LARS: A Logic-based Framework for Analyzing Reasoning over Streams

Harald Beck Minh Dao-Tran Thomas Eiter Michael Fink

AAAI 2015
January 27, 2015
Trams and buses appearing within the last 4 minutes, at the same station, at the same time?

CQL (continuous query language)

```sql
SELECT * FROM tram [RANGE 4], bus [RANGE 4] WHERE tram.S = bus.S
```

Query also reports bus at 42 with tram at 44.
LARS: A Logic-based Framework for Analyzing Reasoning over Streams

Public transport scenario

- \(\text{bus}(b_1, s_1) \)
- \(\text{bus}(b_2, s_2) \)
- \(\text{bus}(b_3, s_2) \)
- \(\text{tram}(a_1, s_2) \)

▶ Trams and buses appearing within the last 4 minutes, at the same station, at the same time?

CQL (continuous query language)

\[
\text{SELECT * FROM tram \[RANGE 4\], bus \[RANGE 4\] WHERE tram.S = bus.S}
\]

Query also reports bus at 42 with tram at 44.
A public transport scenario with buses and trams appearing within the last 4 minutes at the same station at the same time. The continuous query language (CQL) query is:

\[
\text{SELECT * FROM tram [RANGE 4], bus [RANGE 4] WHERE tram.S = bus.S}
\]

The query also reports a bus at time 42 with a tram at time 44.
LARS: A Logic-based Framework for Analyzing Reasoning over Streams

- bus \((b_1, s_1)\)
- bus \((b_2, s_2)\)
- bus \((b_3, s_2)\)
- tram \((a_1, s_2)\)

Trams and buses appearing within the last 4 minutes, at the same station, at the same time?

CQL (continuous query language)

\[\text{SELECT * FROM tram [RANGE 4], bus [RANGE 4] WHERE tram.S = bus.S}\]

Query also reports bus at 42 with tram at 44.
Public transport scenario

- bus (b1, s1)
- bus (b2, s2)
- bus (b3, s2)
- tram (a1, s2)

40 41 42 43 44 t = 45 46 47

Trams and buses appearing within the last 4 minutes, at the same station, at the same time?

CQL (continuous query language)

SELECT * FROM tram [RANGE 4], bus [RANGE 4] WHERE tram.S = bus.S

Query also reports bus at 42 with tram at 44.
Public transport scenario

\[\text{bus}(b_1, s_1) \]

... 40 41 42 43 44 t = 45 46 47 ...
Public transport scenario

\[\text{bus}(b_1, s_1) \quad \text{bus}(b_2, s_2) \]

\[\cdots \quad \cdots \]

\[40 \quad 41 \quad 42 \quad 43 \quad 44 \quad t = 45 \quad 46 \quad 47 \]

Trams and buses appearing within the last 4 minutes, at the same station, at the same time?

CQL (continuous query language)

\[\text{SELECT * FROM tram [RANGE 4], bus [RANGE 4] WHERE tram.S = bus.S} \]

Query also reports bus at 42 with tram at 44.
Public transport scenario

\[
\begin{align*}
bus(b_1, s_1) & \quad bus(b_2, s_2) & \quad tram(a_1, s_2) \\
\cdots & \quad \cdots & \quad \cdots \\
40 & \quad 41 & \quad 42 & \quad 43 & \quad 44 & \quad t = 45 & \quad 46 & \quad 47
\end{align*}
\]
Public transport scenario

- $bus(b_1, s_1)$
- $bus(b_2, s_2)$
- $tram(a_1, s_2)$

Trams and buses appearing within the last 4 minutes,
Public transport scenario

- $\text{bus}(b_1, s_1)$
- $\text{bus}(b_2, s_2)$
- $\text{bus}(b_3, s_2)$
- $\text{tram}(a_1, s_2)$

\cdots 40 41 42 43 44 $t = 45$ 46 47 \cdots

- Trams and buses appearing within the last 4 minutes,
- at the same station
Public transport scenario

- Trams and buses appearing within the last 4 minutes,
- at the same station, at the same time?
Public transport scenario

- Trams and buses appearing within the last 4 minutes,
- at the same station, at the same time?

