
Algorithmic Aspects of Model Representations

Reinhard Pichler

Technische Universität Wien, A-1040 Vienna, Austria
pichler@dbai.tuwien.ac.at

Abstract. Herbrand models play an important role in many areas of Computer Science like
Logic Programming, Functional Programming, Machine Learning, etc. Moreover, models (in
particular, Herbrand models) are at the very heart of Automated Model Building, which
has evolved as an important subdiscipline of Automated Deduction over the past decade.
A crucial issue for dealing with models on the computer is the selection of an appropriate
formalism for representing models. A desirable property of such a formalism is that (efficient)
algorithms should exist for evaluating clauses in a model thus represented. Moreover, also
algorithms for deciding the so-called model equivalence problem have received great interest.
In this survey, we recall three formalisms for representing Herbrand models, namely atomic
representations of Herbrand models ([11]), constrained atoms ([6, 7]), and contexts ([2, 3]).
Specifically, we shall recall recent results on algorithms and on the complexity of the afore-
mentioned decision problems for these model representations.

1 Introduction

Herbrand models play an important role in many areas of Computer Science like Logic Program-
ming, Functional Programming, Machine Learning, etc. Within the field of Automated Deduction,
Automated Model Building has evolved as an important subdiscipline over the past decade (see
[4]). Vivid interest in this topic is documented, e.g., by workshops at CADE-17 and CADE-19.1

Clearly, models (in particular, Herbrand models) are at the very heart of the research in Auto-
mated Model Building. The applicability of models to the area of Automated Deduction is basically
twofold:

– First, rather than just proving that some input formula is not a theorem, it would be desirable
for a theorem prover to provide some insight as to why a given formula is not a theorem. To
this end, the theorem prover tries to construct a counter-model rather than just giving the
answer “NO”.

– The second application of models arises from the idea of guiding the proof search by provid-
ing some additional knowledge on the domain from which the input formula is taken. This
knowledge can be represented in the form of a model, which may then be used e.g. in semantic
resolution.

In this survey, we concentrate on Herbrand models only. But of course, there are also other
kinds of models that have received interest (e.g., finite models). In order to actually deal with
models on a computer, we need an appropriate formalism for representing models. In case of
finite models, such a representation may simply consist of a definition of the domain plus tables
(‘diagrams’) for each predicate and function symbol, that record the value for each tuple of domain
elements. On the other hand, Herbrand models are in general infinite objects. Hence, the question
of how to represent them does not have such an obvious answer. Moreover, it should be noted
that there are uncountably many Herbrand models over a given signature. Thus, only a subset of
all such models can be represented by any given syntactic formalism.

Therefore, an important property of model representation formalisms is their expressive power,
i.e. which models can be represented in one formalism as compared to another formalism. From

1 See http://www.uni-koblenz.de/∼peter/CADE17-WS-MODELS/ and http://www.uni-koblenz.de/

∼peter/models03/, respectively, for the proceedings.



Algorithmic Aspects of Model Representations 13

an algorithmic point of view, the following requirements on model representation formalisms are
postulated in [11]: a model representation formalism should admit (efficient) algorithms for the
following two decision problems:

– The clause evaluation problem: Given a representation M of a model and a clause C, does
C evaluate to “true” in this model?

– The model equivalence problem: Given two representations M and N of models, do M and
N represent the same model?

The importance of the first decision problem is obvious. Suppose that we want to use a model
as an input to an automated theorem prover based on semantic resolution. Then an efficient
clause evaluation algorithm is clearly indispensable. The significance of the second problem
comes from the fact that formalisms presented in the model building literature for representing
models usually allow for many different ways of representing the same model. However, when we
actually want to compute the truth value of arbitrary clauses in such a model, then the efficiency
of this computation depends to a large extent on the specific representation rather than just
the model thus represented. It is therefore important to look for transformations of the model
representation constructed in the first step into an equivalent one with “better” computational
properties. But then we have to make sure, of course, that the model representation resulting from
such a transformation is equivalent to the original one.

