Towards Ideal Semantics for Analyzing Stream Reasoning

Harald Beck Minh Dao-Tran Thomas Eiter Michael Fink

International Workshop on Reactive Concepts in Knowledge Representation 2014

August 19, 2014
What & Why

“Towards Ideal Semantics for Analyzing Stream Reasoning”

Stream Reasoning
What & Why

“Towards Ideal Semantics for Analyzing Stream Reasoning”

- **Stream Reasoning**: Logical reasoning on streaming data
What & Why

“Towards Ideal Semantics for Analyzing Stream Reasoning”

- **Stream Reasoning**: Logical reasoning on streaming data
 - Streams = **tuples** (atoms) with **timestamps**
 - Essential aspect: **window** functions
What & Why

“Towards Ideal Semantics for Analyzing Stream Reasoning”

- Stream Reasoning: Logical reasoning on streaming data
 - Streams = **tuples** (atoms) with **timestamps**
 - Essential aspect: **window** functions

- Semantics
What & Why

“Towards Ideal Semantics for Analyzing Stream Reasoning”

- Stream Reasoning: Logical reasoning on streaming data
 - Streams = **tuples** (atoms) with **timestamps**
 - Essential aspect: **window** functions

- Semantics: Lack of theory
What & Why

“Towards Ideal Semantics for Analyzing Stream Reasoning”

- Stream Reasoning: Logical reasoning on streaming data
 - Streams = tuples (atoms) with timestamps
 - Essential aspect: window functions

- Semantics: Lack of theory

- Analysis
What & Why

“Towards Ideal Semantics for Analyzing Stream Reasoning”

- Stream Reasoning: Logical reasoning on streaming data
 - Streams = tuples (atoms) with timestamps
 - Essential aspect: window functions

- Semantics: Lack of theory

- Analysis: Hard to predict, hard to compare
“Towards Ideal Semantics for Analyzing Stream Reasoning”

- Stream Reasoning: Logical reasoning on streaming data
 - Streams = **tuples** (atoms) with **timestamps**
 - Essential aspect: **window** functions

- Semantics: Lack of theory

- Analysis: Hard to predict, hard to compare

- Ideal
What & Why

“Towards Ideal Semantics for Analyzing Stream Reasoning”

- Stream Reasoning: Logical reasoning on streaming data
 - Streams = **tuples** (atoms) with **timestamps**
 - Essential aspect: **window** functions

- Semantics: Lack of theory

- Analysis: Hard to predict, hard to compare

- Ideal
 - Idealization: Abstract from practical (operational) issues
 - Generalization: Uniform representation
Example: Trams and buses

Arrival times at different stations p_i
Example: Trams and buses

Arrival times at different stations p_i
Example: Trams and buses

Arrival times at different stations p_i

$bus(i_2, p_1)$
$tram(i_1, p_1)$
Example: Trams and buses

Arrival times at different stations p_i

$\text{bus}(i_2, p_1)$
$\text{tram}(i_1, p_1)$
Example: Trams and buses

Arrival times at different stations \(p_i \)

\[
\begin{align*}
bus(i_2, p_1) \\
tram(i_1, p_1) \\
tram(i_3, p_2)
\end{align*}
\]
Example: Trams and buses

Arrival times at different stations p_i

tram(i_1, p_1)

bus(i_2, p_1)

tram(i_3, p_2)

0 2 8 11
Example: Trams and buses

Arrival times at different stations p_i

- $\text{bus}(i_2, p_1)$
- $\text{tram}(i_1, p_1)$
- $\text{tram}(i_3, p_2)$
- $\text{bus}(i_4, p_2)$

0 | 2 | 8 | 11
Example: Trams and buses

Arrival times at different stations p_i

$\text{bus}(i_2, p_1)$
$\text{tram}(i_1, p_1)$
$\text{tram}(i_3, p_2)$
$\text{bus}(i_4, p_2)$

- Normal DB: Query for
Example: Trams and buses

Arrival times at different stations p_i

- $bus(i_2, p_1)$
- $tram(i_1, p_1)$
- $tram(i_3, p_2)$ $bus(i_4, p_2)$

▫️ Normal DB: Query for trams and buses arriving at same station P
Example: Trams and buses

Arrival times at different stations \(p_i \)

- \(\text{bus}(i_2, p_1) \)
- \(\text{tram}(i_1, p_1) \)
- \(\text{tram}(i_3, p_2) \)
- \(\text{bus}(i_4, p_2) \)

- Normal DB: Query for trams and buses arriving at same station \(P \)
Answer: \(i_1, i_2, p_1 \)
Example: Trams and buses

Arrival times at different stations p_i

$$
\begin{align*}
&\text{bus}(i_2, p_1) \\
&\text{tram}(i_1, p_1) \\
&\text{tram}(i_3, p_2) \quad \text{bus}(i_4, p_2)
\end{align*}
$$

- Normal DB: Query for trams and buses arriving at same station P
- Answer: i_1, i_2, p_1 and i_3, i_4, p_2
Example: Trams and buses

Arrival times at different stations p_i

- $bus(i_2, p_1)$
- $tram(i_1, p_1)$
- $tram(i_3, p_2)$ $bus(i_4, p_2)$

- **Normal DB**: Query for trams and buses arriving at same station P
 Answer: i_1, i_2, p_1 and i_3, i_4, p_2

- **SQL**

 SELECT * FROM tram, bus
 WHERE tram.P = bus.P
Example: Trams and buses

Arrival times at different stations p_i

$bus(i_2, p_1)$
$tram(i_1, p_1)$
$tram(i_3, p_2)$
$bus(i_4, p_2)$

- Normal DB: Query for trams and buses arriving at same station P
 - Answer: i_1, i_2, p_1 and i_3, i_4, p_2

- SQL

  ```sql
  SELECT * FROM tram, bus
  WHERE tram.P = bus.P
  ```
Example: Trams and buses

Arrival times at different stations p_i

$\text{bus}(i_2, p_1)$
$\text{tram}(i_1, p_1)$
$\text{tram}(i_3, p_2)$
$\text{bus}(i_4, p_2)$

- Normal DB: Query for trams and buses arriving at same station P
 Answer: i_1, i_2, p_1 and i_3, i_4, p_2

- SQL

```sql
SELECT * FROM tram, bus
WHERE tram.P = bus.P
```
Example: Trams and buses

Arrival times at different stations p_i

- $bus(i_2, p_1)$
- $tram(i_1, p_1)$
- $tram(i_3, p_2)$
- $bus(i_4, p_2)$

- Normal DB: Query for trams and buses arriving at same station P
 Answer: i_1, i_2, p_1 and i_3, i_4, p_2

