
Casting Away Disjunction and Negation under a
Generalisation of Strong Equivalence with Projection?

Jörg Pührer and Hans Tompits

Institut für Informationssysteme 184/3, Technische Universität Wien,
Favoritenstraße 9–11, A–1040 Vienna, Austria
{puehrer,tompits}@kr.tuwien.ac.at

Abstract. In answer-set programming (ASP), many notions of program equiva-
lence have been introduced and formally analysed. A particular line of research
in this direction aims at studying conditions under which certain syntactic con-
structs can be eliminated from programs preserving some given equivalence rela-
tion. In this paper, we continue this endeavour introducing novel conditions under
which disjunction and negation can be eliminated from answer-set programs un-
der relativised strong equivalence with projection. This notion is a generalisation
of the usual strong-equivalence relation, as introduced by Lifschitz, Pearce, and
Valverde, by allowing parametrisable context and output alphabets, which is an
important feature in view of practical programming techniques like the use of lo-
cal variables and modules. We provide model-theoretic conditions that hold for a
disjunctive logic program P precisely when there is a program Q, equivalent to
P under our considered notion, such that Q is either positive, normal, or Horn,
respectively. Moreover, we outline how such a Q, called a casting of P , can be
obtained, and consider complexity issues.

1 Introduction

An important area of research in answer-set programming (ASP) is devoted to the study
of different notions of program equivalence. This particular field emerged with the sem-
inal paper on strong equivalence by Lifschitz, Pearce, and Valverde [1]. In contrast to
ordinary equivalence, which holds whenever two programs have the same answer sets,
strong equivalence holds whenever two programs are ordinarily equivalent in every con-
text. More formally, two programs P and Q are strongly equivalent iff, for every context
program R, P ∪R and Q ∪R are ordinarily equivalent.

Strong equivalence circumvents a particular weakness of ordinary equivalence, viz.
that the latter fails to yield a replacement property similar to the one of classical logic.
That is to say, under ordinary equivalence, given a program P , replacing some subpro-
gram Q ⊆ P by an equivalent program R may yield an overall program (P \ Q) ∪ R
which is not equivalent to P . Clearly, this is undesirable as far as modular programming
and program optimisation is concerned. Strong equivalence does allow subprogram re-
placements, basically by definition, yet it is too restrictive for some purposes. In par-
ticular, strong equivalence does not take standard programming techniques like the use
? This work was partially supported by the Austrian Science Fund (FWF) under projects P18019

and P21698.

of local variables into account, which are ignored in the final output. Thus, it does not
admit the projection of answer sets to a set of designated output letters.

A generalisation of strong equivalence taking this aspect into account is relativised
strong equivalence with projection, defined as a special instance of a general frame-
work for defining parameterised program-correspondence notions in ASP [2]. Rela-
tivised strong equivalence with projection extends the usual strong-equivalence relation
via two parameters: one parameter specifies the alphabet of the context set and the other
the alphabet of the output atoms. Thus, it is possible to specify an input alphabet and an
output alphabet, allowing to view programs as black boxes computing some task with
respect to a defined input/output behaviour. We note that if no projection is performed
(i.e., if the output alphabet coincides with the overall program alphabet), then we arrive
at the notion of relativised strong equivalence, first studied by Woltran [3].

In this paper, we are interested in the question whether a given disjunctive logic pro-
gram P can be replaced by a program Q that is from a syntactically simpler class than
P preserving relativised strong equivalence with projection (we refer to Q as a casting
of P). In particular, we are interested in the questions whether a given program can be
casted (i) to a program without disjunctions, (ii) to a program without negations, and
(iii) to a program without both disjunctions and negations. In other words, we consider
the question whether a program can be replaced (preserving relativised strong equiva-
lence with projection) by a normal, positive, or Horn program, respectively. Our results
follow a line of research dealing with analogous questions studied previously for or-
dinary, strong, and uniform equivalence [4, 5] as well as for hyperequivalence [6], but
they are the first in this direction to take the issue of projection into account.

The main results of our paper are the following. First of all, we introduce model-
theoretic conditions which are necessary and sufficient for having positive answers of
our casting questions. For each casting question, we actually provide two different con-
ditions: one in terms of minimal certificates [2], and one in terms of relativised SE-
models [3]. These concepts are the model-theoretic structures underlying relativised
strong equivalence with and without projection, respectively, i.e., two programs are
equivalent in one of these senses iff they have the same associated structures. Interest-
ingly, our characterisations show that (i) in case the elimination of disjunction is possi-
ble, there is always a casting of the given program P just over the atoms atm(P) of P ,
(ii) in case the elimination of both disjunction and negation is possible, a casting just
over atm(P) intersected with the input and output alphabet exists, while (iii) in case the
elimination of negation is possible, a casting may introduce new atoms. Secondly, we
provide upper complexity bounds for checking our casting questions. It turns out that
the complexity of these tasks is not higher than the complexity of checking relativised
strong equivalence with projection, which lies on the fourth level of the polynomial
hierarchy. Thirdly, we outline how a casting can be obtained, in case a casting exists.

