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Abstract. In recent work, a general framework for specifying program correspondences under the
answer-set semantics has been defined. The framework allows to define different notions of equiva-
lence, including the well-known notions of strong and uniform equivalence, as well as refined equiv-
alence notions based on the projection of answer sets, where not all parts of an answer set are of
relevance (like, e.g., removal of auxiliary letters). In the general case, deciding the correspondence of
two programs lies on the fourth level of the polynomial hierarchy and therefore this task can (pre-
sumably) not be efficiently reduced to answer-set programming. In this paper, we give an overview
about an implementation to compute program correspondences in this general framework. The system,
called eqcheck, relies on linear-time constructible reductions to quantified propositional logic us-
ing extant solvers for the latter language as back-end inference engines. We provide some preliminary
performance evaluation, which shed light on some crucial design issues.

1 Introduction

The class of nonmonotonic logic programs under the answer-set semantics [6], with which we are dealing
with in this paper, represents the canonical and, due to the availability of efficient answer-set solvers,
arguably most widely used approach to answer-set programming (ASP). The latter paradigm is based on
the idea that problems are encoded in terms of theories such that the solutions of a given problem are
determined by the models (“answer sets”) of the corresponding theory. Logic programming under the
answer-set semantics has become an important host for solving many AI problems, including planning,
diagnosis, information integration, and inheritance reasoning (cf. [5] for an overview).

To support engineering tasks of ASP solutions, an important issue is to determine the equivalence
of different problem encodings. To this end, various notions of equivalence between programs under the
answer-set semantics have been studied in the literature, including the recently proposed framework by
Eiter et al. [4], which subsumes most of the previously introduced notions. Within this framework, corre-
spondence between two programs, P and Q, holds iff the answer sets of P ∪ R and Q ∪ R satisfy certain
specified criteria, for any program R in a specified class, called the context. We shall focus here on cor-
respondence problems where both the context and the comparison between answer sets is specified by
alphabets. Note that this kind of program correspondence includes, as special instances, the well-known
notions of strong equivalence [10], uniform equivalence [3], and the practicably important case of program
comparison under projected answer sets.

For illustration, consider the following two programs which both express the selection of at most one
of the atoms a, b, but an atom is only selected if it can be derived together with the context:

P = { sel(b)← b,not out(b); Q = { fail ← sel(a),not a,not fail ;

sel(a)← a,not out(a); fail ← sel(b),not b,not fail ;

out(a) ∨ out(b)← a, b }. sel(a) ∨ sel(b)← a;

sel(a) ∨ sel(b)← b }.

Both programs use “local” atoms, out(·) and fail , respectively, which are expected not to appear in the
context. In order to compare the programs, we could specify an alphabet A for the context, for instance,
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A = {a, b} or, more generally, any set A of atoms not containing the local atoms out(a), out(b), and fail .
On the other hand, we want to check whether, for each addition of a context program over A, the answer
sets correspond when taking only atoms from B = {sel(a), sel(b)} into account.

In this paper, we report about an implementation of such correspondence problems. The system is
called eqcheck, and we also present some initial experimental results. The overall approach of this im-
plementation is to reduce the problem of correspondence checking to the satisfiability problem of quantified
propositional logic, an extension of classical propositional logic characterised by the condition that its sen-
tences, usually referred to as quantified Boolean formulas (QBFs), are permitted to contain quantifications
over atomic formulas.

The motivation to use such a reduction approach is as follows: First, complexity results [4] show that
correspondence checking within this framework is hard, lying on the fourth level of the polynomial hier-
archy. This indicates that implementations of such checks cannot be straightforwardly realised using ASP-
systems themselves. In turn, it is well known that decision problems from the polynomial hierarchy can be
efficiently represented in terms of QBFs in such a way that determining the validity of the resultant QBFs
is not computationally harder than checking the original problem. In previous work [11], such translations
from correspondence checking to QBFs being constructible in linear time and space have been developed.
Second, various practicably efficient solvers for quantified propositional logic are currently available (see,
e.g., [8]). Hence, such tools are used as back-end inference engines in our system to compute the corre-
spondence problems under consideration.

2 Theoretical Background

We deal here with propositional disjunctive logic programs, which are finite sets of rules of form

a1 ∨ · · · ∨ al ← al+1, . . . , am,not am+1, . . . ,not an,

n≥m≥ l≥ 0, where all ai are propositional atoms and not denotes default negation. If all atoms occurring
in a program P are from a given set A of atoms, we say that P is a program over A. The set of all programs
over A is denoted by PA.

Following Gelfond and Lifschitz [6], an interpretation I , i.e., a set of atoms, is an answer set of a
program P iff it is a minimal model of the reduct P I , resulting from P by

(i) deleting all rules containing default negated atoms not a such that a ∈ I , and
(ii) deleting all default negated atoms in the remaining rules.

The set of all answer sets of a program P is denoted byAS(P ).
For a set of atoms B, and families S, S ′ of interpretations, we write S|B = {Y ∩ B | Y ∈ S}, and we

define projections of the standard subset and set-equality relations as follows: S ⊆B S
′ iff S|B ⊆ S ′|B ,

and S =B S
′ iff S|B = S ′|B .