- SQL

```sql
SELECT * FROM tram, bus
WHERE tram.P = bus.P
```
Example: Trams and buses

Arrival times at different stations p_i

$\text{bus}(i_2, p_1)$ $\text{tram}(i_1, p_1)$ $\text{tram}(i_3, p_2)$ $\text{bus}(i_4, p_2)$

\bullet Stream setting, at time 13: Query for
Example: Trams and buses

Arrival times at different stations p_i

- $\text{bus}(i_2, p_1)$
- $\text{tram}(i_1, p_1)$
- $\text{tram}(i_3, p_2)$
- $\text{bus}(i_4, p_2)$

- Stream setting, at time 13: Query for
- Trams and buses arriving at same station P
Example: Trams and buses

Arrival times at different stations p_i

$\text{bus}(i_2, p_1) \quad \text{tram}(i_1, p_1) \quad \text{tram}(i_3, p_2) \quad \text{bus}(i_4, p_2)$

Stream setting, at time 13: Query for

- Trams and buses arriving at same station P within the last 5 min
Example: Trams and buses

Arrival times at different stations p_i

$\text{bus}(i_2, p_1)$ $\text{tram}(i_1, p_1)$ $\text{tram}(i_3, p_2)$ $\text{bus}(i_4, p_2)$

- Stream setting, at time 13: Query for

- Trams and buses arriving at same station P within the last 5 min

Answer: i_3, i_4, p_2
Example: Trams and buses

Arrival times at different stations p_i

$bus(i_2, p_1)$
$tram(i_1, p_1)$
$tram(i_3, p_2)$
$bus(i_4, p_2)$

Stream setting, at time 13: Query for

Trams and buses arriving at same station P within the last 5 min

Answer: i_3, i_4, p_2

CQL

```
SELECT * FROM tram [RANGE 5], bus [RANGE 5] 
WHERE tram.P = bus.P
```
Example: Trams and buses

Arrival times at different stations p_i

$bus(i_2, p_1)$
$tram(i_1, p_1)$
$tram(i_3, p_2)$
$bus(i_4, p_2)$

► Trams and buses arriving at same station P within the last 5 min at the same time
Example: Trams and buses

Arrival times at different stations p_i

$\text{bus}(i_2, p_1)$

$\text{tram}(i_1, p_1)$

$\text{tram}(i_3, p_2)$

$\text{bus}(i_4, p_2)$

Trams and buses arriving at same station P within the last 5 min at the same time

Answer: –
Example: Trams and buses

Arrival times at different stations p_i

- $\text{bus}(i_2, p_1)$
- $\text{tram}(i_1, p_1)$
- $\text{tram}(i_3, p_2)$
- $\text{bus}(i_4, p_2)$

Trams and buses arriving at same station P within the last 5 min at the same time

Answer: i_1, i_2, p_1 for query times $2, \ldots, 7$
Example: Trams and buses

Arrival times at different stations p_i

$\text{bus}(i_2, p_1)$
$\text{tram}(i_1, p_1)$

$\text{tram}(i_3, p_2)$ $\text{bus}(i_4, p_2)$

0 2 8 11 13

- Trams and buses arriving at same station P within the last 5 min at the same time
 Answer: i_1, i_2, p_1 for query times 2, \ldots, 7

- **CQL**: Not expressible in single query (Snapshot semantics)

```
SELECT * AS tram_bus FROM tram [NOW], bus [NOW]
WHERE tram.P = bus.P
```
Example: Trams and buses

Arrival times at different stations p_i

$\text{bus}(i_2, p_1)$

$\text{tram}(i_1, p_1)$

- Trams and buses arriving at same station P within the last 5 min at the same time
 Answer: i_1, i_2, p_1 for query times $2, \ldots, 7$

- **CQL**: Not expressible in single query (Snapshot semantics)

```
SELECT * AS tram_bus FROM tram [NOW], bus [NOW]
WHERE tram.P = bus.P
```
Example: Trams and buses

Arrival times at different stations p_i

$\text{bus}(i_2, p_1)\quad \text{tram}(i_1, p_1)$

Trams and buses arriving at same station P within the last 5 min at the same time

Answer: i_1, i_2, p_1 for query times $2, \ldots, 7$

CQL: Not expressible in single query (Snapshot semantics)

```
SELECT * AS tram_bus FROM tram [NOW], bus [NOW]
WHERE tram.P = bus.P

SELECT * FROM tram_bus [RANGE 5]
```
Example: Trams and buses

Arrival times at different stations p_i

$\text{bus}(i_2, p_1)$
$\text{tram}(i_1, p_1)$

- Trams and buses arriving at same station P within the last 5 min at the same time

Answer: i_1, i_2, p_1 for query times $2, \ldots, 7$

- **CQL**: Not expressible in single query (Snapshot semantics)

```
SELECT * AS tram_bus FROM tram [NOW], bus [NOW]
WHERE tram.P = bus.P
```

```
SELECT * FROM tram_bus [RANGE 5]
```
Window Types

- Time-based

```
bus(i_2, p_1)  tram(i_1, p_1)  tram(i_3, p_2)  bus(i_4, p_2)
```

Timeline:
- 0 2 8 11 13
Window Types

- Time-based
- Tuple-based
Window Types

- Time-based
- Tuple-based
 - Not necessarily unique. E.g.: Last 3 tuples
Window Types

- Time-based
- Tuple-based
 - Not necessarily unique. E.g.: Last 3 tuples
Window Types

- Time-based
- Tuple-based
 - Not necessarily unique. E.g.: Last 3 tuples
- Partition-based
Window Types

- **Time-based**
- **Tuple-based**
 - Not necessarily unique. E.g.: Last 3 tuples
- **Partition-based**
 - Apply tuple-based window on substreams
Ideas for Windows

- Example: “In the last hour, did a bus always arrive within 5 min?”
Idea for Windows

Example: “In the last hour, did a bus always arrive within 5 min?”
Ideas for Windows

- Example: “In the last hour, did a bus always arrive within 5 min?”

- Allow for nesting: windows within windows
 - As formal counterpart to repeated runs of continuous queries
Ideas for Windows

- Example: “In the last hour, did a bus always arrive within 5 min?”
- Allow for nesting: windows within windows
 - As formal counterpart to repeated runs of continuous queries
- Allow for looking into the future
Ideas for Windows

- Example: “In the last hour, did a bus always arrive within 5 min?”
- Allow for nesting: windows within windows
 - As formal counterpart to repeated runs of continuous queries
- Allow for looking into the future
- View window operators as first class citizens
 - Do not separate window application (first) from logic (then)
Ideas for Windows

- Example: “In the last hour, did a bus always arrive within 5 min?”

