositions instead of literals, as in [8].

Tableaux Calculi for Answer Set Programming 7

some atom p, we can extend a respective branch by the Cut rule applied to p, thereby, obtaining a tableau
reflecting inferences achieved by lookahead (see full paper for details).

After having discussed smodels, we briefly turn to dlv: The inference rules applied by dlv [20] boil
down to those of smodels on normal logic programs, so Tableaux Calculus Tsmodels captures dlv as well (see
full paper for details).11

Hybrid solvers. Finally, we discuss similarities and differences between literal-based ASP-solvers, smodels
and dlv, and hybrid solvers, working on bodies in addition to atoms. Let us first mention that SAT-based
solvers, assat and cmodels, are in a sense hybrid, since the CNF representation of a program’s completion
contains variables for bodies. Thus, underlying SAT-solvers can branch on both atoms and bodies (via
Cut [atom(Π)∪body(Π)] in Tcomp). The only genuine ASP-solver we know of explicitly assigning values
to atoms and bodies is nomore++ [7].12

In [7], inference rules applied by nomore++ are described in terms of operators: P for forward propa-
gation, B for backward propagation, U for falsifying greatest unfounded sets, and L for lookahead. Similar
to our tableaux rules, these operators apply to bodies in addition to atoms. As detailed in the full paper, we
thus obtain direct correspondence between Rules (a), (c), (e), (g) and P , Rules (b), (d), (f), (h) and B, and
Rule (i) and U . Similarly to smodels’ lookahead, inferences achieved by L can be described by means of
Cut [atom(Π) ∪ body(Π)]. So by replacing Cut [atom(Π)] with Cut [atom(Π) ∪ body(Π)], we obtain
Tableaux Calculus Tnomore++ (cf. (6)) from Tsmodels.13 In the next section, we show that this subtle difference,
also observed on SAT-based solvers, has a great impact on proof complexity.

5 Proof complexity

We have seen that genuine ASP-solvers largely coincide on their inference rules and differ primarily in the
usage of the Cut rule. We analyze in this section the relative efficiency of tableaux calculi with different
Cut rules. Thereby, we take Tsmodels, TnoMoRe, and Tnomore++ into account, all using Rules (a)-(i) in Figure 1
but applying the Cut rule either to atom(Π), body(Π), or both of them (cf. (4), (5), and (6)).

For comparing different tableaux calculi, we use the notion of proof complexity [13, 14, 9]. That is,
we measure the complexity of unsatisfiable logic programs, i.e. programs without answer sets, in terms of
minimal refutations. Thereby, the size of a tableau is determined in the standard way as the number of nodes
in it. A tableaux calculus T is not polynomially simulated [13, 14, 9] by another tableaux calculus T ′ if there
is an infinite (witnessing) family {Πn} of unsatisfiable logic programs such that minimal refutations of T ′

for Π are asymptotically exponential in the size of minimal refutations of T for Π . A tableaux calculus T
is exponentially stronger than a tableaux calculus T ′ if T polynomially simulates T ′, but not vice versa.
Two tableaux calculi are efficiency-incomparable if neither one polynomially simulates the other. Note that
proof complexity says nothing about how difficult it is to find a minimal refutation. Rather, it provides a
lower bound on the run-time of proof-finding algorithms, independent from heuristic influences.

In what follows, we provide families of unsatisfiable logic programs witnessing that neither Tsmodels

polynomially simulates TnoMoRe nor vice versa. This means that, on certain instances, restricting the Cut

rule to either only atoms or bodies leads to exponentially longer minimal run-times of either literal- or
rule-based solvers in comparison to their counterparts, no matter which heuristic is applied. Due to space
restrictions, we cannot provide proofs in this extended abstract. (Proofs are available at [32].) We however
mention that family {Πn

a ∪Πn
c } witnesses Lemma 1 and {Πn

b ∪Πn
c } witnesses Lemma 2 (see Figure 3).

Lemma 1. There is an infinite family {Πn} of logic programs such that

1. the size of minimal refutations of TnoMoRe is linear in n and
2. the size of minimal refutations of Tsmodels is exponential in n.

11 Note that neither smodels’ cardinality and weight constraints nor dlv’s aggregates are dealt with by rules of Tsmodels.
For handling them, additional tableaux rules would be required.

12 Complementing literal-based solvers, the noMoRe system [31] is rule-based (cf. TnoMoRe in (5)).
13 In [7], also the restriction of the Cut rule to “supported bodies” is discussed. We however refer to the unrestricted

Cut rule, Cut [atom(Π) ∪ body(Π)], here.