In this survey, we recall three formalisms for representing models, namely atomic representa-
tions of Herbrand models (in Section 3), constrained atoms (in Section 4), and contexts (in Section
5). Specifically, we shall recall recent results on algorithms and complexity of the aforementioned
decision problems for these model representations. Moreover, in Section 2, we recall some basic
notions and in Section 6, we give a conclusion.

2 Preliminaries

The reader is assumed to be familiar with the basic concepts of computational logic. In this section,
we only recall the most important concepts for our further discussion. Let Σ denote a finite set of
predicate symbols and function symbols, each with some arity k ≥ 0. The set H of all ground terms
over Σ is called the Herbrand universe over Σ. In the sequel, we usually consider the signature Σ
as arbitrary but fixed when talking about some Herbrand universe H. We call H non-trivial, if it
contains at least 2 elements.

A literal is either an atom A or a negated atom ¬A. Clauses are written as C = L1 ∨ · · · ∨Ln,
where the Li’s are literals. Recall that clauses are basically a short-hand notation for closed first-
order formulae where all variables are universally quantified. A Herbrand interpretation of a clause
(or a set of clauses) is an interpretation which interprets all ground terms “by themselves”, so to
speak. Hence, a Herbrand interpretation is given by the interpretation of the predicate symbols
only. In particular, such an interpretation is uniquely determined by a subset of the Herbrand
base, namely by those ground atoms over the given signature Σ which evaluate to “true”.

In general, a model is an interpretation which validates a certain formula (or, analogously,
a clause set). As long as one is concerned with the actual model construction, it is clear which
formula is validated by the interpretation thus constructed. However, when one starts to work
with such an interpretation in a different context (e.g. as input to a theorem prover based on
semantic resolution), the connection between the interpretation and the formula which is validated
by this interpretation is no longer obvious. In fact, it is a bit inaccurate to talk about “models”
rather than “interpretations”, when it is not clear, which formula is actually validated by a given
interpretation. However, this kind of inaccuracy is very common in the model building literature.
We shall, therefore, also refer to “interpretations” as “models” without having a particular formula
in mind which is validated by such an interpretation.



14 Reinhard Pichler

3 Atomic Representations of Herbrand Models

In [11], Atomic Representations of Herbrand Models (= ARMs, for short) were introduced as finite
sets A = {A1, . . . , An} of atoms, s.t. a ground atom evaluates to “true” in the Herbrand model
represented by A, iff it is a ground instance of some atom Ai ∈ A.

Example 1. Let A = {P (f(x), a), P (a, a), Q(x, x), Q(a, f(x))} be an ARM and let the signature
Σ = {P,Q, a, b, f}. Then the clause C1 = P (x, a) ∨ ¬Q(x, f(a)) evaluates to “true” in the model
defined by A. In order to see this, we have to verify, that all H-ground instances of C1 evaluate to
“true”: To this end, we distinguish three kinds of possible values that the variable x can take and
show that in each case at least one literal in C1 evaluates to “true”:

– For x = a the literal P (a, a) evaluates to “true”.
– Now let x = b. Then Q(b, f(a)) is not an instance of any atom in A. Hence, Q(b, f(a))

evaluates to “false” and, thus, ¬Q(b, f(a)) evaluates to “true”.
– Finally, let x be a term with leading symbol f , i.e., x = f(t) for some term t ∈ H. Then

P (f(t), a) is an instance of P (f(x), a) ∈ A and, therefore, P (f(t), a) evaluates to “true”.

On the other hand, the clause C2 = P (x, y) ∨ ¬Q(a, y) evaluates to “false”. This can be seen by
showing that there exists at least one H-ground instance of C2 that evaluates to “false”. In fact,
P (a, f(a)) ∨ ¬Q(a, f(a)) is such a ground instance. It is easy to verify that both literals evaluate
to “false”. 2

The key to the decision problems is yet another problem, which was called the atomic H-
subsumption problem in [11], i.e.: Given an atom set A = {A1, . . . , An} and an atom B over
some Herbrand universe H, is every H-ground instance of B an instance of some atom Ai ∈ A?
If this is the case, then we write A ≤sH B. In [11], the model equivalence problem and the
clause evaluation problem are reduced to the (atomic) H-subsumption problem as follows:

Lemma 1. Let A = {A1, . . . , An} and B = {B1, . . . , Bm} be ARMs w.r.t. some Herbrand uni-
verse H. Then A and B are equivalent, iff {A1, . . . , An} ≤sH Bj for every j ∈ {1, . . . ,m} and
{B1, . . . , Bm} ≤sH Ai for every i ∈ {1, . . . , n}.