- Allow for nesting: windows within windows
 - As formal counterpart to repeated runs of continuous queries

- Allow for looking into the future

- View window operators as first class citizens
 - Do not separate window application (first) from logic (then)

- Leave open specific underlying window functions
Ideas for Windows

- Example: “In the last hour, did a bus always arrive within 5 min?”
- Allow for nesting: windows within windows
 - As formal counterpart to repeated runs of continuous queries
- Allow for looking into the future
- View window operators as first class citizens
 - Do not separate window application (first) from logic (then)
- Leave open specific underlying window functions
 - $w(S, t) \mapsto S'$
 - Stream S, time point $t \in \mathbb{N}$, new stream S'
Ideas for Time Reference

- **Atoms** a appearing in the stream at time points $1, 2, 5$
Ideas for Time Reference

- Atoms a appearing in the stream at time points $1, 2, 5$
- Query time $t = 4$.

```
0 1 2 3 4 5 6
```

```
a a • a
```
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval $[1, 4]$
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval $[1, 4]$}

Example queries: In this window, does a hold...
Ideas for Time Reference

- Atoms a appearing in the stream at time points $1, 2, 5$
- Query time $t = 4$. Window on interval $[1, 4]$

![Diagram showing a window on interval $[1, 4]$ with atoms a appearing at time points $1, 2, 5$.]

- Example queries: In this window, does a hold...
 - ...now, i.e., exactly at t?
Ideas for Time Reference

- Atoms a appearing in the stream at time points $1, 2, 5$
- Query time $t = 4$. Window on interval $[1, 4]$

![Diagram of time line with points 0, 1, 2, 3, 4, 5, 6 and atom a appearing at 1, 2, 5, with a window on interval [1, 4] highlighted]

- Example queries: In this window, does a hold...
 - ...now, i.e., exactly at t? a
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval [1, 4]

Example queries: In this window, does a hold...

...now, i.e., exactly at t?

...yes

...at some time point t'?

...yes

...at all time points t'?

...no
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval $[1, 4]$}

Example queries: In this window, does a hold...

...now, i.e., exactly at t? a no

...at time point 2?
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval $[1, 4]$

Example queries: In this window, does a hold...

- ... now, i.e., exactly at t? a no
- ... at time point 2? $@_2 a$
Ideas for Time Reference

- Atoms \(a \) appearing in the stream at time points 1, 2, 5
- Query time \(t = 4 \). Window on interval \([1, 4]\)

Example queries: In this window, does \(a \) hold...

- ...now, i.e., exactly at \(t \)? \(a \) no
- ...at time point 2? \(@_2 a \) yes
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval $[1, 4]$

Example queries: In this window, does a hold...

- ...now, i.e., exactly at t? a no
- ...at time point 2? $@_2 a$ yes
- ...at some time point t'?
Ideas for Time Reference

- Atoms a appearing in the stream at time points $1, 2, 5$
- Query time $t = 4$. Window on interval $[1, 4]$

Example queries: In this window, does a hold...

- ...now, i.e., exactly at t? a no
- ...at time point 2? $@_2 a$ yes
- ...at some time point t'? $\Diamond a$
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval $[1, 4]$

![Diagram showing time points 0 to 6 with atoms a at points 1 and 2, and a window from 1 to 4]

- Example queries: In this window, does a hold...
 - ...now, i.e., exactly at t? a no
 - ...at time point 2? $\@_2 a$ yes
 - ...at some time point t'? $\diamond a$ yes
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval $[1, 4]$

Example queries: In this window, does a hold...

- ...now, i.e., exactly at t? a no
- ...at time point 2? $\mathcal{a}_2 a$ yes
- ...at some time point t'? $\diamond a$ yes
- ...at all time points t'?
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval $[1, 4]$

Example queries: In this window, does a hold…

- …now, i.e., exactly at t? a no
- …at time point 2? $@_2 a$ yes
- …at some time point t'? $\diamond a$ yes
- …at all time points t'? $\Box a$
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval $[1, 4]$

![Time Window Diagram]

- Example queries: In this window, does a hold...
 - ...now, i.e., exactly at t? a no
 - ...at time point 2? $\@_2 a$ yes
 - ...at some time point t'? $\diamond a$ yes
 - ...at all time points t'? $\Box a$ no
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval $[1, 4]$

Example queries: In this window, does a hold...

- ...now, i.e., exactly at t? a no
- ...at time point 2? $@_2 a$ yes
- ...at some time point t'? $\diamond a$ yes
- ...at all time points t'? $\Box a$ no
Streams

Stream $S = (T, \nu)$, where

- $\text{tram}(i_1, p_1)$
- $\text{bus}(i_2, p_1)$
- $\text{tram}(i_3, p_2)$
- $\text{bus}(i_4, p_2)$

Timeline:

- $0 \rightarrow 2$
- $8 \rightarrow 11 \rightarrow 13$
Streams

Stream $S = (T, \nu)$, where

T: interval in \mathbb{N}
Streams

Stream $S = (T, \nu)$, where

- T: interval in \mathbb{N}
- $\nu: T \rightarrow 2^G$ (interpretation of ground atoms G)
Streams

Stream $S = (T, \nu)$, where

- T: interval in \mathbb{N}
- $\nu : T \rightarrow 2^G$ (interpretation of ground atoms G)

Example
Streams

Stream $S = (T, \nu)$, where

- T: interval in \mathbb{N}
- $\nu: T \rightarrow 2^G$ (interpretation of ground atoms G)

Example

- $T = [0, 13]$
Streams

Stream $S = (T, \nu)$, where

- T: interval in \mathbb{N}
- $\nu: T \rightarrow 2^G$ (interpretation of ground atoms G)

Example

- $T = [0, 13]$
- $\nu = \begin{cases} 2 \mapsto \{tram(i_1, p_1), bus(i_2, p_1)\} \end{cases}$
Streams

Stream $S = (T, \nu)$, where

- T: interval in \mathbb{N}
- $\nu: T \rightarrow 2^G$ (interpretation of ground atoms G)

Example

- $T = [0, 13]$
- $\nu = \left\{ 2 \mapsto \{ tram(i_1, p_1), bus(i_2, p_1) \}, 8 \mapsto \{ tram(i_3, p_2) \} \right\}$
Streams

Stream $S = (T, \nu)$, where

- T: interval in \mathbb{N}
- $\nu: T \rightarrow 2^G$ (interpretation of ground atoms G)

Example

- $T = [0, 13]$
- $\nu = \begin{cases} 2 \mapsto \{\text{tram}(i_1, p_1), \text{bus}(i_2, p_1)\}, & 8 \mapsto \{\text{tram}(i_3, p_2)\}, \\ 11 \mapsto \{\text{bus}(i_4, p_2)\} \end{cases}$
Streams