2 Preliminaries

Syntax and Semantics of Answer-Set Programs. We deal with finite propositional dis-
junctive logic programs containing rules (over a set At of atoms) of form

a1 ∨ · · · ∨ al ← b1, . . . , bm,not bm+1, . . . ,not bn,

where l ≥ 0, n ≥ m ≥ 0, all ai, bj are from At , and not denotes default negation.
A rule r as above is normal, if l ≤ 1; positive, if m = n; a constraint, if l = 0 and
m + n > 0; and Horn if it is positive and normal. We define the head of r as H(r)
= {a1, . . . , al} and the body of r as B(r) = {b1, . . . , bm,not bm+1, . . . , not bn}. Fur-
thermore, we also define B+(r) = {b1, . . . , bm} and B−(r) = {bm+1, . . . , bn}. A dis-
junctive logic program (over At), or simply a program, is a finite set of rules (over At).
A program P is normal (resp., positive, Horn) if every rule in P is normal (resp., pos-
itive, Horn). We use N, P, and H to refer to the classes of normal, positive, and Horn
programs, respectively. Finally, atm(P) denotes the set of all atoms occurring in P .

Let I be an interpretation, i.e., a set of atoms. I satisfies a rule r, symbolically
I |= r, iff I ∩H(r) 6= ∅ whenever B+(r) ⊆ I and I ∩ B−(r) = ∅ jointly hold. I is a
model of a program P , symbolically I |= P , iff I |= r, for all r ∈ P . I is an answer
set [7] of P iff I is a minimal model of P I , where

P I = {H(r)← B+(r) | r ∈ P, B−(r) ∩ I = ∅}

is the reduct of P relative to I . The set of all answer sets of P is denoted by AS(P).

Strong Equivalence and its Generalisations. Next, we introduce basic equivalence no-
tions relevant for our purposes and provide model-theoretic characterisations for them.
All of the equivalence notions discussed are special instances of a general framework for
specifying parameterised program correspondence relations between answer-set pro-
grams [2].

We begin with strong equivalence, originally introduced by Lifschitz, Pearce, and
Valverde [1]: Two programs, P and Q, are strongly equivalent, symbolically P ≡s Q,
iffAS(P ∪R) = AS(Q ∪R), for any program R (which is also referred to as a context
program). Interestingly, strong equivalence corresponds to equivalence in the logic of
here-and-there [8], HT, which, from a semantical point of view, is intuitionistic logic
restricted to two worlds, “here” and “there”. More specifically, two programs, viewed
as logical theories, are strongly equivalent iff they have the same models in HT [1].
Emerging from this observation, Turner [9] characterised strong equivalence in terms
of SE-models which directly correspond to models in HT: By an SE-interpretation we
understand a pair (X,Y) of interpretations X, Y ⊆ At such that X ⊆ Y . If X = Y ,
then (X, Y) is total, otherwise (X, Y) is non-total. In view of HT, the first component
of an SE-interpretation is identified with the world “here”, whilst the second component
refers to the world “there”. An SE-interpretation (X, Y) is an SE-model of a program P
over At if Y |= P and X |= PY . The set of all SE-models of P is denoted by SE (P).
It then holds that two programs P and Q are strongly equivalent iff SE (P) = SE (Q).
By limiting the context programs to be defined over particular alphabets only, we arrive
at the notion of relativised strong equivalence [3]. Formally, given an alphabet A ⊆ At ,
programs P and Q over At are strongly equivalent relative to A, symbolically P ≡A

s Q,
iff AS(P ∪R) = AS(Q ∪R), for any program R over A. Model-theoretically, strong
equivalence relative to A is captured in terms of A-SE-models: an SE-interpretation
(X, Y) is an A-SE-model of a program P over At if (i) Y |= P , (ii) for all Y ′ ⊂ Y
with Y ′ ∩ A = Y ∩ A, it holds that Y ′ 6|= PY , and (iii) if X ⊂ Y , there is an X ′ ⊂ Y
with X ′ ∩A = X such that X ′ |= PY . The set of all A-SE-models of P is denoted by
SEA(P). For programs P and Q, it holds that P ≡A

s Q iff SEA(P) = SEA(Q).

A set S of SE-interpretations is A-complete if, for all (X, Y) ∈ S with X ⊂ Y , it
holds that (Y, Y) ∈ S and X ⊂ (Y ∩A), and, for all (X, Y), (Z, Z) ∈ S with Y ⊂ Z, it
holds that (X ∩A, Z) ∈ S. Note that SEA(P) is A-complete for every program P and,
conversely, for every A-complete set S of SE-interpretations, there exists a program Q
with SEA(Q) = S.

A further relaxation of strong equivalence is relativised strong equivalence with pro-
jection [2]: Given sets A, O ⊆ At , two programs P and Q over At are strongly equiva-
lent relative to A under projection to O, or 〈A, O〉-equivalent, symbolically P ≡A

|O Q,
iff, for any program R over A, it holds that {I ∩O | I ∈ AS(P ∪R)} = {I ∩O | I ∈
AS(Q ∪R)}. For better readability, let us write I|O for I ∩ O, for an interpretation I
and an alphabet O, and define S|O = {I|O | I ∈ S} for a set of interpretations. Then,
we have that P ≡A

|O Q iff AS(P ∪R)|O = AS(Q ∪R)|O, for any program R over A.
Clearly, relativised strong equivalence with projection includes strong equivalence

and relativised strong equivalence as special cases. Indeed, for all programs P,Q over
At , P ≡s Q iff P ≡At

|At
Q, and P ≡A

s Q iff P ≡A
|At

Q. Certainly, we also have P ≡s Q

iff P ≡At
s Q.