In order to reduce also the clause evaluation problem to the H-subsumption problem, we
first have to recall that H-subsumption is not necessarily restricted to atoms, i.e.: For a clause
set C and a clause D, we say that C H-subsumes D (written as C ≤sH D), iff every H-ground
instance of D is subsumed by some clause C ∈ C. More generally, if D is a clause set, we say that
C H-subsumes D (written as C ≤sH D), iff C ≤sH D holds for every clause D ∈ D. Then we have:

Lemma 2. Let A = {A1, . . . , An} be an ARM w.r.t. some Herbrand universe H and let C =
L1 ∨ · · · ∨ Ll ∨ ¬M1 ∨ · · · ∨ ¬Mm be a clause over H. Then we distinguish two cases:

– Case 1: m = 0, i.e.: C is a positive clause. Then C evaluates to “true” ⇔ A ≤sH C.
– Case 2: m > 0, i.e.: C contains at least one negative literal. Now let ρh(A ∪ {C}) denote

the set of all hyperresolvents that are derivable from A∪ {C}. Then C evaluates to “true” ⇔
A ≤sH ρh(A ∪ {C}).

Equivalent problems to the H-subsumption problem have been studied in many areas of
Computer science, such as in Machine Learning (cf. [19]) in Logic Programming (cf. [12], [18]),
in Functional Programming (cf. [18]), etc. Consequently, many different approaches for deciding
the H-subsumption problem (or equivalent problems) have been presented in the literature. We
only recall the algorithm from [11] here, which is based on the following property: If C and D are
sets of clauses, s.t. the minimum depth of variable occurrences in D is greater than the depth of
C, then H-subsumption and ordinary subsumption coincide. Hence, the H-subsumption problem
A ≤sH C for an atom set A and a clause C can be decided as follows: First, C is transformed into
an equivalent clause set C ′ by partial saturation, s.t. the minimum depth of variable occurrences



Algorithmic Aspects of Model Representations 15

in C′ is greater than the depth of A. Then an ordinary subsumption test A ≤s C ′ is applied to
every clause C ′ ∈ C′.

As to the complexity of the decision problems studied here, it is convenient to consider also the
total cover problem, which is defined as follows: Given an atom set A = {P (t1), . . . , P (tn)}
over some Herbrand universe H, is every H-ground atom P (s ) an instance of some P (ti) ∈ A?

It is easy to show the following relations between these problems (cf. [13, 14]): The total
cover problem can be reduced to the model equivalence problem, which in turn can be
reduced to the atomic H-subsumption. Finally, atomic H-subsumption can be reduced to the
clause evaluation problem. All these reductions are possible in polynomial time. In other words,
total cover is the “easiest” and clause evaluation is the “hardest” of these four problem. The
inherent complexity of the total cover problem (or equivalent problems) has been investigated
by several authors independently, who proved its coNP-completeness (cf. [15], [16], [17]). Together
with the coNP-membership of clause evaluation (cf. [13, 14]), we get the following result:

Theorem 1. The following decision problems are coNP-complete over any non-trivial Herbrand
universe: total cover, model equivalence of ARMs, atomic H-subsumption, and clause
evaluation of ARMs.

4 Constrained Atoms

ARMs have a somehow restricted expressive power. In particular, they are not closed under com-
plement, i.e.: Let A = {A1, . . . , An} be a set of atoms. Then, in general, the set of ground atoms
that are not instances of the atoms Ai ∈ A cannot be expressed in terms of an ARM itself. In
[6, 7], the expressive power of ordinary clauses is increased by adding equational constraints. A
constrained clause (= c-clause, for short) over some Herbrand universe H is a construct of the
form [[c : P]], where c is a clause and P is an equational formula over H. An H-ground clause cσ
is an instance of [[c : P]], iff σ is a solution of P. Standard clauses can be considered as a special
case of constrained clauses with the trivially true constraint >.