- Stream $S = (T, \nu)$, where
 - T: interval in \mathbb{N}
 - $\nu : T \rightarrow 2^G$ (interpretation of ground atoms G)

Example

- $T = [0, 13]$
- $\nu = \begin{cases} 2 &\mapsto \{ \text{tram}(i_1, p_1), \text{bus}(i_2, p_1) \}, \\ 8 &\mapsto \{ \text{tram}(i_3, p_2) \}, \\ 11 &\mapsto \{ \text{bus}(i_4, p_2) \}, \\ i &\mapsto \emptyset \quad \text{else} \end{cases}$
Formulas

- Formulas defined by the grammar \((\text{atom } a, t \in \mathbb{N} \text{ timepoint})\)

\[\alpha ::= \]

>window operator: change view on stream

Utilizing window function with identifier \(i\)

Change considered substream based on current time point, and original stream

Window operator = window function + stream choice function

Why keep the original stream?
Formulas defined by the grammar (atom a, $t \in \mathbb{N}$ timepoint)

$$\alpha ::= a \mid \neg \alpha \mid \alpha \land \alpha \mid \alpha \lor \alpha \mid \alpha \rightarrow \alpha$$
Formulas

Formulas defined by the grammar (atom $a, t \in \mathbb{N}$ timepoint)

$$\alpha ::= a \mid \neg \alpha \mid \alpha \land \alpha \mid \alpha \lor \alpha \mid \alpha \rightarrow \alpha \mid \diamond \alpha \mid \Box \alpha \mid @_t \alpha$$
Formulas

- Formulas defined by the grammar (atom a, $t \in \mathbb{N}$ timepoint)

\[
\alpha ::= a \mid \neg \alpha \mid \alpha \land \alpha \mid \alpha \lor \alpha \mid \alpha \rightarrow \alpha \mid \Diamond \alpha \mid \square \alpha \mid @_t \alpha \mid \Box_i \alpha
\]

- \Box_i window operator: change view on stream
Formulas

- Formulas defined by the grammar \((\text{atom } a, t \in \mathbb{N} \text{ timepoint})\)

\[\alpha ::= a \mid \neg \alpha \mid \alpha \land \alpha \mid \alpha \lor \alpha \mid \alpha \rightarrow \alpha \mid \diamond \alpha \mid \Box \alpha \mid @_t \alpha \mid @_i \alpha \]

- \(\Box_i\) window operator: change view on stream
 - Utilizing window function with identifier \(i\)
Formulas

- Formulas defined by the grammar (atom $a, t \in \mathbb{N}$ timepoint)

$$\alpha ::= a \mid \neg \alpha \mid \alpha \land \alpha \mid \alpha \lor \alpha \mid \alpha \rightarrow \alpha \mid \lozenge \alpha \mid \square \alpha \mid @t \alpha \mid \boxdot_i \alpha$$

- \boxdot_i window operator: change view on stream
 - Utilizing window function with identifier i
 - Change considered substream based on current time point, and
 - current window, or
 - original stream
Formulas

- Formulas defined by the grammar (atom $a, t \in \mathbb{N}$ timepoint)
 \[\alpha ::= a \mid \neg \alpha \mid \alpha \land \alpha \mid \alpha \lor \alpha \mid \alpha \rightarrow \alpha \mid \lozenge \alpha \mid \Box \alpha \mid @t \alpha \mid \Box_i \alpha \]

- \Box_i window operator: change view on stream
 - Utilizing window function with identifier i
 - Change considered substream based on current time point, and
 - current window, or
 - original stream
 - Window operator = window function + stream choice function
Formulas

- Formulas defined by the grammar (atom $a, t \in \mathbb{N}$ timepoint)

 $$\alpha ::= a \mid \neg \alpha \mid \alpha \land \alpha \mid \alpha \lor \alpha \mid \alpha \rightarrow \alpha \mid \diamond \alpha \mid \Box \alpha \mid @_i \alpha \mid \boxdot_i \alpha$$

- \boxdot_i window operator: change view on stream
 - Utilizing window function with identifier i
 - Change considered substream based on current time point, and
 - current window, or
 - original stream
 - Window operator = window function + stream choice function
 - Why keep the original stream?
Nested Windows and Stream Choice

▶ “For the last two trams, did a bus always appear within 5 min?”
Nested Windows and Stream Choice

- “For the last two trams, did a bus always appear within 5 min?”

Partition-based window
Nested Windows and Stream Choice

▶ “For the last two trams, did a bus always appear within 5 min?”

▶ Partition-based window
 ▶ Partition stream into substreams: trams vs. buses
Nested Windows and Stream Choice

- “For the last two trams, did a bus always appear within 5 min?”

Partition-based window
- Partition stream into substreams: trams vs. buses
- Apply tuple-based windows on substreams: 2 trams, 0 buses
Nested Windows and Stream Choice

- “For the last two trams, did a bus always appear within 5 min?”

- Partition-based window
 - Partition stream into substreams: trams vs. buses
 - Apply tuple-based windows on substreams: 2 trams, 0 buses

- In the new view, buses are invisible
Nested Windows and Stream Choice

- “For the last two trams, did a bus always appear within 5 min?”

Partition-based window

- Partition stream into substreams: trams vs. buses
- Apply tuple-based windows on substreams: 2 trams, 0 buses

In the new view, buses are invisible

⇒ For “within 5 min” window: use data of original stream again
Nested Windows and Stream Choice

▶ “For the last two trams, did a bus always appear within 5 min?”

```
bus
tram
tram       bus
2  7 8 11 13
```

▶ Partition-based window
 ▶ Partition stream into substreams: trams vs. buses
 ▶ Apply tuple-based windows on substreams: 2 trams, 0 buses

▶ In the new view, buses are invisible

▶ ⇒ For “within 5 min” window: use data of original stream again
Semantics: Structure

- Structure $M = \langle T, \nu, \hat{W} \rangle$, where
Semantics: Structure

- Structure $M = \langle T, \nu, \hat{W} \rangle$, where
 - (T, ν) original stream
Semantics: Structure

- Structure $M = \langle T, \nu, \hat{W} \rangle$, where
 - (T, ν) original stream
 - \hat{W} mapping from identifiers (in \mathbb{N}) to extended window functions
Semantics: Structure