8 Martin Gebser and Torsten Schaub

Π
n

a =

8

>

>

>

<

>

>

>

:

x ← not x

x ← a1, b1

...
x ← an, bn

9

>

>

>

=

>

>

>

;

Π
n

b =

8

>

>

>

<

>

>

>

:

x ← c1, . . . , cn, not x

c1 ← a1 c1 ← b1

...
...

cn ← an cn ← bn

9

>

>

>

=

>

>

>

;

Π
n

c =

8

>

>

>

>

>

<

>

>

>

>

>

:

a1 ← not b1

b1 ← not a1

...
an ← not bn

bn ← not an

9

>

>

>

>

>

=

>

>

>

>

>

;

Fig. 3. Families of programs {Πn

a }, {Π
n

b }, and {Πn

c }.

Lemma 2. There is an infinite family {Πn} of logic programs such that

1. the size of minimal refutations of Tsmodels is linear in n and
2. the size of minimal refutations of TnoMoRe is exponential in n.

The next result follows immediately from Lemmas 1 and 2.

Theorem 6. Tsmodels and TnoMoRe are efficiency-incomparable.

Given that any refutations of Tsmodels and TnoMoRe are as well refutations of Tnomore++, we have that
Tnomore++ polynomially simulates both Tsmodels and TnoMoRe. So the following is an immediate consequence
of Theorem 6.

Corollary 1. Tnomore++ is exponentially stronger than both Tsmodels and TnoMoRe.

The major implication of Corollary 1 is that, on certain logic programs, a priori restricting the Cut rule
to either atoms or bodies leads to an exponentially greater search space to be traversed inevitably than with
unrestricted Cut . Note that the phenomenon of exponentially worse proof complexity in comparison to
Tnomore++ does not, depending on the instance, apply to one of Tsmodels or TnoMoRe alone. Rather, combining
families {Πn

a }, {Π
n
b }, and {Πn

c } leads to a new family such that both Tsmodels and TnoMoRe are exponentially
worse than Tnomore++. So the unrestricted Cut rule is the only way to have at least the chance of finding a
short refutation.

6 Unfounded sets

In the previous sections, we have analyzed inference rules and complexity of existing approaches to ASP-
solving. We have seen that all approaches apply inference rules reflecting program completion ((a)-(h) in
Figure 1). Inference mechanisms of SAT-based and genuine ASP-solvers differ only in the treatment of
unfounded sets: The former apply unfounded set checks to total assignments only, whereas the latter incor-
porate unfounded set falsification (WFN ; (i) in Figure 1) as an integral part of their inference structure.
However, Rule WFN , as it is currently applied by genuine ASP-solvers, has several flaws:

1. It deals with greatest unfounded sets whose computation can be exhaustive.
2. It is asymmetrically applied, i.e. solvers apply no backward counterpart.
3. It is partly redundant, that is, it overlaps with completion-based Rule FFA ((g) in Figure 1) also falsi-

fying atoms by forward propagation.

In what follows, we thus propose and discuss alternative approaches to unfounded set treatment, motivated
by SAT-based solvers and results in [4]. Before we start, let us briefly introduce some vocabulary. Given
two sets of tableaux rules, R and R′, we say that R is weaker than R′ if, for any branch (Π,A), we have
CR(Π,A) ⊆ CR′(Π,A). We say that R is strictly weaker than R′ if R is weaker than R′, but not vice
versa. If R is weaker than R′ and vice versa, then R and R′ are equally effective. Finally, R and R′ are
orthogonal if they are not equally effective and neither one is weaker than the other.

We start with analyzing the relation between WFN and other rules falsifying atoms and bodies by
forward propagation. Taking up 3. above, we have the following result.

Proposition 1. Set of rules {FFB ,FFA} is strictly weaker than {FFB ,WFN }.14

14 We include FFB in both sets for falsifying bodies that positively depend on falsified atoms.

Tableaux Calculi for Answer Set Programming 9

From Proposition 1, we have that, in presence of WFN , Rule FFA is actually not needed. However, all
genuine ASP-solvers apply FFA as a sort of “local negation” and separately WFN as “global negation”.
Certainly, applying FFA is reasonable as applicability is easy to determine atom-wise. But with FFA

at hand, Proposition 1 tells us that greatest unfounded sets are too unfocused for describing the sort of
unfounded sets for which a dedicated inference rule is intrinsically necessary.

A characterization of WFN ’s effects, not built upon greatest unfounded sets, is obtained by putting
results in [4] into the context of partial assignments.

Theorem 7. Sets of rules {FFB ,WFN } and {FFB ,FFA,FL} are equally effective.