In the spirit of the model-theoretic characterisations above, 〈A, O〉-equivalence can
be characterised as follows [2]: Let A, O ⊆ At be sets of atoms. A certificate structure
is a pair (Ξ, Y), where Ξ is a set of interpretations and Y is an interpretation. For a
program P over At , a certificate structure (Ξ, Y) is an 〈A, O〉-certificate of P if there is
some (Y ′, Y ′) ∈ SEA(P) with Y = Y ′|A∪O and Ξ = {X | (X, Y ′) ∈ SEA(P), X ⊂
Y ′}. An 〈A, O〉-certificate (Ξ, Y) of P is minimal if, for any 〈A, O〉-certificate (Ξ ′, Y)
of P , Ξ ′ ⊆ Ξ implies Ξ ′ = Ξ . By CA,O(P) we denote the set of all 〈A, O〉-certificates
of P , and C m

A,O(P) stands for the set of all minimal 〈A, O〉-certificates of P . Then, for
two programs P and Q, P ≡A

|O Q holds iff C m
A,O(P) = C m

A,O(Q).
For our later purposes, we need to characterise minimal 〈A, O〉-certificates directly

in terms of A-SE-models. To this end, we introduce the following notion:

Definition 1. Let A, O ⊆ At be sets of atoms, S a set of SE-interpretations over At ,
and (X, Y) ∈ S. Then, (X, Y) is 〈A, O〉-optimal in S if there is no (Y ′, Y ′) ∈ S with
Y |A∪O = Y ′|A∪O and {U | (U, Y ′) ∈ S, U ⊂ Y ′} ⊂ {U | (U, Y) ∈ S, U ⊂ Y }.

We then have the following property:

Theorem 1. Let A, O ⊆ At be sets of atoms and P a program over At . Then, (Ξ, Y) ∈
C m

A,O(P) iff there is some (Y ′, Y ′) that is 〈A, O〉-optimal in SEA(P) with Y ′|A∪O =
Y and Ξ = {X | (X, Y ′) ∈ SEA(P), X ⊂ Y ′}.

3 Main Results

In this section, we present necessary and sufficient conditions such that for a given dis-
junctive logic program P over At and given sets A, O ⊆ At , there is a program Q
which is 〈A, O〉-equivalent to P , where Q is either normal, positive, or Horn. We call
such a Q, if it exists, an 〈A, O〉-C-casting of P , for C ∈ {N, P, H}, referring to the nor-
mal, positive, or Horn case, respectively, or simply a casting of P if no ambiguity arises.

r1 : b ← p,not c r5 : p ∨ j ← b,not d r9 : v ← j ,not c,not d
r2 : b ← p,not d r6 : p ← j ,not c,not d r10 : c ← j ,not d ,not v
r3 : b ← j ,not c r7 : p ← v r11 : d ← j ,not c,not v
r4 : b ← j ,not d r8 : ← p, d

Fig. 1. Program Pex .

In each case, we present two kinds of model-theoretic conditions—one based on certifi-
cate structures and one on SE-interpretations. As well, we approach our conditions by
first addressing the case of relativised strong equivalence without projection, which can
be directly obtained from previous results about casting under hyperequivalence [6].

We start with presenting a typical scenario for our casting questions, serving as a
running example for our subsequent elaborations.

Example 1. Consider a party-attendance problem for determining who will attend a
party based on given preferences and constraints of potential party guests. Assume the
following circumstances: Our friend Betty only attends if Peter or Mary-Jane does and
if there is no need to dance or no cheesy music playing. If Betty comes, in case there
is no dancing, she will bring Peter or Mary-Jane along. As Peter needs to talk to Mary-
Jane, he will definitely attend if Mary-Jane comes and there is neither dancing nor
cheesy music playing. He also comes if there is only vegetarian food, but as he hates
dancing he is not coming if dancing is required. Mary-Jane is a party-tiger and a die-
hard vegetarian, well-known to force people to either dance, listen to cheesy music, or
eat only vegetarian meals.

Program Pex in Fig. 1 is an encoding of this information, where atoms b, p, and
j represent the attendance of Betty, Peter, or Mary-Jane, respectively, and d , v , and
c indicate dancing, vegetarian food, or cheesy music at the party. Note that Pex is
understood as representing partial information only, since we expect further preferences
and constraints from Betty, Peter, or Mary-Jane concerning their attendance. Thus, Pex

will later be joined with further rules containing atoms from A = {b, p, j}.
As discussed below, no program Q exists not involving disjunction or negation that

is strongly equivalent to Pex , even when context programs are built from atoms in A
only. However, assume we are only interested in who attends the party but we do not
care about which party activities take place. Then, we do not mind if the answer sets
of a casting disagree with those of Pex on atoms in {d , v , c}. Hence, we are interested
whether there is a casting Q of Pex under relativised strong equivalence under projec-
tion. Our model-theoretic properties presented later on allow to answer this question.