Following Eiter et al. [4], given sets of atoms A and B, we consider inclusion problems (P, Q,PA,⊆B)
and equivalence problems (P, Q,PA, =B). Formally, we say that (P, Q,PA,⊆B) holds iff, for each R ∈
PA, AS(P ∪ R)⊆B AS(Q ∪ R). As well, (P, Q,PA, =B) holds iff, for each R ∈ PA, AS(P ∪ R) =B

AS(Q ∪ R). Note that (P, Q,PA, =B) thus holds iff (P, Q,PA,⊆B) and (Q, P,PA,⊆B) jointly hold.
In [4], the concept of a spoiler to an inclusion problem has been defined, having the property that a

spoiler exists iff the respective inclusion problem does not hold. As shown in [11], the conditions of decid-
ing whether a spoiler of an inclusion problem exists can efficiently be represented in terms of quantified
propositional logic such that, given an inclusion problem, the resulting QBF is true iff no spoiler to that
inclusion problem exists. As mentioned above, having a procedure to decide inclusion problems, we can
decide the respective equivalence problems as well.

We consider two different reductions from inclusion problems to QBFs, S[·] and T[·], where T[·] can
be seen as an explicit optimization of S[·] (see [11] for the details about the two translations). However,
both reductions yield (in the worst case) QBFs of depth 4, i.e., where the maximal number of alternations
of quantifiers in any path of the formula tree is 3. In fact, the formula trees for the encodings yield the fol-
lowing common quantifier dependencies [2], which can be illustrated as follows (where V1, . . . , V5 denote
pairwise disjunct sets of atoms comprising all atoms occurring in each translation):
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∀V1

∃V2

∀V3

∃V4

∃V5

Most of the available QBF-solvers require the input QBF to be in prenex conjunctive normal form
(CNF), i.e., where the quantifiers are separately placed in a prefix and the remaining propositional formula
is in conjunctive normal form. Thus, given an arbitrary QBF, in order to apply a solver requiring input
in such form, one has to (i) “linearize” the quantifiers and (ii) transform the propositional part into CNF
(which is usually done by introducing new atoms to avoid an exponential blow-up of the formula size).

Step (i) is not a deterministic process. Although certain dependencies have to be respected, when com-
bining the quantifiers of different subformulas to one linear prefix, the arrangements can be done in dif-
ferent manners. Obviously, with growing formula size, the number of possible arrangements increases [2].
Inspecting the quantifier dependencies of our encodings, as illustrated by the above diagram, we can group
∃V5 either together with ∃V2 or with ∃V4. This yields the following two basic ways for prenexing our
encodings:

↑: ∀V1∃V2∃V5∀V3∃V4 and ↓: ∀V1∃V2∀V3∃V4∃V5.

Both variants do not increase the depth of the encoding. Together with the two available encodings S[·] and
T[·], we thus get four different alternatives to represent an inclusion problem in terms of a prenex QBF; we
will denote them in what follows by S↑[·], S↓[·], T↑[·], and T↓[·], respectively. Our system allows to select
between these different options and our experiments below give some evidence which one of them has the
best performance (with respect to the employed QBF-solver and the employed benchmarks).

3 System Description

The tool eqcheck implements the reductions from inclusion problems (P, Q,PA,⊆B) and equivalence
problems (P, Q,PA, =B) to corresponding QBFs. It takes as input (i) two programs, P and Q, and (ii) two
sets of atoms, A and B, where A specifies the alphabet of the context and B the set of atoms for projection
on the correspondence relation. The reduction (S[·] or T[·]) and the type of correspondence problem (⊆B

or =B) are specified via command-line arguments: -S, -T to select the kind of reduction; and -i, -e to
check for inclusion or equivalence between the two programs.

In general, the syntax to specify the programs in eqcheck corresponds to the basic DLV syntax.1

Propositional DLV programs can be passed to eqcheck and programs processible for eqcheck can be
handled by DLV. As usual, blanks are skipped during the parsing procedure, and rules are separated by dots.
Disjunctions in rule heads are expressed with a lower case “v”. The symbol “←” in rules is represented
with the two characters “:-”. Default negation not is expressed with the reserved word “not”. Atoms start
with a lower case character followed by an arbitrary number of lower case characters, upper case characters,
numbers, or the underline character. Also grounded predicates constitute a valid input for eqcheck and
can be expressed as an atom followed by a list of atoms within parentheses.

Considering the example from the introduction, the two programs would be expressed in our syntax as
follows:

P : sel(b) :- b, not out(b). Q: fail :- sel(a), not a, not fail.
sel(a) :- a, not out(a). fail :- sel(b), not b, not fail.
out(a) v out(b) :- a, b. sel(a) v sel(b) :- a.

sel(a) v sel(b) :- b.