- Structure $M = \langle T, \nu, \hat{W} \rangle$, where
 - (T, ν) original stream
 - \hat{W} mapping from identifiers (in \mathbb{N}) to extended window functions
 - choice function $ch(S_1, S_2) \mapsto S'$

 $$\hat{w}(S_1, S_2, t) = w(ch(S_1, S_2), t)$$
Semantics: Structure

- Structure $M = \langle T, \nu, \hat{W} \rangle$, where
 - (T, ν) original stream
 - \hat{W} mapping from identifiers (in \mathbb{N}) to extended window functions
 - choice function $ch(S_1, S_2) \mapsto S'$

$$\hat{w}(S_1, S_2, t) = w(ch(S_1, S_2), t)$$

- Example
Semantics: Structure

- Structure $M = \langle T, \nu, \hat{W} \rangle$, where
 - (T, ν) original stream
 - \hat{W} mapping from identifiers (in \mathbb{N}) to \textit{extended} window functions
 - choice function $ch(S_1, S_2) \mapsto S'$

 $$\hat{w}(S_1, S_2, t) = w(ch(S_1, S_2), t)$$

- Example
 - w^5 time-based window for last 5 minutes
Semantics: Structure

- Structure $M = \langle T, \nu, \hat{W} \rangle$, where
 - (T, ν) original stream
 - \hat{W} mapping from identifiers (in \mathbb{N}) to *extended* window functions
 - choice function $ch(S_1, S_2) \mapsto S'$
 \[
 \hat{w}(S_1, S_2, t) = w(ch(S_1, S_2), t)
 \]

- Example
 - w^5 time-based window for last 5 minutes
 - ch_2 choice that selects the second stream ($ch_2(S_1, S_2) = S_2$)
Semantics: Structure

- Structure $M = \langle T, \nu, \hat{W} \rangle$, where
 - (T, ν) original stream
 - \hat{W} mapping from identifiers (in \mathbb{N}) to extended window functions
 - choice function $ch(S_1, S_2) \mapsto S'$

 $$\hat{w}(S_1, S_2, t) = w(ch(S_1, S_2), t)$$

- Example
 - w^5 time-based window for last 5 minutes
 - ch_2 choice that selects the second stream ($ch_2(S_1, S_2) = S_2$)
 - $\hat{W}(1) = \hat{w}^5$, where $\hat{w}^5(S_1, S_2, t) = w^5(S_2, t)$
Semantics: Entailment

- Structure $M = \langle T, \nu, \hat{W} \rangle$ with original stream $S_M = (T, \nu)$
Semantics: Entailment

- Structure $M = \langle T, \nu, \hat{W} \rangle$ with original stream $S_M = (T, \nu)$
- Substream $S = (T_s, \nu_s)$ of S_M: currently considered window
Semantics: Entailment

- Structure $M = \langle T, \nu, \hat{W} \rangle$ with original stream $S_M = (T, \nu)$
- Substream $S = (T_s, \nu_s)$ of S_M: currently considered window
- Time point $t \in T_s$ (query time)
Semantics: Entailment

- Structure $M = \langle T, \nu, \hat{W} \rangle$ with original stream $S_M = (T, \nu)$
- Substream $S = (T_S, \nu_S)$ of S_M: currently considered window
- Time point $t \in T_S$ (query time)
- Entailment between M, S, t and formulas α, β
Semantics: Entailment

- Structure $M = \langle T, \nu, \hat{W} \rangle$ with original stream $S_M = (T, \nu)$
- Substream $S = (T_S, \nu_S)$ of S_M: currently considered window
- Time point $t \in T_S$ (query time)
- Entailment between M, S, t and formulas α, β

$M, S, t \models a$ iff $a \in \nu_S(t)$,
Semantics: Entailment

- Structure $M = \langle T, \nu, \hat{W} \rangle$ with original stream $S_M = (T, \nu)$
- Substream $S = (T_S, \nu_S)$ of S_M: currently considered window
- Time point $t \in T_S$ (query time)
- Entailment between M, S, t and formulas α, β

\[
M, S, t \models a \quad \text{iff} \quad a \in \nu_S(t),
\]
\[
M, S, t \not\models \neg \alpha \quad \text{iff} \quad M, S, t \not\models \alpha,
\]
\[
M, S, t \models \alpha \land \beta \quad \text{iff} \quad M, S, t \models \alpha \quad \text{and} \quad M, S, t \models \beta,
\]
\[
M, S, t \models \alpha \lor \beta \quad \text{iff} \quad M, S, t \models \alpha \quad \text{or} \quad M, S, t \models \beta,
\]
\[
M, S, t \models \alpha \rightarrow \beta \quad \text{iff} \quad M, S, t \not\models \alpha \quad \text{or} \quad M, S, t \models \beta,
\]
Semantics: Entailment

>- Structure \(M = \langle T, \nu, \hat{W} \rangle \) with original stream \(S_M = (T, \nu) \)
>- Substream \(S = (T_S, \nu_S) \) of \(S_M \): currently considered window
>- Time point \(t \in T_S \) (query time)
>- Entailment between \(M, S, t \) and formulas \(\alpha, \beta \)

\[
M, S, t \models a \quad \text{iff} \quad a \in \nu_S(t),
\]
\[
M, S, t \models \neg \alpha \quad \text{iff} \quad M, S, t \not\models \alpha,
\]
\[
M, S, t \models \alpha \land \beta \quad \text{iff} \quad M, S, t \models \alpha \quad \text{and} \quad M, S, t \models \beta,
\]
\[
M, S, t \models \alpha \lor \beta \quad \text{iff} \quad M, S, t \models \alpha \quad \text{or} \quad M, S, t \models \beta,
\]
\[
M, S, t \models \alpha \rightarrow \beta \quad \text{iff} \quad M, S, t \not\models \alpha \quad \text{or} \quad M, S, t \models \beta,
\]
\[
M, S, t \models \lozenge \alpha \quad \text{iff} \quad M, S, t' \models \alpha \quad \text{for some} \quad t' \in T_S,
\]
Semantics: Entailment

- Structure $M = \langle T, \nu, \hat{W} \rangle$ with original stream $S_M = (T, \nu)$
- Substream $S = (T_S, \nu_S)$ of S_M: currently considered window
- Time point $t \in T_S$ (query time)
- Entailment between M, S, t and formulas α, β

\[
M, S, t \models a \quad \text{iff} \quad a \in \nu_S(t),
\]
\[
M, S, t \models \neg \alpha \quad \text{iff} \quad M, S, t \notmodels \alpha,
\]
\[
M, S, t \models \alpha \land \beta \quad \text{iff} \quad M, S, t \models \alpha \text{ and } M, S, t \models \beta,
\]
\[
M, S, t \models \alpha \lor \beta \quad \text{iff} \quad M, S, t \models \alpha \text{ or } M, S, t \models \beta,
\]
\[
M, S, t \models \alpha \to \beta \quad \text{iff} \quad M, S, t \notmodels \alpha \text{ or } M, S, t \models \beta,
\]
\[
M, S, t \models \diamond \alpha \quad \text{iff} \quad M, S, t' \models \alpha \text{ for some } t' \in T_S,
\]
\[
M, S, t \models \square \alpha \quad \text{iff} \quad M, S, t' \models \alpha \text{ for all } t' \in T_S,
\]
Semantics: Entailment

