
Large-Neighbourhood Search for Optimisation in Answer-Set Solving

Thomas Eiter,1 Tobias Geibinger,1 Nelson Higuera Ruiz,1 Nysret Musliu,1,2 Johannes Oetsch,1
Daria Stepanova3

1 Institute for Logic and Computation, TU Wien, Favoritenstraße 9-11, 1040 Vienna, Austria,
2 CD-Lab Artis, TU Wien,

3 Bosch Center for AI, Robert Bosch Campus 1, 71272 Renningen, Germany
{eiter, oetsch}@kr.tuwien.ac.at, {tgeibing, musliu}@dbai.tuwien.ac.at, daria.stepanova@de.bosch.com

Abstract

While Answer-Set Programming (ASP) is a prominent ap-
proach to declarative problem solving, optimisation problems
can still be a challenge for it. Large-Neighbourhood Search
(LNS) is a metaheuristic for optimisation where parts of a
solution are alternately destroyed and reconstructed that has
high but untapped potential for ASP solving. We present a
framework for LNS optimisation in answer-set solving, in
which neighbourhoods can be specified either declaratively as
part of the ASP encoding, or automatically generated by code.
To effectively explore different neighbourhoods, we focus on
multi-shot solving as it allows to avoid program regrounding.
We illustrate the framework on different optimisation prob-
lems, some of which are notoriously difficult, including shift
planning and a parallel machine scheduling problem from
semi-conductor production which demonstrate the effective-
ness of the LNS approach.

1 Introduction
Efficient solver technology and a simple modelling language
have put Answer-Set Programming (ASP) (Lifschitz 2019)
at the forefront of approaches to declarative problem solving,
with a growing number of applications in academia and indus-
try. Many practical applications require optimisation of some
objective function, which often is a challenge as making ASP
encodings scale and perform well for the problem instances
encountered can be tricky. While the performance of ASP
can be improved by various means like manual or automatic
tuning of solver parameters (Hoos, Lindauer, and Schaub
2014), adding domain-specific heuristics (Dodaro et al. 2016;
Gebser et al. 2013), or manual code rewriting for exploiting
symmetries or achieving a smaller program grounding, these
approaches might often need considerable time or expertise.

Large Neighbourhood Search (LNS) (Pisinger and Ropke
2010) is a metaheuristic that proceeds in iterations by succes-
sively destroying and reconstructing parts of a given solution
with the goal to obtain better values for an objective function.
For the reconstruction part, complete solvers can be used, and
it is in fact common to effectively combine LNS with, e.g.,
MIP (Danna, Rothberg, and Pape 2005; Rothberg 2007) and
CP (Shaw 1998; Perron, Shaw, and Furnon 2004; Berthold
et al. 2011; Björdal et al. 2020). For ASP however, to the best

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of our knowledge this potential is by and largely untapped.
Recent work (Geibinger, Mischek, and Musliu 2021) touched
LNS using it with the solver clingcon for a solution of a
specific problem.

However, a principled and systematic use of LNS in ASP
is unexplored. This is of particular interest, as ASP is offering
problem-solving capacities beyond other solving paradigms
such as MIP and CP (Dantsin et al. 2001; Leone et al. 2006).

Our main contribution is a framework for LNS optimisa-
tion for answer-set solving. To effectively explore different
neighbourhoods, we build on the recent solver features of
multi-shot solving and solving under assumptions (Gebser
et al. 2019). Multi-shot solving allows us to embed ASP in a
more complex workflow that involves tight control over the
solver’s grounding and solving process. Learned heuristics
and constraints can be kept between solver calls and repeated
program grounding is effectively avoided. Solving under as-
sumptions is a mechanism by which we can temporally fix
parts of a solution between solver calls. While the underlying
ideas are generic, we present our framework for the solvers
clingo and its extension clingo-dl for difference logic,
as well as clingcon for ASP with integer constraints from
the Potassco family.1

We introduce two principled ways of using LNS with ASP.
• First, we present a system that can be used out of the box
with all the supported ASP solvers. Different neighbourhoods
can be seamlessly specified in a declarative way as part of
the ASP encoding itself. To this end, dedicated predicates are
used (no language extension is needed). If no neighbourhood
is specified, an automatically generated random neighbour-
hood is the default. Already the latter turns out to be quite
effective for many problems. We demonstrate this solver and
its effectiveness for different optimisation problems. In par-
ticular, we use the well-known problems Social Golfer and
Travelling Sales Person, as well as generating smallest sets
of clues for Sudoku. Furthermore, we consider an optimisa-
tion variant of the Strategic Companies problem and Shift
Design (Abseher et al. 2016) as a real-world inspired bench-
mark. Throughout, LNS with ASP yields improved bounds
compared to plain ASP with no or little extra effort.
• The second way to use LNS with ASP in our framework
is by instantiating an abstract Python class that realizes the

1https://potassco.org/

basic LNS loop for a solver. This can be the preferred way
for more specialised ASP applications where neighbourhood
definitions are easier to specify in an imperative language, or
when obtaining an initial solution from a construction heuris-
tic instead of the ASP solver is beneficial. As an advanced
showcase, we use a challenging parallel machine schedul-
ing problem from industry (Eiter et al. 2021), where we can
leverage the capabilities of clingo-dl and improve the
state-of-the-art for this problem by using LNS with an effi-
cient construction heuristic to start the search.

We proceed as follows. First, we present the background
on ASP optimisation in Section 2. Our framework for LNS
with ASP is then described in Section 3. Afterwards, we
show how to tackle different optimization problems with
LNS and clingo in Section 4 and present more advanced
applications with clingo and clingo-dl in Section 5.
Related work is discussed in Section 6, and we conclude in
Section 7.