CQL (continuous query language)

```
SELECT * FROM tram [RANGE 4], bus [RANGE 4]
WHERE tram.S = bus.S
```
Public transport scenario

- Trams and buses appearing within the last 4 minutes,
- at the same station, at the same time?
- **CQL** (continuous query language)

```sql
SELECT * FROM tram [RANGE 4], bus [RANGE 4]
WHERE tram.S = bus.S
```

:-(
Public transport scenario

- Trams and buses appearing within the last 4 minutes,
- at the same station, at the **same time**?
- **CQL** (continuous query language)

```
SELECT * FROM tram [RANGE 4], bus [RANGE 4]
WHERE tram.S = bus.S
```

- :-(Query also reports bus at 42 with tram at 44
Diverse Approaches - Lack of Unifying Theory

- **Data Management**: low-level, high frequency
- **Semantic Web**: SPARQL extensions
- **KR & R**: *high-level*, lower frequency
Diverse Approaches - Lack of Unifying Theory

- **Data Management**: low-level, high frequency
- **Semantic Web**: SPARQL extensions
- **KR & R**: *high-level*, lower frequency

- Hard to understand and compare semantics
- ⇒ Need language for formal analysis
Diverse Approaches - Lack of Unifying Theory

- **Data Management:** low-level, high frequency
- **Semantic Web:** SPARQL extensions
- **KR & R:** *high-level*, lower frequency

- Hard to understand and compare semantics
 - \Rightarrow Need language for formal **analysis**
- Formal semantics for advanced reasoning over streams
bus\((b_1, s_1)\) bus\((b_2, s_2)\)

40 41 42 43 44 \(t = 45\) 46 47
bus(b₁, s₁) bus(b₂, s₂)

[t = 45]

Window operators

τ

-time-based window

time-based window
bus(b_1, s_1) bus(b_2, s_2)

\[\exists t \in [45, 47] \text{ such that } \bigoplus_{\tau}(4, 2)\]

- **Window operators**
 - \[\bigoplus_{\tau}\] time-based window
LARS: A Logic-based Framework for Analyzing Reasoning over Streams

\[\text{bus}(b_1, s_1) \quad \text{bus}(b_2, s_2) \]

\[\text{exp}(b_2, s_3) \quad \text{jam} \]

\[t = 45 \quad 46 \quad 47 \]

Window operators

- \(\tau \) time-based window
- \(\# \) tuple-based window
LARS: A Logic-based Framework for Analyzing Reasoning over Streams

\[\text{bus}(b_1, s_1) \quad \text{bus}(b_2, s_2) \]

\[\cdots \]

40 41 42 43 44 \(t = 45 \) 46 47

\[\begin{array}{c}
\begin{array}{c}
\square^2 \\
\# \\
\end{array}
\end{array} \]

- **Window operators**
 - \(\tau \) time-based window
 - \(\# \) tuple-based window
LARS: A Logic-based Framework for Analyzing Reasoning over Streams

\[\text{bus}(b_1, s_1) \quad \text{bus}(b_2, s_2) \]

\[\text{exp}(b_2, s_3) \quad \text{jam} \]

\[t = 45 \quad 46 \quad 47 \]

\[\tau^4 \]

- **Window operators**
 - \(\tau \) time-based window
 - \(\# \) tuple-based window

- **Time reference**
LARS: A Logic-based Framework for Analyzing Reasoning over Streams

\[\text{bus}(b_1, s_1) \quad \text{bus}(b_2, s_2) \]

\[\text{exp}(b_2, s_3) \quad \text{jam} \]

\[t = 45 \quad 46 \quad 47 \]

\[\square^4_\tau \Diamond \text{bus}(b_2, s_2) \]

- Window operators
 - \(\square_\tau \) time-based window
 - \(\square \# \) tuple-based window

- Time reference
 - \(\Diamond \) some time
LARS: A Logic-based Framework for Analyzing Reasoning over Streams

\[bus(b_1, s_1) \]

\[bus(b_2, s_2) \]

\[\text{exp}(b_2, s_3) \]

\[\text{jam} \]

\[t = 45 \]

\[\tau \]

\[bus(b_2, s_2) \rightarrow \text{yes} \]

- Window operators
 - time-based window
 - tuple-based window
- Time reference
 - some time
LARS: A Logic-based Framework for Analyzing Reasoning over Streams

\[
\begin{align*}
bus(b_1, s_1) & \quad bus(b_2, s_2) \\
\ldots & \\
40 & 41 & 42 & 43 & 44 & t = 45 & 46 & 47 \\
\end{align*}
\]

\[
\begin{align*}
\lnot jam
\end{align*}
\]

- **Window operators**
 - \([\tau] \) time-based window
 - \([\#] \) tuple-based window

- **Time reference**
 - \(\Diamond\) some time
 - \(\Box\) all the time
LARS: A Logic-based Framework for Analyzing Reasoning over Streams

\(\text{bus}(b_1, s_1) \quad \text{bus}(b_2, s_2) \)

\(\cdot \quad \cdot \)

\(\cdot \quad \cdot \)

40 41 42 43 44 \(t = 45 \quad 46 \quad 47 \)