3.1 Normal Logic Programs

For getting an intuition of the mechanisms that underlie our characterisations, it is help-
ful to deliberate how the syntactic class of a program influences its SE-models. Consider
a normal program P . Then, for any interpretation Y , the reduct PY is a Horn program.
Since the models of a Horn program are closed under intersection, it follows that for all
SE-models (X1, Y), (X2, Y) of P , (X1 ∩ X2, Y) must also be an SE-model of P , as
both X1 |= PY and X2 |= PY holds. Following Eiter et al. [5], let us call a collection S

of SE-interpretations closed under here-intersection if (X1, Y) ∈ S and (X2, Y) ∈ S
implies (X1 ∩X2, Y) ∈ S. So, our above argument shows that the set of all SE-models
of a normal program is closed under here-intersection. Consequently, if, for a DLP P ,
there is some strongly equivalent normal program Q, then SE (P) must be closed under
here-intersection. However, as shown by Eiter et al. [5], closure under here-intersection
is also a sufficient condition to guarantee the existence of a normal program Q be-
ing strongly equivalent to a given DLP P . Interestingly, this characterisation holds for
strong equivalence relative to A as well, but using A-SE-models instead of SE-models.

Proposition 1 ([6]). Given a set A ⊆ At of atoms and a program P over At , a normal
program Q over At exists with P ≡A

s Q iff SEA(P) is closed under here-intersection.

Example 2. Consider the program Pex from Example 1 and A = {b, p, j}. Then,1

SEA(Pex) = {(∅, ∅), (∅, bp), (bp, bp), (∅, bjc), (bjc, bjc), (∅, bjd), (b, bjd),
(bjd , bjd), (∅, bpjv), (bp, bpjv), (bpjv , bpjv), (∅, bpjc),
(bp, bpjc), (bj , bpjc), (bpjc, bpjc)}.

As (bp, bpjc), (bj , bpjc) ∈ SEA(Pex) but (b, bpjc) /∈ SEA(Pex), SEA(Pex) is not
closed under here-intersection. Hence, there is no normal program Q with Pex ≡A

s Q.

Turning to the case of relativised strong equivalence with projection, we now define
our key properties for casting to normal programs—first for certificate structures and
then for SE-interpretations.

Definition 2. Let A, O ⊆ At be sets of atoms. Then, a set S of certificate structures is
〈A, O〉N,c-compliant if, for every (Ξ, Y) ∈ S , Ξ is closed under intersection.

Definition 3. Let A, O ⊆ At be sets of atoms. Then, a set S of SE-interpretations is
〈A, O〉N,s-compliant if the set of 〈A, O〉-optimal SE-interpretations in S is closed under
here-intersection.

Consider a normal program P . Since, in view of Proposition 1, for every (X1, Y),
(X2, Y) ∈ SEA(P), we have that (X1∩X2, Y) ∈ SEA(P), and, by Definition 1, either
all or none of (X1, Y), (X2, Y), and (X1 ∩X2, Y) are 〈A, O〉-optimal in SEA(P), it
follows that SEA(P) is 〈A, O〉N,s-compliant. Hence, if a DLP P is 〈A, O〉-equivalent to
a normal program Q, SEA(P) must be 〈A, O〉N,s-compliant. As the next result shows,
the converse also holds, as well as similar relations for 〈A, O〉N,c-compliance.

Theorem 2. Let A, O ⊆ At be sets of atoms and P a program over At . Then, the
following statements are equivalent:

1. C m
A,O(P) is 〈A, O〉N,c-compliant;

2. SEA(P) is 〈A, O〉N,s-compliant;
3. a normal program Q over At ∪At ′ exists for some universe At ′ with P ≡A

|O Q;
4. a normal program Q over atm(P) exists such that P ≡A

|O Q.

1 For brevity, in what follows, we omit braces and commas for interpretations, i.e., we write,
e.g., bp instead of {b, p}.

Note that if a casting exists, then there is a casting Q that is built just of atoms from the
input program P . Indeed, it is sufficient to remove all A-SE-models from SEA(P) that
are not 〈A, O〉-optimal in order to construct the set S of A-SE-models of Q. We will
see later on that for other casting questions a solution can be found only at the expense
of introducing new atoms into the casting.

Example 3. The minimal 〈A, O〉-certificates of our running example Pex for A = O =
{b, p, j} are given by C m

A,O(Pex) = {(∅, ∅), ({∅}, bp), ({∅}, bj), ({∅, bp}, bpj)}. As
∅, {∅}, and {∅, bp} are closed under intersection, C m

A,O(Pex) is 〈A, O〉N,c-compliant.
Hence, there exists a normal program being 〈A, O〉-equivalent to Pex . For instance, the
following program is one in question:2

Q = {b ← p; b ← j ; j ← c; p ← b,not c; p ← b,not j ; p ← j ,not c;
c ← b,not p; c ← j ,not p; v ← j ,not c}.

3.2 Positive Logic Programs

A positive program P satisfies P = P I , for any interpretation I . Hence, if (X,Y) ∈
SE (P), then (X, X) ∈ SE (P) as well, since X |= P trivially implies X |= P I . This
motivates the following definition: A set S of SE-interpretations for which (X, Y) ∈ S
implies (X, X) ∈ S is called here-total. Considering strong equivalence relative to A,
here-totality of A-SE-models does not make sense, as the here-component of an A-SE-
model is not a model of the program but only a projection of a model. Hence, we need
to adapt the property as follows: A set S of SE-interpretations is A-here-total if, for all
(X, Y) ∈ S with X ⊂ Y , some (X ′, X ′) ∈ S exists with X ′|A = X and X ′ ⊂ Y .

Proposition 2 ([6]). Let A ⊆ At be a set of atoms and P a program over At . Then,
there is a positive program Q over At such that P ≡A

s Q iff SEA(P) is A-here-total.