By Theorem 7, one may safely substitute WFN by FFA and FL ((k) in Figure 1), falsifying unfounded
loops, without forfeiting atoms that must be false due to the lack of (non-circular) support. SAT-based
approaches, based on loop formulas, provide an explanation why concentrating on cyclic structures, namely
loops, is sufficient: When falsity of unfounded atoms does not follow from a program’s completion or FFA,
respectively, then there is a loop all of whose external bodies are false. Such a loop (called terminating
loop in [4]) is a (possibly strict) subset of a greatest unfounded set, so in reply to 1. above, loop-oriented
computations are less exhaustive.

Splitting up falsification of unfounded atoms into FFA for single atoms (aiming at the unfounded set
condition in (1)) and FL for loops (aiming mainly at the unfounded set condition in (2)) implies that neither
rule is weaker than the other.

Proposition 2. Sets of rules {FFB ,FFA} and {FFB ,FL} are orthogonal.

Having considered forward propagation for unfounded sets, we come to backward propagation, that
is, WFJ and BL ((j) and (l) in Figure 1). Though no genuine ASP-solver currently applies such rules (as
mentioned in 2. above), they are answer set preserving.

Proposition 3. Let Π be a logic program and let A be an assignment. Let B ∈ body(Π) such that TB ∈
T{WFJ}(Π,A) (or TB ∈ T{BL}(Π,A)).

Then, we have that (Π,A∪T{WFN}(Π,A∪ {FB})) (or (Π,A∪T{FL}(Π,A∪ {FB}))) is contra-
dictory.

Both, WFJ and BL, merely make sure that falsifying some body does not lead to a conflict by applying
their forward counterparts, WFN and FL. So any answer set agreeing with the current assignment also
agrees with the result of applying either WFJ or BL.

A particularity of backward propagating true atoms’ supports is that global Rule WFJ is stronger than
the other both: BTA ((h) in Figure 1) applying to single atoms and BL applying to loops. However, WFJ

is as unfocused as its forward counterpart WFN is, so we argue below that using BL (in combination with
BTA) nonetheless makes sense.

Proposition 4. Set of rules {BTB ,BTA,BL} is strictly weaker than {BTB ,WFJ}.

We conclude this section with discussing different alternatives to treat unfounded sets. First of all, let
us mention that each of the proposed rules, namely WFJ , FL, and BL, is as complex to compute (i.e.
linear15) as WFN . However, only the latter is currently applied by genuine ASP-solvers. Protecting true
atoms from becoming unfounded (backward propagation) is as well a reasonable way of exploiting (poten-
tial) unfounded sets as falsifying unfounded atoms (forward propagation) is. The integration of respective
inference rules in ASP-solvers would break asymmetry in unfounded set treatment, similar to Rules (a),
(c), (e), and (g), each of which has a backward counterpart. As we have already mentioned, falsifying great-
est unfounded sets is unfocused and partly overlaps with simpler Rule FFA. Thus, we would recommend
Rules FL and BL for implementation. These rules have the advantage that they focus on loops, which is
the class of unfounded sets that cannot be eliminated by program completion and must thus be handled
separately. Also the concept of loop formulas, known from SAT-based solvers, puts application of FL and
BL on a solid declarative footing, thereby, narrowing the gap between ASP- and SAT-solving.

15 This is not to be confused with the (iterative) computation of a well-founded model, which is quadratic.

10 Martin Gebser and Torsten Schaub

7 Discussion

A broad discussion is given in the full paper. Let us thus concentrate on two issues here:
The Cut rule is a powerful inference rule that has a major influence on proof complexity. However, it is

well-known that an uncontrolled application of Cut is prone to inefficiency. The restriction of applying Cut
to (sub)formula occurring in the input has already proven to be an effective way to “tame” the cut [3]. We
followed this by investigating Cut applications to atoms and bodies occurring in a program.

The explicit integration of bodies into assignments has several benefits: First, it allows us to capture
completion-based and hybrid systems in a closer fashion. Second, it allows us to reveal exponentially
different proof complexities of ASP-solvers. Finally, even inferences in literal-based systems like dlv and
smodels must take program rules into account, which is simulated through the corresponding bodies.