We suppose that file P.dl contains the code for program P and, accordingly, file Q.dl contains the
code for program Q. If we want to check whether P is equivalent to Q with respect to the projection to the
output predicate sel(·), and restricting the context to programs over {a, b}, then we need to specify

1 See http://www.dlvsystem.com/ for details about DLV.
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– the context set, stored in a file, say A, containing “(a, b)”, and
– the projection set, also stored in a file, say B, containing “(sel(a), sel(b))”.

The invocation syntax for eqcheck then is as follows:

eqcheck -e P.dl Q.dl A B.

By default, the encoding T[·] is chosen. Note that the order of the arguments is important: first, the programs
P and Q appear, then the context set A, and lastly the projection set B. An alternative call of eqcheck
for the above example would be

eqcheck -e -A "(a, b)" -B "(sel(a), sel(b))" P.dl Q.dl

specifying A and B directly from the command line. The complete syntax of eqcheck can be seen by
invoking it with option -h.

After invocation, the resulting QBF is written to the standard output device and can be processed further
by QBF-solvers. The output can be piped, e.g., directly to the BDD-based non-normal form QBF-solver
boole,2 by means of the command

eqcheck -e P.dl Q.dl A B | boole

which yields 0 or 1 as answer for the correspondence problem (in our case, the correspondence holds and
the output is 1). To employ further QBF-solvers, the output has to be processed according to the input
syntax of the considered solver.

If the set A (resp., B) is omitted in invocation, then the set of all variables that occur in program P or
Q is assumed for set A (resp., B); if “0” is passed instead of a filename, then the empty set is assumed for
set A (resp., B). Thus, checking for strong equivalence between P and Q is done by

eqcheck -e P.dl Q.dl | boole

while ordinary equivalence (with projection over B) is done by

eqcheck -e P.dl Q.dl 0 B | boole.

We developed eqcheck entirely in ANSI C; hence, it is highly portable. The parser for the input data
was written using LEX and YACC. The complete package in its current version consists of more than 2000
lines of code. For further information about eqcheck and the benchmark generator discussed below, see

http://www.kr.tuwien.ac.at/research/eq/.

4 Experimental Results

Our experiments were conducted to determine the behaviour of different QBF-solvers in combination with
the encodings S[·] and T[·] for inclusion checking, or, if the employed QBF-solver requires the input in
prenex form, with S↑[·], S↓[·], T↑[·], and T↓[·]. To this end, we implemented a generator, eqtest, provid-
ing a suite of inclusion problems, which emanate from the proof of the ΠP

4 -hardness of inclusion check-
ing [4], in order to have a class of benchmark problems capturing the intrinsic complexity of this task.

The strategy to generate a test case is as follows:

1. generate a QBF Φ by random having three quantifier alternations (the evaluation problem of such QBFs
lies at the fourth level of the polynomial hierarchy);

2. reduce Φ to an inclusion problems Π = (P, Q,PA,⊆B) such that Π holds iff Φ is valid, corresponding
to the reduction used in the above mentioned complexity proof of inclusion checking;

3. apply eqcheck to generate a corresponding QBF Ψ from Π ; and finally
4. evaluate Ψ .

2 Available at http://www.cs.cmu.edu/˜modelcheck/bdd.html.
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Fig. 1. Results for true problem instances subdivided by solvers and encodings.

Fig. 2. Results for false problem instances subdivided by solvers and encodings.

Incidentally, this procedure yields also a simple method for validating the correctness of the overall
implementation, by simply checking whether Ψ is equivalent to Φ.

We have set up a test series comprising 1000 instances of inclusion problems generated that way (465
of them evaluating to true), where the first program P has 620 rules, the second program Q has 280 rules,
using a total of 40 atoms, and the sets A and B of atoms are chosen to contain 16 atoms. After employing
eqcheck, the resulting QBFs possess, in case of translation S[·], 200 atoms and, in case of translation
T[·], 152 atoms. The additional prenexing step (together with the translation of the propositional part into
CNF) yields, in case of S[·], QBFs with 6575 clauses over 2851 atoms and, in case of T[·], QBFs with 6216
clauses over 2555 atoms.

We compared four QBF-solvers, viz. qube-bj [7], semprop [9], skizzo [1], and qpro. The for-
mer three require prenex CNF formulas as input (thus, we tested them using encodings S↑[·], S↓[·], T↑[·],
and T↓[·]), and qpro is a new solver, currently under development at our department, which admits arbi-
trary QBFs as input (we tested it with the non-prenex encodings S[·] and T[·]).

Our results are depicted in Figures 1 and 2, referring to the true and false instances of our series,
respectively. The y-axis shows the (arithmetically) average running time in seconds for each solver (with
respect to the chosen translation and prenexing strategy). We set a time-out of 100 seconds.

As expected, for all solvers, the more compact encodings of form T were evaluated faster than the QBFs
stemming from encodings of form S. The performance of the prenex-form solvers qube-bj, semprop,
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and skizzo is highly dependent on the shifting strategy. For our test set, ↓ dominates ↑. Moreover,
analysing the results for qpro, compared to the other solvers, there is an indication that the normal-
form approach of QBF evaluation is not particularly appropriate for finding simplifications in formulas,
which is an interesting issue for future work.
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