Example 4. Consider again our running example. Since (b, bjd) ∈ SEA(Pex), for A =
{b, p, j}, but there is no (X ′, X ′) ∈ SEA(Pex) with X ′|A = {b}, SEA(Pex) is not
A-here-total. Hence, there is no positive program Q with Pex ≡A

s Q.

We continue with the characterising conditions for casting to positive programs.

Definition 4. Let A, O ⊆ At be sets of atoms. Then, a set S of certificate structures
is 〈A, O〉P,c-compliant if, for every X ∈ Ξ where (Ξ, Y) ∈ C m

A,O(P), there is some
(Ξ ′, X ′) ∈ C m

A,O(P) such that X ′|O ⊆ Y |O, X ′|A = X , and Ξ ′ ⊆ Ξ .

Definition 5. Let A, O ⊆ At be sets of atoms. Then, a set S of SE-interpretations is
〈A, O〉P,s-compliant if, for every (X, Y) which is 〈A, O〉-optimal in S with X ⊂ Y ,
there is some (X ′, X ′) ∈ S with X ′|O ⊆ Y |O, X ′|A = X , and (V,X ′) ∈ S with
V ⊂ X ′ implies (V, Y) ∈ S.

Intuitively, the implication in the last part of the above condition—which does not have
a pendant in the definition of A-here-totality—ensures A-completeness of some A-here-
total variant S ′ of S that amounts to the set of A-SE-models of the desired casting.

2 Section 4 contains a description how to construct a casting.

Theorem 3. Let A, O ⊆ At be sets of atoms and P a program over At . Then, the
following statements are equivalent:

1. C m
A,O(P) is 〈A, O〉P,c-compliant;

2. SEA(P) is 〈A, O〉P,s-compliant;
3. a positive program Q over At ∪At ′ exists with P ≡A

|O Q, for some universe At ′.

Example 5. It can be checked that C m
A,O(Pex) is 〈A, O〉P,c-compliant for A = O =

{b, p, j} and hence there is a positive program being 〈A, O〉-equivalent to Pex , e.g.,
Q = {p ∨ c ← b; b ← c;b ← p; b ← j ; j ← c}.

In contrast to Example 5, where Q contains only atoms from Pex , unlike in the case of
normal programs, building an 〈A, O〉-equivalent positive program might require atoms
not occurring in the original program. The following program illustrates this point.

Example 6. Consider program P over At = {a, b, c, h}, given by the following rules:

a ← not b,not c; a ← not h; h ← not a,not c;
b ← not a,not c; b ← not h; h ← not b,not c.

For A = {a, b, c} and O = ∅, we obtain C m
A,O(P) = {(∅, a), (∅, b), (∅, ab), ({a, ab},

abc)}. Although, C m
A,O(P) is 〈A, O〉P,c-compliant, it can be shown that no 〈A, O〉-

equivalent positive program exists containing only atoms from At .

3.3 Horn Programs

Horn programs are both normal and positive. However, it is not sufficient to combine
the criteria of casting to normal and positive programs in order to obtain a characterisa-
tion for Horn programs. The reason is that the elimination of disjunction may introduce
negation and vice versa. As stated earlier, the classical models of Horn theories are
intersection closed. In terms of SE-models of such a program, this means that the there-
components occurring in the SE-models, being the models of the program, are closed
under intersection [4]. In analogy to closure under here-intersection, this property is
called closure under there-intersection. More formally, a set S of SE-interpretations
is closed under there-intersection iff, whenever (X, X) ∈ S and (Y, Y) ∈ S , then
(X ∩ Y,X ∩ Y) ∈ S . For a program P , a strongly equivalent Horn program Q exists
iff SE (P) is here-total and closed under there-intersection [4]. Note that closure un-
der here-intersection follows automatically from these two conditions. For relativised
strong equivalence, similar to here-totality for the positive case, closure under there-
intersection has to be adapted with respect to the context alphabet: A set S of SE-inter-
pretations is A-closed under there-intersection if, for all (X, X), (Y, Y) ∈ S , there is
some (Z, Z) ∈ S with Z ⊆ (X ∩ Y) and Z|A = (X ∩ Y)|A.

Proposition 3 ([6]). Let A ⊆ At be a set of atoms and P a program over At . Then,
there exists a Horn program Q over At such that P ≡A

s Q iff SEA(P) is A-here-total
and A-closed under there-intersection.

The restriction of A-closure under there-intersection in interplay with A-completeness
imposes an interesting side effect on the A-SE-models of Horn programs.

Theorem 4. Let A, O ⊆ At be sets of atoms and Q a Horn program over At . Then,
(Z1, Z1), (Z2, Z2) ∈ SEA(Q) with Z1|A = Z2|A only if Z1 = Z2.

As a consequence of that, all A-SE-models of Q are 〈A, O〉-optimal ones, since for
some (X, Y) ∈ SEA(Q) it holds that (Y, Y) ∈ SEA(Q), and hence, by Theorem 4,
there cannot be any (Y ′, Y ′) ∈ SEA(Q) with Y ′ 6= Y and Y ′|A∪O = Y |A∪O, which
is a requirement for violation of 〈A, O〉-optimality. Due to this restriction on the A-SE-
models, in contrast to the case of positive programs, we do not need additional atoms
for building a Horn casting Q, if one exists for some given program P . Indeed, Q can
be built from atoms in atm(P)|A∪O only.