References

1. Baral, C.: Knowledge representation, reasoning and declarative problem solving with Answer sets. Cambridge
University Press (2003)

2. Mitchell, D.: A SAT solver primer. Bulletin of the European Association for Theoretical Computer Science 85
(2005) 112–133

3. D’Agostino, M., Gabbay, D., Hähnle, R., Posegga, J., eds.: Handbook of Tableau Methods. Kluwer, Dordrecht
(1999)

4. Lin, F., Zhao, Y.: Assat: computing answer sets of a logic program by sat solvers. Artificial Intelligence 157
(2004) 115–137

5. Lierler, Y., Maratea, M.: Cmodels-2: Sat-based answer sets solver enhanced to non-tight programs. In Lifschitz, V.,
Niemelä, I., eds.: Proceedings of the Seventh International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’04). Volume 2923 of Lecture Notes in Computer Science., Springer-Verlag (2004) 346–350

6. Leone, N., Faber, W., Pfeifer, G., Eiter, T., Gottlob, G., Koch, C., Mateis, C., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational Logic (2005) To appear.

7. Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.: The nomore++ approach to answer set solving. In
Sutcliffe, G., Voronkov, A., eds.: Proceedings of the Twelfth International Conference on Logic for Programming
Artificial Intelligence and Reasoning (LPAR’05). Volume 3835., Springer-Verlag (2005) 95–109

8. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelli-
gence 138 (2002) 181–234

9. Jarvisalo, M., Junttila, T.A., Niemelä, I.: Unrestricted vs restricted cut in a tableau method for boolean circuits.
In: AMAI. (2004)

10. Junttila, T.A., Niemelä, I.: Towards an efficient tableau method for boolean circuit satisfiability checking. In
Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.K., Palamidessi, C., Pereira, L.M., Sagiv, Y., Stuckey, P.J.,
eds.: Computational Logic. Volume 1861 of Lecture Notes in Computer Science., Springer (2000) 553–567

11. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7 (1960) 201–215
12. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the ACM

5 (1962) 394–397
13. Cook, S., Reckhow, R.: The relative efficiency of propositional proof systems. Journal of Symbolic Logic 44

(1979) 36–50
14. Beame, P., Pitassi, T.: Propositional proof complexity: Past, present, and future. Bulletin of the European Associ-

ation for Theoretical Computer Science 65 (1998) 66–89
15. Hähnle, R.: Tableaux and related methods. In Robinson, J.A., Voronkov, A., eds.: Handbook of Automated

Reasoning. Elsevier and MIT Press (2001) 100–178
16. Fitting, M.: Tableaux for logic programming. J. Autom. Reasoning 13 (1994) 175–188
17. Pearce, D., de Guzmán, I.P., Valverde, A.: A tableau calculus for equilibrium entailment. In Dyckhoff, R., ed.:

TABLEAUX. Volume 1847 of Lecture Notes in Computer Science., Springer (2000) 352–367
18. Olivetti, N.: Tableaux for nonmonotonic logics. [3] 469–528
19. Bonatti, P.A.: Resolution for skeptical stable model semantics. J. Autom. Reasoning 27 (2001) 391–421
20. Faber, W.: Enhancing Efficiency and Expressiveness in Answer Set Programming Systems. Dissertation, Tech-

nische Universität Wien (2002)
21. Calimeri, F., Faber, W., Leone, N., Pfeifer, G.: Pruning operators for answer set programming systems. In Ben-

ferhat, S., Giunchiglia, E., eds.: Proceedings of the ninth International Workshop on Non-Monotonic Reasoning
(NMR’04). (2002) 200–209

Tableaux Calculi for Answer Set Programming 11

22. van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs. Journal of the ACM
38 (1991) 620–650

23. Lee, J.: A model-theoretic counterpart of loop formulas. In: Proceedings of the International Joint Conference on
Artificial Intelligence. (2005)

24. Fitting, M.: Fixpoint semantics for logic programming: A survey. Theoretical Computer Science 278 (2002)
25–51

25. Clark, K.: Negation as failure. In Gallaire, H., Minker, J., eds.: Logic and Data Bases. Plenum Press (1978)
293–322

26. Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Transactions on Computational Logic
(To appear.)

27. Lierler, Y. (Personal communication)
28. Fages, F.: Consistency of clark’s completion and the existence of stable models. Journal of Methods of Logic in

Computer Science 1 (1994) 51–60
29. Erdem, E., Lifschitz, V.: Tight logic programs. Theory and Practice of Logic Programming 3 (2003) 499–518
30. Giunchiglia, E., Maratea, M.: On the relation between answer set and sat procedures (or, between cmodels and

smodels). In Gabbrielli, M., Gupta, G., eds.: ICLP. Volume 3668 of Lecture Notes in Computer Science., Springer
(2005) 37–51

31. Konczak, K., Linke, T., Schaub, T.: Graphs and colorings for answer set programming. Theory and Practice of
Logic Programming (2005) To appear.

32. (http://www.cs.uni-potsdam.de/∼gebser/kr06proofs.pdf)