Example 2. Let A = {P (x, x)} be an ARM. It can be shown (see [19]), that the complement of
A does not have a representation by an ARM. In contrast, such a representation is easy by using
equational constraints, namely: A′ = {[[P (u, v) : u 6= v]]}. Note that P (x, x) can also be considered
as a constrained atom, namely [[P (x, x) : >]]. 2

Actually, in [6, 7], models are defined in a slightly different way. Rather than just specifying the
set of ground atoms that evaluate to “true” (and requiring that all other ground atoms evaluate to
“false”), Caferra et al. introduced so-called partial interpretations definable by equational formulae
(= peq-interpretations, for short). Such a peq-interpretation is given through a finite set L = {[[l1 :
P1]], . . . , [[ln,Pn]]} of constrained literals (the li’s are either atoms or negated atoms). A ground
atom A evaluates to “true” in the interpretation defined by L, iff A is an instance of some (positive)
c-literal in L. On the other hand, A evaluates to “false”, if ¬A is an instance of some (negative)
c-literal in L. Otherwise, the truth value of A is undefined. Of course, one has to make sure, that
there exists no atom A, s.t. both A and ¬A are instances of elements in L.

The definition of the truth value of a negated ground atom ¬A is obvious, i.e.: ¬A is “true”, iff A
is “false”. Likewise, ¬A is “false”, iff A is “true”. Finally, ¬A is “undefined”, iff A is “undefined”.
The truth value of arbitrary c-clauses in a peq-interpretation is defined as follows: Let C =
M1 ∨ · · · ∨ Mk denote a ground clause. Then the truth value I(C) in the peq-interpretation I
represented by L is defined as follows:

I(C) =







“true” if ∃i: I(Mi) = “true”
“false” if ∀i: I(Mi) = “false”
“undefined” otherwise

Now let [[c : Q]] be an arbitrary c-clause. Then the truth value I([[c : Q]]) is defined as follows:



16 Reinhard Pichler

I([[c : Q]]) =







“true” if ∀ H-ground instances cσ of [[c : Q]]: I(cσ) = “true”
“false” if ∃ H-ground instance cσ of [[c : Q]]: I(cσ) = “false”
“undefined” otherwise

Example 3. Let the peq-interpretation I be given through the set L = {[[P (x, f(y)) : x 6= y]], [[¬P (x,
y) : x 6= a ∧ (∀z)y 6= f(z)]]} of c-literals and let the signature Σ = {P, a, b, f}. It is easy to check
that {[[P (x, f(y)) : x 6= y]] and [[¬P (x, y) : x 6= a ∧ (∀z)y 6= f(z)]] have no H-ground instances in
common. Hence, the peq-interpretation I is well-defined.

Now consider the clause C = P (x, x)∨¬P (a, f(x)) or, equivalently, the c-clause C ′ = [[P (x, x)∨
¬P (a, f(x)) : >]]. Then these clauses evaluate to “false” in I, since the H-ground instance P (b, b)∨
¬P (a, f(b)) does. Indeed, P (b, b) evaluates to “false”, since ¬P (b, b) is an instance [[¬P (x, y) : x 6=
a∧ (∀z)y 6= f(z)]]. Likewise, the second literal ¬P (a, f(b)) evaluates to “false”, since P (a, f(b)) is
an instance of [[P (x, f(y)) : x 6= y]]. 2

The above condition for an arbitrary c-clause to evaluate to “true” can be expressed as the
validity of an equational formula in the following way (cf. [5]):