\(\begin{array}{c}
\begin{array}{c}
\square_4 \quad \neg \text{jam} \\
\rightsquigarrow \quad \text{yes}
\end{array}
\end{array} \)

- Window operators
 - \(\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\square_\tau \\
\#\#
\end{array}
\end{array}
\end{array} \) time-based window
 - tuple-based window
- Time reference
 - \(\Diamond \) some time
 - \(\Box \) all the time
bus\((b_1, s_1)\) \hspace{1cm} bus\((b_2, s_2)\)

\[\begin{array}{cccccccc}
40 & 41 & 42 & 43 & 44 & t=45 & 46 & 47 \\
\end{array} \]

\[\begin{array}{c}
\text{⊞}_\tau \quad \text{time-based window} \\
\text{⊞} \# \quad \text{tuple-based window} \\
\end{array} \]

\[\begin{array}{c}
\text{♢} \quad \text{some time} \\
\text{□} \quad \text{all the time} \\
@_t \quad \text{exact time} \\
\end{array} \]
LARS: A Logic-based Framework for Analyzing Reasoning over Streams

\[
\begin{align*}
\text{bus}(b_1, s_1) & \quad \text{bus}(b_2, s_2) \\
40 & \quad 41 & \quad 42 & \quad 43 & \quad 44 & t = 45 & \quad 46 & \quad 47 \\
\end{align*}
\]

\[
\text{обытие}^4 \quad @_{42} \text{bus}(b_2, s_2) \quad \leadsto \quad \text{yes}
\]

- **Window operators**
 - \(\text{ события } \tau\) time-based window
 - \(\text{ события } \#\) tuple-based window

- **Time reference**
 - \(\text{ some time }\)
 - \(\text{ all the time }\)
 - \(\text{exact time}\)
bus(b_1, s_1) bus(b_2, s_2)

\[\square_4 \tau \@_{40} \text{bus}(b_1, s_1) \]

- **Window operators**
 - \(\square \tau \) time-based window
 - \(\square \# \) tuple-based window

- **Time reference**
 - \(\diamond \) some time
 - \(\Box \) all the time
 - \(\@_t \) exact time
LARS: A Logic-based Framework for Analyzing Reasoning over Streams

\[\text{bus}(b_1, s_1) \quad \text{bus}(b_2, s_2) \]

\[\tau^{4} \quad @_{40} \quad \text{bus}(b_1, s_1) \quad \leadsto \quad \text{no} \]

- **Window operators**
 - \(\tau \) time-based window
 - \(\# \) tuple-based window

- **Time reference**
 - \(\diamond \) some time
 - \(\square \) all the time
 - \(@_{t} \) exact time
LARS: A Logic-based Framework for Analyzing Reasoning over Streams

Window operators

- $\llbracket \tau \rrbracket$ time-based window
- $\llbracket \# \rrbracket$ tuple-based window

Time reference

- ♦ some time
- □ all the time
- @ t exact time
LARS: A Logic-based Framework for Analyzing Reasoning over Streams

Window operators
- \exists_{τ} time-based window
- $\exists_{\#}$ tuple-based window

Time reference
- \diamond some time
- \square all the time
- $@t'$ exact time
$bus(b_1, s_1)$ $bus(b_2, s_2)$

$\square^1_{\#} @_T bus(B, S)$

- **Window operators**
 - \square_τ time-based window
 - $\square_{\#}$ tuple-based window
 - \ldots

- **Time reference**
 - \Diamond some time
 - \Box all the time
 - $@_{t'}$ exact time
LARS: A Logic-based Framework for Analyzing Reasoning over Streams

\[\text{bus}(b_1, s_1) \quad \text{bus}(b_2, s_2) \]

\[\ldots \quad \bullet \quad \ldots \]

\[\begin{array}{ccccccc}
40 & 41 & 42 & 43 & 44 & t = 45 & 46 & 47 \\
\end{array} \]

\[T \leftarrow 1 \]

\[\oplus_{\text{#P}} @T \text{bus}(B, S) \quad \leadsto \quad T = 42, B = b_2, S = s_2 \]

- Window operators
 - \(\oplus_{\tau} \) time-based window
 - \(\oplus_{\#} \) tuple-based window

- Time reference
 - \(\diamond \) some time
 - \(\square \) all the time
 - \(\oplus_{t'} \) exact time
LARS: A Logic-based Framework for Analyzing Reasoning over Streams

\[
\begin{align*}
bus(b_1, s_1) & \quad bus(b_2, s_2) \\
\ldots & \quad \ldots \\
40 & \quad 41 & 42 & 43 & 44 & t = 45 & 46 & 47
\end{align*}
\]

\[
\begin{aligned}
\begin{array}{c}
\begin{array}{c}
\exists^1 \# @T bus(B, S)
\end{array}
\end{array}
\end{aligned}
\]