2 Background
Answer-Set Programming (ASP) (Lifschitz 2019; Gebser
et al. 2012; Brewka, Eiter, and Truszczyński 2011) provides
a declarative modelling language with rules of the form
Head:-Body (intuitively, Head is true if Body is true) that
allows for a succinct representation of search and optimisa-
tion problems, for which solutions can be computed using
dedicated ASP solvers. Problems are encoded in programs,
i.e., finite sets of rules, whose answer sets (which are spe-
cial models) yield the solutions of a problem. The latter can
be computed using an answer-set solver, which commonly
eliminates variables in rules in a preprocessing step called
grounding (replacement by constant symbols) and then eval-
uates this ground (propositional) representation. We focus in
this work on the multi-shot solver clingo and its extensions
for theories (Gebser et al. 2019, 2016; Banbara et al. 2017;
Janhunen et al. 2017). For a thorough introduction to the
modelling language, we refer to the respective user guide.2

As an example for optimisation with clingo, consider
the Social Golfer Problem (SGP): the task is to schedule
g × p golfers in g groups of p players for w weeks such that
no two golfers play in the same group more than once. An
instance of the SGP is denoted by the triple g-p-w. We want
to minimise the number of players that meet more than once.

An ASP encoding for SGP in the modelling language of
clingo is given in Listing 1. A problem instance g-p-w
is defined in lines 1–3, where we use consecutive numbers
to denote the players, groups, and weeks, respectively. The
search space of feasible schedules is defined by rules 5 and
6: The former states (reading from right to left) that for any
player P and for any week W, the number of groups player P
is assigned to in week W is one. In other words: every player
plays in every week in precisely one group. Rule 6 ensures
that the size of any group in any week is precisely p. Rule 8
derives meets(P1,P2,W) if P1 and P2 meet in group G
in week W. Line 9 is a weak (soft) constraint to give a penalty
of 1 for any player P1 who meets another player P2 more

2https://github.com/potassco/guide/releases/.

than once. The last line is a solver directive to output only
atoms over predicate plays/3.

Theory solving is a feature of clingo that allows extend-
ing the formalism by external theories like integer constraints
in the style of SMT (Gebser et al. 2016). Using integer con-
straints can help immensely to avoid a large ground program
as the integer constants no longer directly contribute to its
size. The solver clingo-dl extends clingo by differ-
ence constraints which are expressions of form u − v ≤ d,
where u and v are integer variables and d is an integer con-
stant. They can be used in an encoding in the form of theory
atoms &diff{u-v}<=-d. In contrast to systems of unre-
stricted integer constraints, systems of difference constraints
are solvable in polynomial time.

A number of recent ASP applications feature difference
constraints for problems that involve timing constraints (Eiter
et al. 2021; El-Kholany and Gebser 2020; Francescutto,
Schekotihin, and El-Kholany 2021; Abels et al. 2019). For
unrestricted integer constraints, clingcon (Banbara et al.
2017) or other constraint ASP systems (Balduccini and Lier-
ler 2017; Lierler 2014) can be used.

The solver clingo supports hierarchical optimisation cri-
teria and uses a range of model-guided methods (Gebser et al.
2011) as well as core-guided techniques (Andres et al. 2012)
that work by identifying and relaxing sets of unsatisfiable
weak constraints until a solution is found. While clingcon
also supports optimisation statements for integer variables,
this is not the case for clingo-dl, where only minimi-
sation of a single integer variable is directly supported by
iteratively adding a constraint to enforce a smaller value on
the integer variable.

3 An LNS Framework for ASP
Large-Neighbourhood Search (LNS) (Shaw 1998; Pisinger
and Ropke 2010) aims at gradually improving a solution by
alternating a destroy and a recreate phase. The pseudo-code
of a simple LNS procedure is given in Alg. 1. It starts with
an initial solution. The operator relax (·) takes a solution and
destroys parts of it by, for example, unassigning a specified
percentage of all decision variables. The function search(·)
takes a partial solution and tries to restore it to obtain an
improved complete solution. This can be realised using any
complete search method. The algorithm proceeds until a stop
criterion, e.g. a global time limit, is met. LNS cannot show
optimality of solutions in general, but this is often infeasible
in practical optimisation settings anyway.

We use the ASP solvers clingo, clingo-dl, and
clingcon to implement search(·). All of them support
multi-shot solving (Gebser et al. 2019) which aids to imple-
ment the LNS heuristic efficiently. Multi-shot solving allows
us to ground an encoding only once and then explore neigh-
bourhoods in subsequent solver calls with potentially further
constraints added to enforce better solutions. Besides avoid-
ing the overhead of repeated grounding, we can keep learned
heuristics and constraints.

To realise the relax (·) operator, we use solving under as-
sumptions (Gebser et al. 2019): assumptions temporarily fix
truth values of atoms in a solver call. Between solver calls, we
fix all atoms that are part of the solution that is not relaxed.

Listing 1: Encoding for the Social Golfer Problem.
1 player(1..g*p).
2 group(1..g).
3 week(1..w).
4
5 { plays(P,W,G) : group(G) } = 1 :- player(P), week(W).
6 { plays(P,W,G) : player(P) } = p :- week(W), group(G).
7
8 meets(P1,P2,W) :- plays(P1,W,G), plays(P2,W,G), P1 < P2.
9 :~ #count { W : meets(P1,P2,W) } > 1, player(P1), player(P2), P1 < P2. [1,P1]

10
11 #show plays/3.

Algorithm 1: LNS optimisation for a minimisation problem

1: s∗ ← feasible solution
2: repeat
3: s′ ← search(relax (s∗))
4: ∆c← cost(s∗)− cost(s′)
5: if ∆c > 0 then
6: s∗ ← s′

7: end if
8: until stop criterion met
9: return s∗

Defining the neighbourhood
The LNS neighbourhood defines which parts of a solution
are kept and which are destroyed in each iteration. Its struc-
ture is usually problem specific but generic ones can also be
effective. A good neighbourhood is large enough to contain a
better solution but sufficiently small for the solver to actually
find one. In our framework, it can be defined either in a purely
declarative way, as part of the encoding and orthogonal to the
problem specification, or by using a Python plugin.