Definition 1. Let the peq-interpretation I over H be given through the set L = {[[L1(s1) :
P1]], . . . , [[Ln(sn) : Pn]]} of c-literals and let C = [[M1(t1) ∨ · · · ∨ Mk(tk) : Q]] be a c-clause
over H, where the Li’s and Mj’s denote literal symbols (i.e., either unnegated or negated predicate
symbols). Moreover, let yi = Var([[Li(si) : Pi]]) and suppose that y1, . . . , yn, Var(C) are pairwise
disjoint. Then the equational formula FI(C) is defined as follows:

FI(C) ≡ Q ∧
∨

Mj=Li

(∃yi)[Pi ∧ si = tj ]

Then the following condition holds:

Lemma 3. Let I, L, C, and FI(C) be defined as above. Moreover, let Cσ be an arbitrary H-
ground instance of C. Then the following equivalence holds:

Cσ evaluates to “true” in I ⇔ σ is a solution of FI(C)

But then the condition that C evaluates to “true” in I is clearly equivalent to the condition that
FI(C) and Q are equivalent. This is the case, iff the equational formula FI(C) ↔ Q is valid.

Likewise, the model equivalence problem can of course be reduced to the validity problem
of equational formulae. This can be easily seen by first reducing the model equivalence problem
to the clause evaluation problem and then applying the problem reduction via the formula
FI(C) from Definition 1:

Lemma 4. Let the peq-interpretations I and J over H be given through the sets of c-literals L =
{[[L1(s1) : P1]], . . . , [[Ll(sl) : Pl]]} and M = {[[M1(t1) : Q1]], . . . , [[Mn(t)m) : Qm]]}, respectively.

Then the peq-interpretations I and J are equivalent, iff every c-literal [[Li(si) : Pi]] ∈ L is
“true” in J and every c-literal [[Mj(tj) : Qj ]] ∈ M is “true” in I.

Equational formulae have been studied by various authors (e.g., see [8], [9], [16], [20], [21], [24],
[25], [26]). Several decision methods for the validity problem of equational formulae have been
proposed. Unfortunately, they all have a very high computational complexity. But this cannot be
helped by the following result from [25]:

Theorem 2. The validity problem of equational formulae over an infinite Herbrand universe (i.e.,
where the signature contains at least one proper function symbol) is non-elementary recursive.

Of course, we cannot expect to do better for the clause evaluation problem and the model
equivalence problem of peq-interpretations. We thus have



Algorithmic Aspects of Model Representations 17

Corollary 1. The clause evaluation problem and the model equivalence problem of peq-
interpretations over an infinite Herbrand universe is non-elementary recursive.

Actually, in case of a finite Herbrand universe, the validity problem of equational formulae is
“only” PSPACE-complete (cf. [16]). But of course, in the area of automated model building, the
infinite case is far more relevant.

5 Contexts

Recently Baumgartner and Tinelli [1–3] have introduced a calculus for clause logic, called model
evolution, that relies heavily on a particular form of model representation, namely the so-called
“contexts”. In [1–3], contexts are considered over a signature containing infinitely many con-

stant symbols. Hence, throughout this section, we also assume that Σ contains infinitely many
constant symbols.

A context is simply a finite set of literals. However, an important ingredient is the distinction
between ‘universal variables’ and ‘parameters’. The latter can be viewed as a form of variables, that
do not necessarily admit instantiation by arbitrary ground terms; whereas universal variables can
be understood as placeholders for arbitrary terms of the Herbrand universe (This idea will become
clear in Definition 3 below). Each non-ground literal in a context either contains only universal
variables or only parameters. Correspondingly, we speak of universal literals and parameter literals,
respectively.

In addition to ordinary literals, every context also contains the pseudo-literal ¬v. Every negative
literal is considered a proper instance of ¬v. The pseudo-literal ¬v is used to guarantee that all
atoms that are not explicitly specified to be true are false by default in contexts.

Analogously to peq-interpretations, contexts have to be non-contradictory in the sense that
a ground atom cannot at the same time be true and false in the model thus represented. Let
L denote the literal that is dual to L; i.e., A = ¬A and ¬A = A. Then we have the following
definitions:

Definition 2. A context Λ is a finite set of literals containing the pseudo-literal ¬v. Λ is contra-
dictory iff Lσ = Kσ for some variants L,K of elements in Λ where the substitution σ restricted
to the parameters is a renaming.