- Window operators
 - \(\tau\) time-based window
 - \(#\) tuple-based window

- Time reference
 - \(\lozenge\) some time
 - \(\square\) all the time
 - \(\lozenge_{t'}\) exact time
\[\text{bus}(b_1, s_1) \quad \text{bus}(b_2, s_2) \]

\[\text{exp}(b_2, s_3) \quad \text{jam} \]

\[t = 45 \]

\[\text{reach}(S, S', D), \]

- Window operators
 - \(\square \) time-based window
 - \(\# \) tuple-based window

- Time reference
 - \(\diamond \) some time
 - \(\Box \) all the time
 - \(\@_{t'} \) exact time
\[\text{bus}(b_1, s_1) \quad \text{bus}(b_2, s_2) \]

\[\text{exp}(b_2, s_3) \]

\[\text{jam} \]

\[\ldots \]

\[t = 45 \quad 46 \quad 47 \]

\[\mathbb{1}_{\#} @ T \text{bus}(B, S), \text{reach}(S, S', D), \]

\[T' = T + D \]

- Window operators
 - $\mathbb{\tau}$: time-based window
 - $\mathbb{\#}$: tuple-based window

- Time reference
 - \square: some time
 - \Box: all the time
 - $\mathbb{\tau}'$: exact time
LARS: A Logic-based Framework for Analyzing Reasoning over Streams

\[\text{bus}(b_1, s_1) \quad \text{bus}(b_2, s_2) \quad \text{exp}(b_2, s_3) \]

\[\ldots \quad \bullet \quad \bullet \quad \ldots \]

40 41 42 43 44 \(t = 45 \) 46 47

\[@_T \text{exp}(B, S') \leftarrow \boxplus^1 \# @_T \text{bus}(B, S), \text{reach}(S, S', D), \]
\[T' = T + D \]

- Window operators
 - \(\boxplus \tau \) time-based window
 - \(\boxplus \# \) tuple-based window

- Time reference
 - \(\diamond \) some time
 - \(\square \) all the time
 - \(@_{t'} \) exact time
LARS: A Logic-based Framework for Analyzing Reasoning over Streams

- \(\text{bus}(b_1, s_1) \)
- \(\text{bus}(b_2, s_2) \)
- \(\text{exp}(b_2, s_3) \)

\[\vdots \]

\(t = 45 \)

\(\omega_T \exp(B, S') \) \(\leftarrow \) \(\Box^1 \# \omega_T \text{bus}(B, S), \text{reach}(S, S', D), \quad T' = T + D, \not\omega^2_{\tau} \diamond \text{jam}. \)

- **Window operators**
 - \(\Box_{\tau} \) time-based window
 - \(\Box_{\#} \) tuple-based window

- **Time reference**
 - \(\diamond \) some time
 - \(\square \) all the time
 - \(@_{t'} \) exact time
LARS: A Logic-based Framework for Analyzing Reasoning over Streams

\[\text{bus}(b_1, s_1) \quad \text{bus}(b_2, s_2) \quad \text{jam} \]

\[\begin{array}{ccccccccc}
40 & 41 & 42 & 43 & 44 & 45 & t = 46 & 47
\end{array} \]

\[\text{@}_T \exp (B, S') \leftarrow \boxplus_1 \text{bus}(B, S), \text{reach}(S, S', D), \]
\[T' = T + D, \text{ not } \boxplus_2 \diamond \text{jam}. \]

- Window operators
 - \boxplus_\tau \quad \text{time-based window}
 - \boxplus_\# \quad \text{tuple-based window}

- Time reference
 - \diamond \quad \text{some time}
 - \square \quad \text{all the time}
 - \text{@}_t \quad \text{exact time}
In the paper . . .

- **Formal language**
 - Streams, windows, formulas, rules
 - Stable model semantics

- **Complexity**
 - Model Checking: co-NP-c
 - SAT: Σ_2^p-c
 - If Nesting of unbounded: both PSPACE-c

- Capturing CQL (continuous query language)

- Relation to ETALIS (complex event processing; intervals)
Summary

- **Goal:** Theoretical underpinning for stream reasoning
 - Analysis
 - Model-based, non-monotonic semantics

- **LARS**
 - Window operators \mathbb{F}
 - Time reference: $\Diamond, \Box, @_t$
 - Rule-based; ASP-like semantics
 - Not an end user language

- **Future work**
 - Compare existing semantics
 - Implementation of tractable fragments
 - Incremental evaluation
 - ...