- Structure $M = \langle T, \nu, \hat{W} \rangle$ with original stream $S_M = (T, \nu)$
- Substream $S = (T_S, \nu_S)$ of S_M: currently considered window
- Time point $t \in T_S$ (query time)
- Entailment between M, S, t and formulas α, β

$M, S, t \not|\not\models a$ iff $a \not\in \nu_S(t)$,

$M, S, t \not|\not\models \neg \alpha$ iff $M, S, t \not|\models \alpha$,

$M, S, t \not|\models \alpha \land \beta$ iff $M, S, t \not|\models \alpha$ and $M, S, t \not|\models \beta$,

$M, S, t \not|\models \alpha \lor \beta$ iff $M, S, t \not|\models \alpha$ or $M, S, t \not|\models \beta$,

$M, S, t \not|\models \alpha \rightarrow \beta$ iff $M, S, t \not|\models \alpha$ or $M, S, t \not|\models \beta$,

$M, S, t \not|\models \diamond \alpha$ iff $M, S, t' \not|\models \alpha$ for some $t' \in T_S$,

$M, S, t \not|\models \Box \alpha$ iff $M, S, t' \not|\models \alpha$ for all $t' \in T_S$,

$M, S, t \not|\models @_{t'} \alpha$ iff $M, S, t' \not|\models \alpha$ and $t' \in T_S$.
Semantics: Entailment

- Structure $M = \langle T, \nu, \hat{W} \rangle$ with original stream $S_M = (T, \nu)$
- Substream $S = (T_S, \nu_S)$ of S_M: currently considered window
- Time point $t \in T_S$ (query time)
- Entailment between M, S, t and formulas α, β

$M, S, t \models a$ iff $a \in \nu_S(t)$,

$M, S, t \models \neg \alpha$ iff $M, S, t \not\models \alpha$,

$M, S, t \models \alpha \land \beta$ iff $M, S, t \models \alpha$ and $M, S, t \models \beta$,

$M, S, t \models \alpha \lor \beta$ iff $M, S, t \models \alpha$ or $M, S, t \models \beta$,

$M, S, t \models \alpha \rightarrow \beta$ iff $M, S, t \not\models \alpha$ or $M, S, t \models \beta$,

$M, S, t \models \diamond \alpha$ iff $M, S, t' \models \alpha$ for some $t' \in T_S$,

$M, S, t \models \Box \alpha$ iff $M, S, t' \models \alpha$ for all $t' \in T_S$,

$M, S, t \models @_{t'} \alpha$ iff $M, S, t' \models \alpha$ and $t' \in T_S$,

$M, S, t \models \circledast_i \alpha$ iff $M, S', t \models \alpha$ where $S' = \hat{w}_i(S_M, S, t)$.
Queries

- Query \(\alpha[t] \): \(M, S_M, t \models \alpha \)?
Queries

- Query $\alpha[t]$: "$M, S_M, t \models \alpha$"?

```
bus(i_2, p_1)
tram(i_1, p_1)
tram(i_3, p_2) bus(i_4, p_2)
```

Timeline:

- 0
- 2
- 8
- 11
- 13
Queries

- Query $\alpha[t]$: "$M, S_M, t \models \alpha$"?

$$
\begin{align*}
\text{bus}(i_2, p_1) \\
\text{tram}(i_1, p_1) \\
\text{tram}(i_3, p_2) & \quad \text{bus}(i_4, p_2)
\end{align*}
$$

$M, S_M, 13 \models \text{bus}(i_2, p_1)$?
Queries

Query $\alpha[t]$: “$M, S_M, t \models \alpha$”?

$M, S_M, 13 \not\models bus(i_2, p_1)$, since $bus(i_2, p_1) \not\in \nu(13)$
Queries

- Query $\alpha[t]$: "$M, S_M, t \models \alpha$"?

\[\begin{align*}
\text{bus}(i_2, p_1) \\
\text{tram}(i_1, p_1) \\
\text{tram}(i_3, p_2) \quad \text{bus}(i_4, p_2)
\end{align*} \]

\[\begin{array}{cccc}
0 & 2 & 8 & 11 & 13 \\
\end{array} \]

$M, S_M, 13 \models \Box \text{bus}(i_2, p_1)$?
Queries

- Query $\alpha[t]$: “$M, S_M, t \models \alpha$”?

\[\begin{align*}
\text{bus}(i_2, p_1) \\
\text{tram}(i_1, p_1) & \quad \text{tram}(i_3, p_2) \quad \text{bus}(i_4, p_2)
\end{align*}\]

\[\begin{array}{cccc}
0 & 2 & 8 & 11 & 13
\end{array}\]

$M, S_M, 13 \models \Diamond \text{bus}(i_2, p_1)$, since $\exists t' \in T_{S_M}$ s.t. $\text{bus}(i_2, p_1) \in \nu(t')$
Queries

- Query $\alpha[t]$: "$M, S_M, t \models \alpha$"? \Box_1: last 5 min

\[
\begin{align*}
&\text{bus}(i_2, p_1) \\
&\text{tram}(i_1, p_1) \\
&\text{tram}(i_3, p_2) \quad \text{bus}(i_4, p_2)
\end{align*}
\]

$M, S_M, 13 \models \Box_1 \Diamond \text{bus}(i_2, p_1)$?
Queries

Query $\alpha[t]$: "$M, S_M, t \models \alpha$"?