Definition 3. Let Λ be a non-contradictory context. A ground atom A is true in the model M(Λ)
represented by Λ iff one the following conditions holds:

1. A is an instance of some universal literal in Λ, or

2. A is an instance of a parameter literal L ∈ Λ, but ¬A is not an instance of a literal ¬B ∈ Λ,
where B is either universal or a proper instance of L.

In other words, by the first condition, all instances of universal atoms in Λ are true. On the
other hand, a ground instance A of a parameter atom L in Λ is true only if ¬A is not an instance
of a more specific literal or of a universal literal in Λ.

In accordance with [2], we write x, y, z to denote variables, and u, v, w for parameters. The
following examples will help to illustrate the above definitions:

Example 4. The context Λ1 = {¬v, P (x, f(y)),¬P (a, z)} is contradictory, since P (x, f(y)) and
P (a, z) are unifiable, and the corresponding unifier does not instantiate any parameters (since
no parameters at all occur in the atoms). However the context Λ2 = {¬v, P (x, f(y)),¬P (a, u)}
is non-contradictory since, for all substitutions σ such that P (x, f(y))σ = P (a, u)σ holds, the
parameter u has to be instantiated. Likewise the (pseudo-)parameter v has to be instantiated
when unified with P (x, f(y)). 2



18 Reinhard Pichler

Example 5. Consider the context Λ = {¬v, P (c, x, y), P (u, a, v), ¬P (w,w, b), P (u, v, b)}. By
definition, all ground instances of (the universal atom) P (c, x, y) are true in the model M(Λ).
Likewise, the ground instance P (a, a, a) of P (u, a, v) is true M(Λ). However, since ¬P (w,w, b) is
a proper instance of ¬P (u, v, b), the ground instance P (d, d, b) of P (u, v, b) is not true in M(Λ). For
the ground atoms P (a, a, b) and P (c, c, b) the situation might look similar, i.e., they are instances of
P (u, v, b) and also of the more specific atom P (w,w, b). Nevertheless, both P (a, a, b) and P (c, c, b)
are true in M(Λ) – due to the atoms P (u, a, v) ∈ Λ and P (c, x, y) ∈ Λ, respectively. Actually, it
is easy to check that the model representetd by Λ contains exactly the ground atoms M(Λ) =
{P (r, s, t) | r = c ∨ s = a ∨ (r 6= s ∧ t = b)}. 2

It turns out that the above recalled contexts are closely related to the more classical idea of
“disjunctions of implicit generalizations” (DIGs, for short). Following ideas in [19], DIGs can be
defined as follows:

Definition 4. An implicit generalization Γ is an expression of the form A/B, where A is an atom
and B is a finite set of atoms. We simply write A for A/{}. Every ground atom that is an instance
of A, but not an instance of any B ∈ B is said to be contained in A/B.

A disjunction of implicit generalizations ∆ (shortly: DIG) is defined as an expression of the
form A1/B1 t . . . t An/Bn, also written as

⊔

1≤i≤n Ai/Bi. A ground atom is said to be contained
in ∆ if it is contained in Ai/Bi for some i ∈ {1, . . . , n}. The model M(∆) represented by a DIG
∆ is the set of all ground atoms that are contained in ∆.

In [10], the following relation between contexts and DIGs is shown:

Theorem 3. Contexts and DIGs have the same expressive power; i.e., a model N can be repre-
sented by a context ⇔ N can be represented by a DIG.

Proof. (Sketch). We only recall the proof of the “⇒” direction: Let Λ = {¬v}∪Λ+
u ∪Λ+

p ∪Λ−
u ∪Λ−

p

be a context, where Λ+
u are the positive universal literals, Λ+

p are the positive parameter literals,
Λ−

u are the negative universal literals, and Λ−
p are the negative parameter literals of Λ, respectively.