As an example, consider the Social Golfer Problem from
the previous section. There, a solution is a weekly schedule
that defines which golfer plays in which group; consider a
solution for the 3-3-3 instance:

Week 1 Week 2 Week 3
Group 1 (1, 2, 3) (1, 4, 7) (1, 5, 7)
Group 2 (4, 5, 6) (2, 5, 8) (2, 6, 8)
Group 3 (7, 8, 9) (3, 6, 9) (3, 4, 9)

This schedule can be further optimised as some players meet
more than once, e.g., 1 and 7 meet in both week two and three.
A potential neighbourhood could be to unassign random
positions in the above schedule. Another one could be to
destroy entire groups or even weeks.

Declarative neighbourhoods. To define a neighbour-
hood in ASP, we introduce two dedicated predicates
_lns_select/1 and _lns_fix/2:
• _lns_select/1 is a unary predicate to define a set S of
terms. In the LNS loop, a random sample is taken from the
terms identified by this select predicate.
• _lns_fix/2 is used to define a mapping from S to atoms
that should be fixed with assumptions between solver calls.
The first argument is the atom to fix and the second is the
corresponding term from S.

We illustrate this for different neighbourhood candidates
for the Social Golfer Problem.

(pos) If we want to fix random positions of the schedule and
therefore relax the rest, we can use:

_lns_select((P,W,G)) :- plays(P,W,G).
_lns_fix(plays(P,W,G),(P,W,G)) :-

_lns_select((P,W,G)).

The selection is made on positions of the schedule, and atoms
over plays/3 are fixed if they match the selected position.

(week) We can fix entire weeks of the schedule:

_lns_select(W) :- week(W).
_lns_fix(plays(P,W,G),W) :-

_lns_select(W), plays(P,W,G).

(group) Similarly, we can fix random groups as follows:

_lns_select((W,G)) :- week(W), group(G).
_lns_fix(plays(P,W,G),(W,G)) :-

_lns_select((W,G)), plays(P,W,G).

(group-p) We may fix all groups containing a selected player:

_lns_select(P) :- player(P).
_lns_fix(plays(P,W,G),P) :-
_lns_select(P),plays(P,W,G),plays(P1,W,G).

Python plugins. An alternative to the declarative specifi-
cation is to define the neighbourhood in Python code. This
is in particular valuable if a definition by rules would be
cumbersome or not efficient. For example, assume we want
to alternate between different neighbourhoods in the Social
Golfer example and pick each with a specified probability.
Our solver clingo-lns, which is described next, provides
an easy way to plug in any neighbourhood definition.

The Solver clingo-lns
Our Python implementation of LNS with ASP in the loop, the
solver clingo-lns, is publicly available.3 Input files for
ASP encodings and parameters are set via the command line,
--help gives an overview. Solver options include the solver
type (clingo, clingo-dl, or clingcon), a global time
limit, a time limit for search within a particular neighbour-
hood, the size of the neighbourhood, and command line argu-
ments to be passed to the solvers. Based on our experience,

3http://www.kr.tuwien.ac.at/research/projects/bai/aaai22

Algorithm 2: LNS with multi-shot solving and assumptions
Input: ASP program P and input facts I
Parameter: global timeout t, neighbourhood timeout t∗

1: c← initialise clingo based solver
2: c.ground(P ∪ I)
3: s← getInitialSolution(P ∪ I)
4: c.addBound(cost(s)− 1)
5: repeat
6: s′ ← c.solve(t∗, getMoveAssumptions(s, I))
7: if SAT then
8: s = s′

9: c.addBound(cost(s)− 1)
10: end if
11: until time passed > t
12: return s

the arguments that work well for an ASP solver carry grace-
fully over to the use within LNS. The solver supports min-
imisation and maximisation of hierarchical objective func-
tions as well as minimisation of a single integer variable in
clingo-dl mode.

Like we have already mentioned above, our implementa-
tion relies on multi-shot solving and solving under assump-
tions. The way those features are utilised to implement LNS
is shown in Algorithm 2. The given ASP program is first
grounded in Line 2. Afterwards, we obtain an initial solu-
tion in the next line. This initial solution is generated with
the specified solver. By default, it is the first solution found.
Alternatively, pre-optimisation allows to run the solver in op-
timisation mode for a specified time before LNS takes over.
Pre-optimisation is useful if the ASP solver is already good at
finding optimal or near optimal solutions for many instances.
Now, after an initial solution was obtained, a bound is given
to the interal solver telling it that the next solution has to
have strictly better cost. At each iteration of the loop, the
algorithm calls the internal solver with assumptions gener-
ated for this iteration and the given neighbourhood timeout.
Intuitively, those assumptions specify which parts of the cur-
rent solution are fixed in this iteration (or move). If the solver
finds a solution, we update the incumbent and add a new
bound, otherwise we do nothing and try again with different
assumptions until we reach the timelimit.

While neighbourhoods can be specified as part of the ASP
encoding, the solver will use random relaxation of the visible
atoms specified via #show as the default neighbourhood if
no other definition is found. For the Social Golfer example,
this corresponds exactly to neighbourhood pos.

While the solver works already “out-of-the-box” with de-
faults for all search parameters as well as the neighbourhood,
performance can often be improved by adjusting them. The
size of the neighbourhood can be specified either as a ratio
or as an absolute number of elements to fix or to relax from
the terms specified via _lns_select/1; the default is to
fix 80%. The size is too small if the ASP solver frequently
reports unsatisfiability; it is too large (or the time limit for
the solver calls too low) if the solver frequently times out.

Heuristics and customised neighbourhoods. The meth-
ods of the solver that construct the neighbourhood in each
step can easily be overloaded with customised versions to
implement more complex behaviour than possible with the
declarative option. In particular this concerns the methods
getInitialSolution and getMoveAssumptions as seen in Al-
gorithm 2. Overriding the former provides the ability to spec-
ify the initially used solution. Hence, if the ASP solver strug-
gles with finding an initial solution, it is a good idea to use, if
available, a fast construction heuristic to start the search. Fur-
thermore, by overloading getMoveAssumptions it is possi-
ble to declare neighborhoods which are more domain specific
and are not based on random relaxation. On the technical side,
overriding those methods is achieved by creating a Python
class which derives the abstract implementation provided in
our framework.

We give examples for this in Section 5, which can serve as
a blue-print for more customised applications.