\diamondsuit_1: last 5 min

$bus(i_2, p_1)$
$tram(i_1, p_1)$
$tram(i_3, p_2)$ $bus(i_4, p_2)$

$M, S_M, 13 \not\models \Box_1 \diamondsuit bus(i_2, p_1)$
Queries

- Query $\alpha[t]$: “$M, S_M, t \models \alpha$”?
 \Box_1: last 5 min

$M, S_M, 13 \models \Box_1 \Diamond bus(i_4, p_2)$
Non-ground Queries

- Non-ground query: Assignments s.t. substitution hold
Non-ground Queries

- Non-ground query: Assignments s.t. substitution hold

\[\text{bus}(i_2, p_1) \quad \text{tram}(i_1, p_1) \quad \text{tram}(i_3, p_2) \quad \text{bus}(i_4, p_2)\]
Non-ground Queries

- Non-ground query: Assignments s.t. substitution hold

\[
\begin{align*}
bus(i_2, p_1) & \quad \text{tram}(i_1, p_1) & \quad \text{tram}(i_3, p_2) & \quad bus(i_4, p_2)
\end{align*}
\]

\[
\begin{array}{cccc}
0 & 2 & 8 & 11 & 13
\end{array}
\]

\[
M, S_M, 13 \models \Box_1 \Diamond bus(X, P)\
\]
Non-ground Queries

Non-ground query: Assignments s.t. substitution hold

\[\text{bus}(i_2,p_1) \]
\[\text{tram}(i_1,p_1) \]
\[\text{tram}(i_3,p_2) \]
\[\text{bus}(i_4,p_2) \]

\[M, S_M, 13 \models \Box_1 \Diamond \text{bus}(X,P) ? \]

\[X \mapsto i_4, P \mapsto p_2 \]
Non-ground Queries

- Non-ground query: Assignments s.t. substitution hold

\[\text{bus}(i_2, p_1) \quad \text{tram}(i_1, p_1) \quad \text{tram}(i_3, p_2) \quad \text{bus}(i_4, p_2) \]

\[M, S, U \models \square_1 \Diamond \text{bus}(i_2, p_1)? \]
Non-ground Queries

- Non-ground query: Assignments s.t. substitution hold

\[\text{bus}(i_2, p_1) \quad \text{tram}(i_1, p_1) \quad \text{tram}(i_3, p_2) \quad \text{bus}(i_4, p_2) \]

\[M, S, U \models □_1 \diamond \text{bus}(i_2, p_1) ? \]

\[U \leftrightarrow 2, \ldots, 7 \]
Non-ground Queries

- Non-ground query: Assignments s.t. substitution hold

\[
\begin{align*}
bus(i_2, p_1) \\
tram(i_1, p_1) \\
tram(i_3, p_2) \\bus(i_4, p_2)
\end{align*}
\]

\[
\begin{align*}
0 & \quad 2 & \quad 8 & \quad 9 & \quad 10 & \quad 11 & \quad 12 & \quad 13
\end{align*}
\]

\[
M, S_M, 13 \models \Box_1 (\diamond tram(X, P) \land \diamond bus(Y, P))?
\]
Non-ground Queries

- Non-ground query: Assignments s.t. substitution hold

\[\text{bus}(i_2, p_1) \]
\[\text{tram}(i_1, p_1) \]
\[\text{tram}(i_3, p_2) \]
\[\text{bus}(i_4, p_2) \]

\(M, S_M, 13 \models \square_1 (\Diamond \text{tram}(X, P) \land \Diamond \text{bus}(Y, P)) \)?
Non-ground Queries

- Non-ground query: Assignments s.t. substitution hold

\[
\begin{align*}
\text{bus}(i_2, p_1) & \\
\text{tram}(i_1, p_1) & \\
\text{tram}(i_3, p_2) & \quad \text{bus}(i_4, p_2)
\end{align*}
\]

\[
M, S_M, U \models \Box_1 \Diamond (\text{tram}(X, P) \land \text{bus}(Y, P))?
\]
Non-ground Queries

- Non-ground query: Assignments s.t. substitution hold

\[
\begin{align*}
bus(i_2, p_1) & \\
tram(i_1, p_1) & \\
tram(i_3, p_2) & \\
bus(i_4, p_2) & \\
non-ground query: Assignments s.t. substitution hold
\end{align*}
\]

\[
M, S_M, U \models \Box_1 (tram(X, P) \land bus(Y, P))?
\]

\[
U \leftrightarrow 2, \ldots, 7 \times X \leftrightarrow i_1, P \leftrightarrow p_1, Y \leftrightarrow i_2
\]
Non-ground Queries

- Non-ground query: Assignments s.t. substitution hold

\[
\begin{align*}
bus(i_2, p_1) \\
tram(i_1, p_1) & \quad tram(i_3, p_2) \\
bus(i_4, p_2)
\end{align*}
\]

\[M, S_M, 13 \models @_U(tram(X, P)) \land bus(Y, P))?\]
Non-ground Queries

- Non-ground query: Assignments s.t. substitution hold

\[\text{bus}(i_2, p_1) \quad \text{tram}(i_1, p_1) \quad \text{tram}(i_3, p_2) \quad \text{bus}(i_4, p_2) \]

\[M, S_M, 13 \models @U(\text{tram}(X, P)) \land \text{bus}(Y, P)) \]?

\[U \mapsto 2, \quad X \mapsto i_1, \quad P \mapsto p_1, \quad Y \mapsto i_2 \]
Example: Nested Window

“In the last hour, did a bus always appear in the last 5 minutes?”

```
bus   bus   bus

206   213   217   t
```
Example: Nested Window

- “In the last hour, did a bus always appear in the last 5 minutes?”

- i: time-based window for last i minutes
Example: Nested Window

- “In the **last hour**, did a bus always appear in the last 5 minutes?”

<table>
<thead>
<tr>
<th>bus</th>
<th>bus</th>
<th>bus</th>
</tr>
</thead>
<tbody>
<tr>
<td>206</td>
<td>213</td>
<td>217</td>
</tr>
</tbody>
</table>

- \square_i: time-based window for last i minutes

- Query: \square_{60}
Example: Nested Window

- “In the last hour, did a bus \textit{always} appear in the last 5 minutes?”

- \(\square_i \): time-based window for last \(i \) minutes

- Query: \(\square_{60} \)
Example: Nested Window

- “In the last hour, did a bus always appear in the last 5 minutes?”

\[
\begin{aligned}
\text{bus} & & \text{bus} & & \text{bus} \\
206 & & 213 & & 217 & & t
\end{aligned}
\]

- \(\Box_i \): time-based window for last \(i \) minutes

- Query: \(\Box_{60} \) \(\square \) \(\Box_5 \)
Example: Nested Window

- "In the last hour, did a bus always appear in the last 5 minutes?"

- \square_i: time-based window for last i minutes

- Query: $\square_{60} \square \square_{5}$
Example: Nested Window

- “In the last hour, did a bus always appear in the last 5 minutes?”

- \Box_i: time-based window for last i minutes

- Query: $\Box_{60} \Box_5 \Box bus$
Example: Nested Window

- “In the last hour, did a bus always appear in the last 5 minutes?”

<table>
<thead>
<tr>
<th>bus(i, p)</th>
<th>bus(j, q)</th>
<th>bus(k, r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>206</td>
<td>213</td>
<td>217</td>
</tr>
</tbody>
</table>

- \square_i: time-based window for last i minutes

- Query: $\square_{60} \square \square_{5} \diamond bus$

- Limitation: $\square_{60} \square \square_{5} \diamond bus(X, P)$
Example: Nested Window

- “In the last hour, did a bus always appear in the last 5 minutes?”