W.l.o.g., we may assume that all literals in Λ are pairwise variable-disjoint. Then the model M(Λ)
represented by Λ coincides with the model M(∆Λ) represented by the following DIG ∆Λ:

∆Λ =
⊔

K∈Λ
+
u

K t
⊔

K∈Λ
+
p

K/
(

{L | L ∈ Λ−
p , L is a proper instance of K} ∪ {L | L ∈ Λ−

u }
)

The property M(∆Λ) = M(Λ) is an immediate consequence of Definition 3. 2

The complexity of the transition from contexts to DIGs and vice versa is classified in [10] as
follows:

Theorem 4. For any context Λ, an equivalent DIG ∆ with M(Λ) = M(∆) can be computed in
polynomial time.

In contrast, there exists a sequence ∆n (n > 1) of DIGs, where the size of ∆n is polynomial
(in n), such that all contexts representing the same model as ∆n are of exponential size (in n).

Proof. (Sketch). The first part of the theorem follows immediately from the construction of ∆Λ in
the proof of Theorem 3 (which only involves some instance checks and thus clearly is polynomial).

The second part is established via the following sequence ∆n:
Let ∆n =

⊔

1≤i≤n

P (u1, . . . , un)/{P (u1, . . . , ui−1, 0, ui+1, . . . , un),
P (u1, . . . , ui−1, 1, ui+1, . . . , un)},

where the ui (1 ≤ i ≤ n) are pairwise distinct parameters. It can be shown that every context
equivalent to ∆n must contain the set Λ−

n = {¬P (d1, . . . , dn) | di ∈ {0, 1}, 1 ≤ i ≤ n} of negative
literals. Moreover, |Λ−

n | = 2n clearly holds. 2



Algorithmic Aspects of Model Representations 19

In other words, DIGs and contexts have the same expressive power for representing models –
even though DIGs may be exponentially more succinct. Note that DIGs have long been known to
be equivalent to ‘constrained atoms’. In fact, translating DIGs into sets of constrained atoms is
straightforward; the translation of constrained atoms into DIGs can be done effectively via results
in [20].2 Note that the equivalence of contexts and DIGs with constrained atoms implies that the
set of models representable by contexts and DIGs is also closed under complement.

For the decision problems studied here, the following comparatively favourable results are
shown in [10]:

Theorem 5. The decision problems clause evaluation and model equivalence are coNP-
complete both for contexts and for DIGs.

6 Conclusion

In this survey, we have recalled some algorithmic and complexity theoretical aspects of three
model representation formalisms, namely: atomic representations of Herbrand models, constrained
atoms, and contexts. However, many more formalisms for representing models can be found in the
literature like (various forms of) term schematizations, (linear) atoms with positional constraints,
term grammars and finite tree automata, tree automata with brotherhood constraints, etc. A good
overview with a detailed comparison of the expressive power of these formalisms is given in [22,
23].

Efficient clause evaluation and model equivalence algorithms are an important issue, if
one wants to work with models after they have been constructed. Hence, a thorough complexity
analysis and the search for reasonably efficient algorithms also for other model representation
formalisms is an interesting task for future work in this area.

As has already been mentioned, Herbrand models play an important role also in other areas of
Computer Science, like Logic Programming, Functional Programming, Machine Learning. In some
cases, it has turned out that similar representation formalisms and similar algorithmic properties
have been investigated independently in various areas (cf. comments on atomic representations in
Section 3). However, a unified picture of various representation formalisms and properties studied
in different areas is missing.

References

1. P. Baumgartner, A. Fuchs, and C. Tinelli. Darwin: A theorem prover for the model evolution calculus.
In Proc. ESFOR’04, Electronic Notes in Theoretical Computer Science. Elsevier, 2004.

2. P. Baumgartner and C. Tinelli. The model evolution calculus. In Proc. CADE-19, volume 2741 in
LNCS, pages 350–364. Springer Verlag, 2003.

3. P. Baumgartner and C. Tinelli. The model evolution calculus. Fachberichte Informatik, 1/2003,
Universität Koblenz Landau, 2003. Extended Version of [2].