We obtain the following conditions for casting to Horn programs:

Definition 6. Let A, O ⊆ At be sets of atoms. Then, a set S of certificate structures is
〈A, O〉H,c-compliant if

(i) for all (Ξ, Y) ∈ S and all X ∈ Ξ there is some (Ξ ′, X ′) ∈ S such that X ′ ⊂ Y
and X ′|A = X ,

(ii) for all (Ξ1, Y1), (Ξ2, Y2) ∈ S there is some (Ξ ′, Z) ∈ S with Z ⊆ (Y1∩Y2) and
Z|A = (Y1 ∩ Y2)|A, and

(iii) for all (ΞY , Y), (ΞZ , Z) ∈ S with Y ⊆ Z it holds that ΞY ⊆ ΞZ . Moreover, if
Y 6= Z, then Y |A ∈ ΞZ .

Definition 7. Let A, O ⊆ At be sets of atoms. Then, a set S of SE-interpretations is
〈A, O〉H,s-compliant if

(i) for every (X, Y) which is 〈A, O〉-optimal in S with X ⊂ Y , some (X ′, X ′) ∈ S
exists such that X ′|O ⊆ Y |O and X ′|A = X ,

(ii) for all (Y1, Y1), (Y2, Y2) which are 〈A, O〉-optimal in S, some (Z, Z) ∈ S exists
with Z|O ⊆ (Y1 ∩ Y2)|O and Z|A = (Y1 ∩ Y2)|A, and

(iii) for all (X, Y), (Z, Z) which are are 〈A, O〉-optimal in S such that X ⊂ Y and
Y |A∪O ⊆ ZA∪O, (X,Z) ∈ S holds. Moreover, if Y 6= Z, then (Y |A, Z) ∈ S.

The individual Subproperties (i), (ii), and (iii) directly correspond to the equally la-
belled ones from Definition 6. In both definitions, (i) and (ii) are the pendants of A-
here-totality and A-closure under there-intersection for 〈A, O〉-equivalence, respec-
tively. Note that (i) differs from 〈A, O〉P,s-compliance in not having a subcondition
for A-completeness. Instead, Subproperty (iii) corresponds to A-completeness of the
〈A, O〉-optimal SE-interpretations in S.

Theorem 5. Let A, O ⊆ At be sets of atoms and P a program over At . Then, the
following statements are equivalent:

1. C m
A,O(P) is 〈A, O〉H,c-compliant;

2. SEA(P) is 〈A, O〉H,s-compliant;
3. a Horn program Q over At ∪At ′ exists, for some universe At ′, with P ≡A

|O Q;
4. a Horn program Q over atm(P)|A∪O exists such that P ≡A

|O Q.

Example 7. As we have seen, C m
A,O(Pex) is 〈A, O〉N,c-compliant and 〈A, O〉P,c-com-

pliant for A = O = {b, p, j}. However, it turns out that C m
A,O(Pex) is not 〈A, O〉H,c-

compliant. Indeed, Condition (ii) of Definition 6 is violated as ({∅}, bp), ({∅}, bj) ∈
C m

A,O(Pex) but there is no (Ξ,Z) ∈ C m
A,O(Pex) with Z ⊆ {b} and Z|A = {b}. This

means that, for preserving 〈A, O〉-equivalence, we can remove disjunctions from Pex

only by introducing negation and vice versa.
However, if we are not interested in who attends the party but whether we have to

bear vegetarian food, dancing, or cheesy music, we can obtain a Horn program corre-
sponding to Pex : If we set A′ = O′ = {v , d , c}, we expect only input programs that
mention party activities and we are only interested in output related to them. The mini-
mal 〈A′, O′〉-certificates of Pex are given by C m

A′,O′(Pex) = {(∅, ∅), ({∅}, d), ({∅}, v),
({∅}, c), ({∅, v , c}, vc), ({∅, d , c}, dc)}. All conditions of Definition 6 apply, there-
fore C m

A′,O′(Pex) is 〈A′, O′〉H,c-compliant. An example of a Horn program 〈A′, O′〉-
equivalent to Pex is Q = {c ← v , d ;← d , v , c}.

3.4 Computational Complexity

We finally discuss the complexity of our casting questions. While checking strong
equivalence is coNP-complete [10], deciding relativised strong equivalence and hy-
perequivalence is already ΠP

2 -complete [11, 12]. Checking whether, for a given pro-
gram P , a hyperequivalent casting exists is ΠP

2 -complete for normal castings and ΠP
3 -

complete for positive castings. Furthermore, for the case of Horn programs, the problem
lies in ΠP

3 [6]. Although testing relativised strong equivalence with projection is pre-
sumably harder, viz. ΠP

4 -complete [2], the next result shows that casting under this
equivalence notion does not yield an additional source of complexity:

Theorem 6. Given a program P over At and A, O ⊆ At , deciding whether SEA(P)
is 〈A, O〉C,s-compliant, for C ∈ {N, P, H}, is in ΠP

4 , as is deciding whether C m
A,O(P)

is 〈A, O〉C,c-compliant.

The major source of complexity is checking 〈A, O〉-optimality. Important for establish-
ing the upper complexity bound is the observation that checking 〈A, O〉-optimality is
not required in the consequent of any of the (sub)conditions of 〈A, O〉C,s-compliance.