4 Experiments on Benchmark Problems
We experimentally demonstrate the effectiveness of
clingo-lns on different benchmark problems.4 Unless
stated otherwise, clingo was called with no additional
command-line parameters, i.e, it uses a single solving thread
and employs branch-and-bound-based optimisation.

Social Golfer Problem. For Social Golfer, we compare
clingo-lns against plain clingo as baseline with a time
limit of 1800 secs for each run. As instances, we consider
problems with 8 groups of 4 golfers over 7 to 12 weeks. As
stated above, the optimisation goal here is to minimise the
number of times 2 players meet each other more than once.
We use clingo-lns with the different neighbourhood def-
initions from the previous section. We report the best and
worst solution found with clingo-lns in 5 runs. The time
limit to explore individual neighbourhoods was 20 seconds.
The size of each neighbourhood was set to relax about 80%
of the atoms over plays/3. This is rather large compared to
our other experiments, but necessary to find better solutions
while still helping the solver by restricting the search space.
The results are shown in Table 1.

Social Golfer is known to be notoriously hard for symbolic
solvers due to symmetries, and optimal solutions are still
out of reach for many instances where optimal bounds are
known. Yet, any improvement for ASP can be considered
an important step forward. For instances with 7–10 weeks,
conflict-free schedules exist in principle; this is not the case
for instances with 11 and 12 weeks. LNS with clingo-lns
is able to find better solutions than plain clingo in many
cases with all neighbourhood settings. Fixing a number of
weeks entirely turns out to work best for this experiment,
where it gives improvements most consistently.

4All experiments were run on a cluster with 13 nodes, each
having 2 Intel Xeon CPUs E5-2650 v4 (max. 2.90GHz, 12 physi-
cal cores, no hyperthreading), with memory limit 20GB. We used
clingo v 5.5.1 and clingo-dl v 1.2.1. All encodings, instances,
logs, and random seeds are available at http://www.kr.tuwien.ac.at/
research/projects/bai/aaai22.

w clingo
clingo-lns

pos week group group-p
7 0 0 0 0 0
8 3 1–2 2–3 3 2–4
9 7 6–7 4–6 6–7 5–7

10 11 9–10 7–9 9–10 8–9
11 13 12–13 11–12 12–13 12
12 15 14–15 14 14–15 14

Table 1: clingo vs. clingo-lns for instances 8-4-w of
the Social Golfer Problem with different neighbourhoods.
For clingo-lns we report the best and worst penalties
over 5 runs.

clingo clingo-lns
01 601 390.4 (384–394)
02 563 332.0 (327–337)
03 580 408.2 (403–413)
04 649 435.2 (430–440)
05 602 369.8 (365–373)
06 643 406.0 (399–409)
07 569 393.2 (385–399)
08 549 369.6 (367–374)
09 606 393.6 (391–399)
10 540 345.0 (338–357)
11 567 353.4 (349–357)
12 721 409.8 (401–420)
13 598 422.6 (414–430)
14 695 434.2 (429–440)
15 745 469.2 (463–474)
16 696 426.4 (424–429)
17 725 444.0 (441–449)
18 667 502.2 (394–513)
19 740 450.4 (446–456)
20 683 420.2 (413–426)

Table 2: clingo vs. clingo-lns for 20 instances of the
Travelling Sales Person problem with average, best, and worst
cost among 5 runs for clingo-lns.

Travelling Sales Person. We next consider the well-known
Travelling Sales Person (TSP) problem. The encoding in List-
ing 2 is an optimisation variant of the one from the Asparagus
platform.5 Instances were taken from Asparagus as well.

The overall time limit was set to 300 seconds, and we
limited search within any neighbourhood to 5 seconds. We
used clingo-lns out-of-the box with its default neigh-
bourhood, i.e. random relaxation of the cycle/2 atoms.
We only increased the neighbourhood size from 20% relax-
ation rate to 30% as this helps with faster convergence for the
considered instances. The results are given in Table 2 where
report the cost of the best round trip found by clingo as
well as the best of worst costs found by clingo-lns in 5
runs.

The LNS approach finds better bounds than clingo
throughout. Even the worst solutions found with LNS give an
improvement of 34% on average. The default neighbourhood
is advantageous for this problem since atoms cycle/2 in-
dicate the next element in the Hamiltonian tour, and relaxing

5https://asparagus.cs.uni-potsdam.de/.

them resembles k-opt moves from local search, where in each
step, k links of the current tour are replaced by links such
that a shorter tour is achieved.

Sudoku Puzzle Generation. ASP can be used for optimi-
sation problems where checking feasible solutions is beyond
NP; in fact, uniform ASP encodings can solve decisional vari-
ants of such problems with complexity up to ∆p

3 (Leone et al.
2006). In particular, checks in coNP are expressible (e.g., a
TSP instance has no solution) with a saturation technique
(Eiter and Gottlob 1995) that uses minimality of answer sets.

Suppose we want to compute Sudoku puzzles that give a
smallest number of hints. Listing 3 shows an encoding for this
problem with variable grid size. Roughly speaking, we guess
a set of hints subject to minimisation (lines 1,23) and check
that they can be completed to a fully filled-in Sudoku S (lines
3–9). As each Sudoku puzzle must have a unique completion,
we check, using saturation, that no different completion S′

exists, i.e., every assignment S′ of numbers to the grid is
either not a valid completion or equal to S (lines 11-21).

We compared clingo and clingo-lnswith its default
search parameters and options --configuration=many
and -t4 for clingo, which is the default portfolio for multi-
threaded solving and four threads. While clingo finds a so-
lution with 21 hints for the standard 9×9 grid within 10 min-
utes, we found puzzles with 19 hints using clingo-lns.
This is a significant improvement that reduces the gap be-
tween the baseline and the known minimal bound 17 by 50%.