<table>
<thead>
<tr>
<th>$bus(i, p)$</th>
<th>$bus(j, q)$</th>
<th>$bus(k, r)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>206</td>
<td>213</td>
<td>217</td>
</tr>
<tr>
<td>t</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $⊞_i$: time-based window for last i minutes

- Query: $⊞_{60} □ ⊞_5 \diamond bus$

- Limitation: $⊞_{60} □ ⊞_5 \diamond bus(X, P)$
 - Result: List of fixed combinations X, P
 - Need a rule: $some_bus \leftarrow bus(X, P)$
 - Then: $⊞_{60} □ ⊞_5 \diamond some_bus$
Conclusion Stream

$t - k$

- Past
Conclusion Stream

? |= ?

Past: Lack of theoretical underpinning for stream reasoning
Conclusion Stream

- Past: Lack of theoretical underpinning for stream reasoning
- Now
Conclusion Stream

\[? \models ? \quad \square (a \land \Diamond b) \]

- **Past:** Lack of theoretical underpinning for stream reasoning
- **Now:** First language for modelling semantics precisely
 - flexible window operator (first class citizen)
 - time reference / time abstraction
- **Soon:** Rule-based extension (OrdRing @ ISWC, Oct.'14)
- **Later:** Language properties, capture CQL and ETALIS
- **Eventually:** Distributed setting, heterogeneous nodes
Conclusion Stream

\[
\begin{align*}
\begin{array}{ccc}
? & = ? & \Box (a \land \Diamond b) \\
\hline
(t - k) & (t \text{ (now)}) & (t + \varepsilon)
\end{array}
\end{align*}
\]

- **Past:** Lack of theoretical underpinning for stream reasoning
- **Now:** First language for modelling semantics precisely
 - flexible window operator (first class citizen)
 - time reference / time abstraction
- **Soon**
Conclusion Stream

\(? \models ?\) \quad \Box (a \land \Diamond b) \quad b \leftarrow a

\[t - k \quad t \text{ (now)} \quad t + \varepsilon \]

- **Past:** Lack of theoretical underpinning for stream reasoning
- **Now:** First language for modelling semantics precisely
 - flexible window operator (first class citizen)
 - time reference / time abstraction
- **Soon:** Rule-based extension (OrdRing @ ISWC, Oct.’14)
Conclusion Stream

\[? \models ? \quad \square (a \land \diamond b) \quad b \leftarrow a \]

- **Past**: Lack of theoretical underpinning for stream reasoning
- **Now**: First language for modelling semantics precisely
 - flexible window operator (first class citizen)
 - time reference / time abstraction
- **Soon**: Rule-based extension (OrdRing @ ISWC, Oct.'14)
- **Later**
Conclusion Stream

- Past: Lack of theoretical underpinning for stream reasoning
- Now: First language for modelling semantics precisely
 - flexible window operator (first class citizen)
 - time reference / time abstraction
- Soon: Rule-based extension (OrdRing @ ISWC, Oct.’14)
- Later: Language properties, capture CQL and ETALIS
Conclusion Stream

- Past: Lack of theoretical underpinning for stream reasoning
- Now: First language for modelling semantics precisely
 - flexible window operator (first class citizen)
 - time reference / time abstraction
- Soon: Rule-based extension (OrdRing @ ISWC, Oct.’14)
- Later: Language properties, capture CQL and ETALIS
- Eventually
Conclusion Stream

- Past: Lack of theoretical underpinning for stream reasoning
- Now: First language for modelling semantics precisely
 - flexible window operator (first class citizen)
 - time reference / time abstraction
- Soon: Rule-based extension (OrdRing @ ISWC, Oct.’14)
- Later: Language properties, capture CQL and ETALIS
- Eventually: Distributed setting, heterogeneous nodes
Conclusion Stream

- Past: Lack of theoretical underpinning for stream reasoning
- Now: First language for modelling semantics precisely
 - flexible window operator (first class citizen)
 - time reference / time abstraction
- Soon: Rule-based extension (OrdRing @ ISWC, Oct.’14)
- Later: Language properties, capture CQL and ETALIS
- Eventually: Distributed setting, heterogeneous nodes
To je ono.

(That’s it.)
Time-based window

Example

\(\ell \) 2 time points into the past
\(u \) 1 time points into the future
\(d \) 3 step size (slide parameter)

\[t \times \]

\(t \times \) query times
\(t' \times \) pivot points
Time-based window

- **Example: Query time** \(t = 4 \)
 - \(\ell \) 2 time points into the past
 - \(u \) 1 time points into the future
 - \(d \) 3 step size (slide parameter)

\[
\begin{align*}
0 & \quad 1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 & \quad 6 & \quad 7 & \quad 8 & \quad 9 \\
& & & & \bullet & & & & \times & \\
\end{align*}
\]

- \(\bullet \): query times \(t \)
- \(\times \): pivot points \(t' \)
Time-based window

- Example: Query time $t = 4$
 - ℓ: 2 time points into the past
 - u: 1 time points into the future
 - d: 3 step size (slide parameter)

\bullet: query times t \times: pivot points t'
Time-based window

- Example: Query time $t = 4$
 - ℓ: 2 time points into the past
 - u: 1 time points into the future
 - d: 3 step size (slide parameter)

\bullet: query times t
\times: pivot points t'
Time-based window

Example: Query time $t = 4$

- ℓ: 2 time points into the past
- u: 1 time points into the future
- d: 3 step size (slide parameter)

- \circ: query times t
- \times: pivot points t'
Time-based window

- Example: Query time $t = 4$
 - ℓ 2 time points into the past
 - u 1 time points into the future
 - d 3 step size (slide parameter)

- \bullet: query times t
- \times: pivot points t'

H. Beck (TU Vienna) Towards Ideal Semantics for Analyzing Stream Reasoning ReactKnow'14
Time-based window

- Example: Query time $t = 4$
 - ℓ 2 time points into the past
 - u 1 time points into the future
 - d 3 step size (slide parameter)

- •: query times t
- ×: pivot points t'
Time-based window

- Example: Query time $t = 4$
 - ℓ: 2 time points into the past
 - u: 1 time points into the future
 - d: 3 step size (slide parameter)

○: query times t ×: pivot points t'
Time-based window

- Example: Query time $t = 4$
 - ℓ 2 time points into the past
 - u 1 time points into the future
 - d 3 step size (slide parameter)
Time-based window

- **Example**
 - ℓ: 2 time points into the past
 - u: 1 time points into the future
 - d: 3 step size (slide parameter)

![Diagram showing query times and pivot points](image)