4 Proof Outline of Main Results

We briefly outline how Theorems 2, 3, and 5 can be shown, thereby providing methods
for constructing castings. First of all, from the definitions of an A-SE-model, a minimal
〈A, O〉-certificate, and 〈A, O〉-optimality, the following lemma can be shown:

Lemma 1. For any program P over At , any A, O ⊆ At , and any C ∈ {N, P, H},
C m

A,O(P) is 〈A, O〉C,c-compliant iff SEA(P) is 〈A, O〉C,s-compliant.

The general proof schema, then, proceeds by showing, for a given program P over
At and C ∈ {N, P, H} that

1. if P has a casting Q ∈ C over some At ′ ⊇ At , then C m
A,O(P) is 〈A, O〉C,c-compli-

ant, and

2. if C m
A,O(P) is 〈A, O〉C,c-compliant, then there exists a casting Q ∈ C over some

At ′′, where (i) At ′′ = atm(P) for C = N, (ii) At ′′ ⊇ At for C = P, and (iii) At ′′ =
atm(P)|A∪O for C = H.

Showing Item 1 can be reduced to showing that for every program Q′ ∈ C it holds
that C m

A,O(Q′) is 〈A, O〉C,c-compliant. Hence, given a casting Q ∈ C of P , C m
A,O(Q) is

〈A, O〉C,c-compliant and, in view of C m
A,O(P) = C m

A,O(Q), so is C m
A,O(P).

For proving Item 2, we devised algorithms that allow for obtaining a casting Q ∈ C
over At ′′ whenever C m

A,O(P) is 〈A, O〉C,c-compliant. These involve three transforma-
tions, which have the following properties:

(i) fCA,O maps a program P over At to fCA,O(P) = SEA(Q), where Q is a program over
At ′′ such that Q ∈ C, providing SEA(P) is 〈A, O〉C,s-compliant. Furthermore,
(X, Y) is 〈A, O〉-optimal in SEA(P) iff (X, Y) is 〈A, O〉-optimal in fCA,O(P).

(ii) cCA maps a set S of SE-interpretations over At ′′ to cCA(S) = SE (Q), where Q is a
program over At ′′ such that Q ∈ C and SEA(Q) = S. If such a Q does not exist,
then cCA is undefined.

(iii) pC maps a set S of SE-interpretations over At ′′ into pC(S) = Q, where Q is a
program over At ′′ such that Q ∈ C and SE (Q) = S. If such a Q does not exist,
then cCA is undefined.

Given a program P for which SEA(P) is 〈A, O〉C,s-compliant, a casting Q of
P is given by Q = pC(cCA(fCA,O(P))). Indeed, by the properties of fCA,O, the set of
〈A, O〉-optimal A-SE-models of P coincides with the set of 〈A, O〉-optimal elements
in fCA,O(P). But, again by construction of fCA,O, there exists some Q′ ∈ C such that
SEA(Q′) = fCA,O(P). Hence, cCA(fCA,O(P)) is defined and cCA(fCA,O(P)) = SE (Q′′),
for some Q′′ ∈ C such that SEA(Q′′) = fCA,O(P). By the latter condition, we obtain
in turn that pC is defined and pC(cCA(fCA,O(P))) = Q, where Q is a program such that
Q ∈ C and SE (Q) = cCA(fCA,O(P)). Now, since cCA(fCA,O(P)) = SE (Q′′), we have
that SE (Q) = SE (Q′′), and thus SEA(Q) = SEA(Q′′). But SEA(Q′′) = fCA,O(P),
so SEA(Q) = fCA,O(P). Consequently, the set of 〈A, O〉-optimal A-SE-models of P
coincides with the set of 〈A, O〉-optimal elements of Q. Therefore, by Theorem 1, it
follows that P and Q have the same minimal 〈A, O〉-certificates, and thus P ≡A

|O Q.
The specific definitions of the above functions are as follows: cCA and pC are func-

tions defined in previous work about casting under hyperequivalence [6]. Specifically,
cNA, cPA, and cHA are the completion transformations for normal, positive, and Horn pro-
grams, respectively [6, Definitions 4,7, and 9], while pN, pP, and pH are the functions
given by the adaptions in that work of the technique of canonical programs [2]. The
functions fCA,O, for C = {N, P, H} are novel, however, and are briefly discussed in what
follows. To begin with, fNA,O and fHA,O are defined as follows:

fNA,O(P) = {(X, Y) | (X, Y) is 〈A, O〉-optimal in SEA(P)};
fHA,O(P) = {(X|A∪O, Y |A∪O) | (X,Y) is 〈A, O〉-optimal in SEA(P)}.

The transformations reflect the fact that a normal casting can be build from atoms in P
only and a Horn casting from atoms that occur in atm(P)|A∪O only.