Weighted Strategic Companies. A well-known ASP
benchmark that is complete for ΣP

2 is Strategic Compa-
nies (Cadoli, Eiter, and Gottlob 1997): a company of a hold-
ing is strategic if it belongs to a strategic set, i.e., a minimal
set of companies of the holding that allow to manufacture all
products and maintain control relationships. We consider an
optimisation variant here, where we assign random weights
to companies, and the objective is to find strategic sets of
minimal total weight. The encoding is given in Listing 4; the
instances are those of the 3rd (Calimeri, Ianni, and Ricca
2014), 4th (Alviano et al. 2013) and 5th (Calimeri et al. 2016)
ASP Competition with random weights from [1, 1000] added.

We compare clingo (called via the Python API) against
clingo-lns, where we use the default neighbourhood and
relax 20% of the companies in each step. The global time
limit was 1800 seconds and the time limit for LNS steps 30
seconds. The results are shown in Table 3. Note that we omit
instances for which clingo does not produce any feasible
solution in 30 minutes. The LNS approach improves the
bounds from the baseline by up to 65%, while the average
solution quality is only worse for a single instance.

5 Applications of LNS with ASP
We next turn to advanced use cases of ASP with LNS for
problems with more direct real-world applications. In partic-
ular, we address the practically relevant Shift Design problem
from the domain of work force scheduling as well as Parallel
Machine Scheduling from semi-conductor production.

Shift Design. The goal is to align shifts so that over- and
understaffing is avoided. We refer to Abseher et al. (2016)

Listing 2: Encoding for Travelling Sales Person.
1 { cycle(X,Y) : edge(X,Y); cycle(X,Y) : edge(Y,X) } = 1 :- vtx(X).
2 { cycle(X,Y) : edge(X,Y); cycle(X,Y) : edge(Y,X) } = 1 :- vtx(Y).
3 reached(1).
4 reached(Y) :- reached(X), cycle(X,Y).
5 :- vtx(X), not reached(X).
6 :~ cycle(X,Y), edgewt(X,Y,C). [C,X,Y]
7 #show cycle/2.

Listing 3: Encoding for Sudoku Puzzle Generation
1 { hint(R, C, N) : R = 1..grid_sz, C = 1..grid_sz, N = 1..grid_sz }.
2
3 a(R,C,N) :- hint(R, C, N).
4 { a(R,C,N): N = 1..grid_sz } = 1 :- R = 1..grid_sz, C = 1..grid_sz.
5 :- a(R,C1,N), a(R, C2, N), C1 != C2.
6 :- a(R1,C,N), a(R2, C, N), R1 != R2.
7 :- a(R,C,N), a(R1, C1, N), R != R1, C != C1,
8 (((R-1)/subgrid_sz)*subgrid_sz + (C-1)/subgrid_sz) =
9 (((R1-1)/subgrid_sz)*subgrid_sz + (C1-1)/subgrid_sz).

10
11 b(R,C,N) : N = 1..grid_sz :- R = 1..grid_sz, C = 1..grid_sz.
12 saturate :- b(R,C,N1), hint(R, C, N2), N1 != N2.
13 saturate :- b(R,C1,N), b(R, C2, N), C1 != C2.
14 saturate :- b(R1,C,N), b(R2, C, N), R1 != R2.
15 saturate :- b(R,C,N), b(R1, C1, N), R != R1, C != C1,
16 (((R-1)/subgrid_sz)*subgrid_sz + (C-1)/subgrid_sz) =
17 (((R1-1)/subgrid_sz)*subgrid_sz + (C1-1)/subgrid_sz).
18 saturate :- equals(R,C) : (R,C) = (1..grid_sz, 1..grid_sz).
19 equals(R,C) :- a(R,C,N), b(R,C,N).
20 b(R,C,N) :- saturate, R = 1..grid_sz, C = 1..grid_sz, N = 1..grid_sz.
21 :- not saturate.
22
23 :~ hint(R, C, N). [1,R,C,N]
24 #show hint/3.

for a detailed problem description as well as the ASP en-
coding and the instances. The objective function we use is
the hierarchical one from the original paper of first avoiding
understaffing, second avoiding overstaffing, and third, min-
imising the total number of shifts. We consider all instances
from DataSet3 and DataSet4, some of which are still quite
challenging for ASP. DataSet3 contains instances where over-
and understaffing cannot be avoided, and DataSet4 contains
a larger instance from a real-world application.

We again use the solver clingo as baseline, but
this time with the options --opt-strat=usc,3 and
--configuration=handy which runs clingo with
unsatisfiable-core based optimisation and defaults geared
towards large problems. This solver configuration was the
most effective in the experiments of the original paper. We
used the same solver configuration also within the LNS loop,
as well as the 1 hour limit per instance for the experiments.
The LNS solver spends at most 30 seconds exploring each
neighbourhood, which is set to randomly relax 70% of the
assigned shifts in each step. Plain ASP is with the right solver
configuration already quite effective for this problem and
finds optimal or near optimal solutions in many cases. We
thus used pre-optimisation for 50 minutes to let the solver
reproduce the old bounds before using LNS on top. We report

the best and worst bounds from 5 runs for the LNS approach.
For 8 out of 33 instances from both data sets, neither approach
could find any solution. For 17 instances clingo could find
the optimal value and clingo-lns reported the same value
as clingo. Results for the 7 remaining instances are given
in Table 4, where we get indeed considerable improvements.

Parallel Machine Scheduling. As a more advanced appli-
cation of LNS with clingo-dl, we deal with a parallel
machine scheduling problem with sequence-dependent setup
times, release dates, and machine capabilities from an indus-
trial semi-conductor production plant. In recent work (Eiter
et al. 2021), an ASP approach with difference logic has been
introduced for this problem. Further improvements are possi-
ble with LNS and ASP.

The ASP encoding that we use is an improved version of
the original one.6 The objective is to assign jobs to machines
such that the makespan, i.e., the total execution length, of the
schedule is minimal. Solutions are represented via predicate
assigned/2, which defines the machine assignment, and
next/3, which defines a total order of jobs on the machines.

The default random neighbourhood is not suitable here,

6The encoding can be found at http://www.kr.tuwien.ac.at/
research/projects/bai/aaai22.