4. R. Caferra, A. Leitsch, and N. Peltier. Automated Model Building, volume 31 of Applied Logic Series.
Kluwer Academic Publishers, 2004.

5. R. Caferra and N. Peltier. Decision procedures using model building techniques. In Proc. CSL’95,
volume 1092 of LNCS, pages 130–144. Springer Verlag, 1995.

6. R. Caferra and N. Zabel. Extending resolution for model construction. In Proc. JELIA’90, volume
478 of LNCS, pages 153–169. Springer Verlag, 1991.

7. R. Caferra and N. Zabel. A method for simultanous search for refutations and models by equational
constraint solving. Journal of Symbolic Computation, 13:613–642, 1992.

8. H. Comon and C. Delor. Equational formulae with membership constraints. Information and Com-

putation, 112(2):167–216, 1994.
9. H. Comon and P. Lescanne. Equational problems and disunification. Journal of Symbolic Computation,

7(3/4):371–425, 1989.

2 Of course, the latter translation has non-elementary complexity in the worst-case, if arbitrary quantifier
alternations are allowed in the constraining formula, see [25]).



20 Reinhard Pichler

10. C. Fermüller and R. Pichler. Model representation via contexts and implicit generalizations. In Proc.

CADE-20, volume 3632 in LNCS, pages 409–423. Springer Verlag, 2005.
11. C. G. Fermüller and A. Leitsch. Hyperresolution and automated model building. Journal of Logic

and Computation, 6(2):173–230, 1996.
12. G. Gottlob, S. Marcus, A. Nerode, G. Salzer, and V. S. Subrahmanian. A non-ground realization of

the stable and well-founded semantics. Theoretical Computer Science, 166:221–262, 1996.
13. G. Gottlob and R. Pichler. Working with ARMs: Complexity results on atomic representations of

Herbrand models. In Proc. LICS’99, pages 306–315. IEEE Computer Society, 1999.
14. G. Gottlob and R. Pichler. Working with ARMs: Complexity results on atomic representations of

Herbrand models. Information and Computation, 165:183–207, 2001.
15. D. Kapur, P. Narendran, D. Rosenkrantz, and H. Zhang. Sufficient-completeness, ground-reducibility

and their complexity. Acta Informatica, 28(4):311–350, 1991.
16. K. Kunen. Answer sets and negation as failure. In Proc. ICLP’87, pages 219–228. MIT Press, 1987.
17. G. Kuper, K. McAloon, K. Palem, and K. Perry. Efficient parallel algorithms for anti-unification and

relative complement. In Proc. LICS’88, pages 112–120. IEEE Computer Society, 1988.
18. J.-L. Lassez, M. Maher, and K. Marriott. Elimination of negation in term algebras. In Proc. MFCS’91,

volume 520 in LNCS, pages 1–16. Springer Verlag, 1991.
19. J.-L. Lassez and K. Marriott. Explicit representation of terms defined by counter examples. Journal

of Automated Reasoning, 3(3):301–317, 1987.
20. M. Maher. Complete axiomatizations of the algebras of finite, rational and infinite trees. In Proc.

LICS’88, pages 348–357. IEEE Computer Society, 1988.
21. A. Málcev. On the elementary theories of locally free universal algebras. Soviet Mathematical Doklady,

2(3):768–771, 1961.
22. R. Matzinger. Comparing computational representations of Herbrand models. In Proc. KGC’97,

volume 1289 in LNCS, pages 203–218. Springer Verlag, 1997.
23. R. Matzinger. Computational Representations of Models in First-Order Logic. PhD thesis, Vienna

University of Technology, 2000.
24. R. Pichler. Solving equational problems efficiently. In Proc. CADE-16, volume 1632 in LNAI, pages

97 – 111. Springer Verlag, 1999.
25. S. Vorobyov. An improved lower bound for the elementary theories of trees. In Proc. CADE-13,

volume 1104 in LNAI, pages 275–287. Springer Verlag, 1996.
26. S. Vorobyov and A. Voronkov. Complexity of nonrecursive logic programs with complex values. In

Proc. PODS’98, pages 244–253. ACM Press, 1998.