Listing 4: Encoding for Weighted Strategic Companies.
1 strategic(X1)|strategic(X2)|strategic(X3)|strategic(X4) :- produced_by(X,X1,X2,X3,X4).
2 strategic(W) :- controlled_by(W,X1,X2,X3,X4), strategic(X1), strategic(X2), strategic(X3),

strategic(X4).
3 :~ strategic(C), weight(C,W). [W,C]
4 #show strategic/1.

clingo clingo-lns
001 231092 209414.6 (207374–212612)
006 91221 94782.2 (88925– 99116)
015 224472 210205.6 (207467–212338)
018 134757 129645.0 (124313–131251)
019 105481 103482.0 (98796–107197)
030 226653 213393.8 (203136–217266)
033 230732 219070.6 (217381–219493)
042 138809 125909.0 (124494–128524)
050 210771 190303.6 (186975–192591)
051 170227 76929.8 (69945– 82626)
052 207188 90402.6 (84859– 98724)
053 161343 74111.4 (69348– 81988)
054 224058 76589.4 (72038– 85074)
055 205034 95254.6 (82870–105613)
056 204921 84050.4 (78299– 91111)
057 219262 79053.2 (74010– 86627)
058 175945 73224.0 (70936– 77177)
059 200575 73383.8 (70640– 77592)
060 201830 87292.4 (82552– 91980)
061 216207 74421.4 (71772– 76291)

Table 3: clingo vs. clingo-lns for instances of
Weighted Strategic Companies with average, best, and worst
weight among 5 runs for clingo-lns.

since dependencies between atoms make it likely that re-
moved atoms will be reconstructed. We consider two neigh-
bourhoods for this problem: (job) select a number of jobs and
fix any atoms over assigned/2 and next/3 that mention
this job; (machine) select a number of machines and relax
all jobs on them. We ensure that the machine determining
the makespan in the current solution is always part of the se-
lection as otherwise improvements are impossible. Similarly,
should the first neighbourhood select no job from the ma-
chine determining the makespan, we remove an arbitrary job
from the selection and add a random job from that machine.
At each LNS step, we choose either the job or the machine
neighbourhood at random.

In principle, we could use clingo-dl to obtain an initial
solution. However, it is beneficial to construct one using a
simple greedy heuristic: starting from an empty schedule,
while some job is unassigned we pick one with minimal
release date and put it on a machine such that the makespan
of the partial schedule increases the least. This algorithm
always produces a feasible schedule of fairly good quality.

The implementation in clingo-lns is easy to extend by
overloading predefined member functions for obtaining an
initial solution and defining the neighbourhood. For quality
control, solutions encountered are also verified.

We compare plain clingo-dl with our LNS approach.
The time limit is 15 minutes overall and 15 seconds for LNS

clingo clingo-lns
3-04 (0, 413, 50) (0, 353, 45)–(0, 372, 47)
3-06 (0, 286, 44) (0, 222, 43)–(0, 312, 52)
3-11 (0, 821, 74) (0, 713, 65)–(0, 725, 65)
3-20 (0, 1006, 66) (0, 946, 68)–(0, 963, 67)
3-26 (0, 1061, 77) (0, 1037, 78)–(0, 1078, 75)
3-27 (0, 393, 25) (0, 376, 24)–(0, 393, 24)
3-29 (0, 509, 67) (0, 465, 59)–(0, 470, 63)
4-02 (0, 466, 50) (0, 388, 39)–(0, 401, 54)

Table 4: clingo vs. clingo-lns for Shift Design in-
stances from DataSet3 and DataSet4 with best and worst
objective value among 5 runs for clingo-lns. The values
respectively correspond to shortage of staff, excess of staff
and number of shifts.

clingo-dl clingo-dl (greedy) clingo-lns clingo-lns (greedy)

0.0

0.2

0.4

0.6

0.8

Figure 1: Relative differences to best solution for
clingo-dl with LNS for Parallel Machine Scheduling.

steps. For the neighbourhoods, we fix 80% of the jobs or all
but 2 of the machines, respectively. Furthermore, in order to
avoid selections that are too large, we limit the number of
selected jobs to 20% for both neighbourhoods.

The results for the 500 instances from the original paper are
visualized in Fig. 1 as box plots. We show the median as well
as 5 and 95 percentiles of the relative difference to the best so-
lutions for clingo-dl with and without LNS respectively
the construction heuristic. Both versions of LNS were run 5
times for each instance and the average was taken as the result.
LNS improved the performance of clingo-dl, but the best
results were obtained by using LNS with clingo-dl and
the construction heuristic in combination. They significantly
improve the published solutions for this problem.

6 Related Work
ASP solvers have seen a number of improvements for opti-
misation in recent years (Alviano et al. 2020) which makes
them also attractive for LNS. Especially recent advances like
using comparator networks (Bomanson and Janhunen 2020)
and combining integer programming with ASP (Saikko et al.
2018) can be helpful in this context.

The use of LNS in MIP (Danna, Rothberg, and Pape 2005;
Rothberg 2007; Ghosh 2007) and CP (Perron, Shaw, and
Furnon 2004; Berthold et al. 2011; Björdal et al. 2020) is
well explored. For declarative LNS neighbourhood defini-
tions, the constraint modelling languages were extended to
support solver-independent LNS search (Dekker et al. 2018;
Björdal et al. 2018; Rendl et al. 2015). Our approach merely
requires dedicated predicates that can be defined by rules,
and it offers unlimited power for neighbourhood definition
by external plugins. Declarative LNS was also considered
for Imperative-Declarative Programming, where LNS moves
can be specified in predicate logic (Pham, Devriendt, and
Causmaecker 2019).

The only work that touches on LNS in the context of ASP
is the recent application of the clingcon for Test Labo-
ratory Scheduling (Geibinger, Mischek, and Musliu 2021).
There, clingcon was used as a black-box solver to find an
assignment for a sub-problem within an LNS loop, without
using multi-shot solving. In principle, a similar black-box ap-
proach for other ASP solvers like wasp (Dodaro and Ricca
2020; Alviano et al. 2015) is possible, but an empowered
multi-shot solving approach needs further efforts.

Gebser, Ryabokon, and Schenner (2015) studied a combi-
nation of greedy algorithms with ASP. They used the greedy
method to generate heuristics for accelerating an ASP solver,
but left the optimisation procedure unchanged. By our results,
it would be of interest whether fruitful greedy heuristics for
LNS with ASP could be (semi-)automatically constructed.

7 Conclusion
We have introduced an optimisation framework for ASP that
exploits LNS and multi-shot solving, and we have demon-
strated that this approach indeed boosts the capabilities of
ASP for challenging optimisation problems. Notably, ASP
makes LNS viable even for problems whose decision variant
is beyond NP. We presented a general LNS solver that can
be used to quickly set up LNS for ASP and to experiment
with different neighbourhoods that can be specified as part of
the ASP encoding itself. Thus, the spirit of ASP as a declar-
ative approach for rapid prototyping is retained. With some
extra effort, the LNS solver can be customized for ASP ap-
plications by implementing problem specific heuristics; this
can further boost performance as witnessed by a machine
scheduling problem from the industry.

For future work, we plan as a next step to make LNS self-
adaptive so that parameters of the LNS search are adjusted
on the fly during search.

Acknowledgments
This work was supported by funding from the Bosch Cen-
ter for Artificial Intelligence. Furthermore, we would like to

thank Michel Janus, Andrej Gisbrecht, and Sebastian Bayer
for very helpful discussions on the scheduling problems at
Bosch, as well as Roland Kaminski who suggested an im-
provement for the PMSP encoding.

References
Abels, D.; Jordi, J.; Ostrowski, M.; Schaub, T.; Toletti, A.;
and Wanko, P. 2019. Train Scheduling with Hybrid ASP. In
Proceedings of the 15th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR 2019),
volume 11481 of LNCS, 3–17. Springer.
Abseher, M.; Gebser, M.; Musliu, N.; Schaub, T.; and
Woltran, S. 2016. Shift design with answer set program-
ming. Fundamenta Informaticae, 147(1): 1–25.
Alviano, M.; Calimeri, F.; Charwat, G.; Dao-Tran, M.; Do-
daro, C.; Ianni, G.; Krennwallner, T.; Kronegger, M.; Oetsch,
J.; Pfandler, A.; Pührer, J.; Redl, C.; Ricca, F.; Schneider, P.;
Schwengerer, M.; Spendier, L. K.; Wallner, J. P.; and Xiao,
G. 2013. The Fourth Answer Set Programming Competi-
tion: Preliminary Report. In Proceedings of the 12th Interna-
tional Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR 2013), volume 8148 of LNCS, 42–53.
Springer.
Alviano, M.; Dodaro, C.; Leone, N.; and Ricca, F. 2015. Ad-
vances in WASP. In Proceeding of the 13th International
Conference on Logic Programming and Nonmonotonic Rea-
soning (ICLP 2015), volume 9345 of LNCS, 40–54. Springer.
Alviano, M.; Dodaro, C.; Marques-Silva, J.; and Ricca, F.
2020. Optimum stable model search: algorithms and im-
plementation. Journal of Logic and Computation, 30(4):
863–897.
Andres, B.; Kaufmann, B.; Matheis, O.; and Schaub, T. 2012.
Unsatisfiability-based optimization in clasp. In Technical
Communications of the 28th International Conference on
Logic Programming (ICLP 2012), volume 17 of LIPIcs, 211–
221. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.
Balduccini, M.; and Lierler, Y. 2017. Constraint answer set
solver EZCSP and why integration schemas matter. Theory
Practice of Logic Programming, 17(4): 462–515.
Banbara, M.; Kaufmann, B.; Ostrowski, M.; and Schaub, T.
2017. Clingcon: The next generation. Theory and Practice
of Logic Programming, 17(4): 408–461.
Berthold, T.; Heinz, S.; Pfetsch, M. E.; and Vigerske, S. 2011.
Large Neighborhood Search beyond MIP. In Proceedings of
the 9th Metaheuristics International Conference (MIC 2011),
51–60.
Björdal, G.; Flener, P.; Pearson, J.; Stuckey, P. J.; and Tack, G.
2018. Declarative Local-Search Neighbourhoods in MiniZ-
inc. In Proceedings of the 30th IEEE International Con-
ference on Tools with Artificial Intelligence (ICTAI 2018),
98–105. IEEE.
Björdal, G.; Flener, P.; Pearson, J.; Stuckey, P. J.; and
Tack, G. 2020. Solving Satisfaction Problems Using Large-
Neighbourhood Search. In Proceedings of the 26th Interna-
tional Conference on Principles and Practice of Constraint
Programming (CP 2020), volume 12333 of LNCS, 55–71.
Springer.

Bomanson, J.; and Janhunen, T. 2020. Boosting Answer Set
Optimization with Weighted Comparator Networks. Theory
and Practice of Logic Programming, 20(4): 512–551.
Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer
Set Programming at a Glance. Communications of the ACM,
54(12): 92–103.
Cadoli, M.; Eiter, T.; and Gottlob, G. 1997. Default logic as a
query language. IEEE Transactions on Knowledge and Data
Engineering, 9(3): 448–463.
Calimeri, F.; Gebser, M.; Maratea, M.; and Ricca, F. 2016.
Design and results of the Fifth Answer Set Programming
Competition. Artificial Intelligence, 231: 151–181.
Calimeri, F.; Ianni, G.; and Ricca, F. 2014. The third open
answer set programming competition. Theory Practice of
Logic Programming, 14(1): 117–135.
Danna, E.; Rothberg, E.; and Pape, C. L. 2005. Exploring
relaxation induced neighborhoods to improve MIP solutions.
Mathematical Programming, 102(1): 71–90.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Computing Surveys (CSUR), 33(3): 374–425.
Dekker, J. J.; De La Banda, M. G.; Schutt, A.; Stuckey, P. J.;
and Tack, G. 2018. Solver-independent large neighbourhood
search. In Proceedings of the 24th International Conference
on Principles and Practice of Constraint Programming (CP
2018), volume 11008 of LNCS, 81–98. Springer.
Dodaro, C.; Gasteiger, P.; Leone, N.; Musitsch, B.; Ricca,
F.; and Shchekotykhin, K. 2016. Combining answer set pro-
gramming and domain heuristics for solving hard industrial
problems (application paper). Theory and Practice of Logic
Programming, 16(5-6): 653–669.
Dodaro, C.; and Ricca, F. 2020. The external interface for ex-
tending WASP. Theory and Practice of Logic Programming,
20(2): 225–248.
Eiter, T.; Geibinger, T.; Musliu, N.; Oetsch, J.; Skocovsky,
P.; and Stepanova, D. 2021. Answer-Set Programming for
Lexicographical Makespan Optimisation in Parallel Machine
Scheduling. Research Report RR-1923-21-01, Institut für
Logic and Computation, Technische Universität Wien. Ac-
cepted for the 18th International Conference on Principles of
Knowledge Representation and Reasoning (KR 2021).
Eiter, T.; and Gottlob, G. 1995. On the Computational Cost
of Disjunctive Logic Programming: Propositional Case. Ann.
Math. Artif. Intell., 15(3-4): 289–323.
El-Kholany, M.; and Gebser, M. 2020. Job Shop Scheduling
with Multi-shot ASP. In Proceedings of the 4th Workshop on
Trends and Applications of Answer Set Programming (TAASP
2020).
Francescutto, G.; Schekotihin, K.; and El-Kholany, M. M.
2021. Solving a Multi-resource Partial-ordering Flexible
Variant of the Job-shop Scheduling Problem with Hybrid
ASP. In Proceedings of the 17th European Conference on
Logics in Artificial Intelligence (JELIA 2021), volume 12678
of LNCS, 313–328. Springer.
Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.;
Schaub, T.; and Wanko, P. 2016. Theory Solving Made

Easy with Clingo 5. In Technical Communications of the
32nd International Conference on Logic Programming (ICLP
2016), volume 52 of OASIcs, 2:1–2:15. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2011. Multi-criteria optimization in answer set programming.
In Technical Communications of the 27th International Con-
ference on Logic Programming (ICLP 2011), volume 11 of
LIPIcs, 1–10. Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Synthesis Lectures on
Artificial Intelligence and Machine Learning, 6(3): 1–238.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2019. Multi-shot ASP Solving with clingo. Theory and
Practice of Logic Programming, 19(1): 27–82.
Gebser, M.; Kaufmann, B.; Romero, J.; Otero, R.; Schaub, T.;
and Wanko, P. 2013. Domain-specific heuristics in answer set
programming. In Proceedings of the 27th AAAI Conference
on Artificial Intelligence (AAAI 2013), 350–356. AAAI Press.
Gebser, M.; Ryabokon, A.; and Schenner, G. 2015. Com-
bining heuristics for configuration problems using answer
set programming. In Proceedings of the 13th International
Conference on Logic Programming and Nonmonotonic Rea-
soning (LPNMR 2015), volume 9345 of LNCS, 384–397.
Springer.
Geibinger, T.; Mischek, F.; and Musliu, N. 2021. Constraint
Logic Programming for Real-World Test Laboratory Schedul-
ing. In Proceedings of the 35th AAAI Conference on Artificial
Intelligence, 6358–6366. AAAI Press.
Ghosh, S. 2007. DINS, a MIP Improvement Heuristic. In
Proceedings of the 12th International Conference on Integer
Programming and Combinatorial Optimization (IPCO 2007),
volume 4513 of LNCS, 310–323. Springer.
Hoos, H.; Lindauer, M.; and Schaub, T. 2014. claspfolio 2:
Advances in algorithm selection for answer set programming.
Theory and Practice of Logic Programming, 14(4-5): 569–
585.
Janhunen, T.; Kaminski, R.; Ostrowski, M.; Schellhorn, S.;
Wanko, P.; and Schaub, T. 2017. clingo goes Linear Con-
straints over Reals and Integers. Theory and Practice of
Logic Programming, 17(5-6): 872–888.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri,
S.; and Scarcello, F. 2006. The DLV system for knowledge
representation and reasoning. ACM Trans. Comput. Log.,
7(3): 499–562.
Lierler, Y. 2014. Relating Constraint Answer Set Program-
ming Languages and Algorithms. Artificial Intelligence, 207:
1–22.
Lifschitz, V. 2019. Answer Set Programming. Springer.
Perron, L.; Shaw, P.; and Furnon, V. 2004. Propagation
Guided Large Neighborhood Search. In Proceedings of the
10th International Conference on Principles and Practice of
Constraint Programming (CP 2004), volume 3258 of LNCS,
468–481. Springer.

Pham, T.; Devriendt, J.; and Causmaecker, P. D. 2019. Declar-
ative Local Search for Predicate Logic. In Proceedings of
the 15th International Conference on Logic Programming
and Nonmonotonic Reasoning (ICLP 2019), volume 11481
of LNCS, 340–346. Springer.
Pisinger, D.; and Ropke, S. 2010. Large neighborhood search.
In Handbook of metaheuristics, 399–419. Springer.
Rendl, A.; Guns, T.; Stuckey, P. J.; and Tack, G. 2015.
MiniSearch: A Solver-Independent Meta-Search Language
for MiniZinc. In Proceedings of the 21st International Con-
ference on Principles and Practice of Constraint Program-
ming (CP 2015), volume 9255 of LNCS, 376–392. Springer.
Rothberg, E. 2007. An Evolutionary Algorithm for Polishing
Mixed Integer Programming Solutions. INFORMS Journal
on Computing, 19(4): 534–541.
Saikko, P.; Dodaro, C.; Alviano, M.; and Järvisalo, M. 2018.
A hybrid approach to optimization in answer set program-
ming. In Proceedings of the 16th International Conference
on Principles of Knowledge Representation and Reasoning
(KR 2018), 32–41. AAAI Press.
Shaw, P. 1998. Using Constraint Programming and Local
Search Methods to Solve Vehicle Routing Problems. In Pro-
ceedings of the 4th International Conference on Principles
and Practice of Constraint Programming (CP 1998), volume
1520 of LNCS, 417–431. Springer.