Obtaining the transformation fPA,O(P) for positive castings requires a more sophisti-
cated approach, however, for which we first need to build a rooted forest FA,O(P) from
the A-SE-models of P as an auxiliary structure. The nodes are triples (h, Y, Ξ), where h
is an atom, unique for every node, that is from a set At ′ of auxiliary atoms not occurring
in At , Y is an interpretation, and Ξ is a set of interpretations. Each node corresponds to
an 〈A, O〉-certificate of the casting Q to build, and each root node to a minimal 〈A, O〉-
certificate of P . The intuition is to preserve the minimal 〈A, O〉-certificates of P , for
retaining 〈A, O〉-equivalence to P , and add missing (non-minimal) 〈A, O〉-certificates
of Q that ensure A-here-totality of the A-SE-models of Q in order for Q to be a pos-
itive program. Roughly, for every (X, Y) ∈ fPA,O(P) with X ⊂ Y that is built from
a node N , a descendant of N guarantees that there is some (X ′, X ′) ∈ fPA,O(P) with
X ′|A = X and X ′ ⊂ Y , as required by A-here-totality. F〈A,O〉(P) is obtained by the
following algorithm, which starts with F〈A,O〉(P) being empty:

1. For every (Y, Y) that is 〈A, O〉-optimal in SEA(P), add (h, Y, Ξ) as a root node
of F〈A,O〉(P), where h ∈ At ′ is not occurring elsewhere in F〈A,O〉(P) and Ξ =
{X | (X, Y) ∈ SEA(P), X ⊂ Y }.

2. While there is a leaf node (h, Y, Ξ) such that Ξ 6= ∅ do:
– for each X ∈ Ξ , find some (U, U) that is 〈A, O〉-optimal in SEA(P),3 where

U |A = X , U |O ⊆ Y |O, and (V,U) ∈ SEA(P) with V ⊂ U implies V ∈ Ξ ,
and add (h′, U |A∪O, Ξ ′) as child node of (h, Y, Ξ), where h ∈ At ′ does not
occur elsewhere in F〈A,O〉(P) and Ξ ′ = {V | (V,U) ∈ SEA(P), V ⊂ U}.

Having F〈A,O〉(P) built, we then obtain fP〈A,O〉(P) as follows:

fP〈A,O〉(P) = {(Y ′, Y ′) |N = (h, Y, Ξ) is a node of F〈A,O〉(P), Y ′ = Y ∪ {h}∪
{h′ | (h′, Z,Ξ ′) is ancestor or descendant of N}}∪

{(X, Y ′) |N = (h, Y, Ξ) is a node of F〈A,O〉(P), X ∈ Ξ, Y ′ = Y ∪
{h} ∪ {h′ | (h′, Z,Ξ ′) is ancestor or descendant of N}}.

When creating fPA,O(P) from FA,O(P), atoms from At ′ are added in a way such that A-
completeness of the A-SE-models of Q is ensured, by making Y1 and Y2 incomparable
for all (X, Y1), (X,Y2) ∈ SEA(Q) which are not associated to nodes on the same path
in the forest. Nodes along the same path cannot violate A-completeness per se.

5 Discussion

We provided necessary and sufficient semantical conditions that hold for a program P
and sets A, O of atoms iff there exists another program Q that is normal, positive, or
Horn, respectively, such that P and Q are strongly equivalence relative to A under pro-
jection to O. These conditions are parameterised in A and O and defined on the minimal
〈A, O〉-certificates of P and, alternatively, on the A-SE-models of P . Furthermore, we
showed that deciding whether a casting exists is not computationally harder than check-
ing equivalence under the considered notion, and provided methods for constructing a

3 The existence of such a (U, U) is guaranteed when SEA(P) is 〈A, O〉P,s-compliant.

casting whenever one exists. Our results contribute to the understanding of problem set-
tings in logic programming in the sense that they show in what scenarios the usage of
certain constructs are superfluous or not.

An interesting equivalence notion related to the one studied here is modular equiva-
lence, introduced by Oikarinen and Janhunen [13] for the purpose of modular program-
ming, accommodating the specification of input, output, and hidden atoms. Compared
to the use of projection, where answer sets that coincide on the projected part are treated
as identical, modular equivalence distinguishes between answer sets with differing hid-
den atoms and thereby enforces corresponding modules to have the same number of
answer sets. Update equivalence [14], on the other hand, has no provision of projection
but generalises relativised strong equivalence by allowing also the deletion of certain
program parts during comparison.

A natural next step is to consider casting questions for nonground programs. To-
wards this end, recent work provides nonground versions of the kind of generalised
equivalences studied here [15], yet relativisation quickly leads to undecidable instances.

References
1. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transac-

tions on Computational Logic 2(4) (2001) 526–541
2. Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer set programming.

In: IJCAI’05. (2005) 97–102
3. Woltran, S.: Characterizations for relativized notions of equivalence in answer set program-

ming. In: JELIA’04. Volume 3229 of LNCS, Springer (2004) 161–173
4. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform and

strong equivalence. In: LPNMR’04. Volume 2923 of LNCS, Springer (2004) 87–99
5. Eiter, T., Fink, M., Tompits, H., Woltran, S.: On eliminating disjunctions in stable logic

programming. In: KR’04, AAAI Press (2004) 447–458
6. Pührer, J., Tompits, H., Woltran, S.: Elimination of disjunction and negation in answer-set

programs under hyperequivalence. In: ICLP’08. Volume 5366 of LNCS, Springer (2008)
561–575

7. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9 (1991) 365–385

8. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte, physi-
kalisch-mathematische Klasse, preußische Akademie der Wissenschaften (1930)

9. Turner, H.: Strong equivalence made easy: Nested expressions and weight constraints. The-
ory and Practice of Logic Programming 3(4-5) (2003) 602–622

10. Lin, F.: Reducing strong equivalence of logic programs to entailment in classical proposi-
tional logic. In: KR’02, Morgan Kaufmann (2002) 170–176

11. Eiter, T., Fink, M., Woltran, S.: Semantical characterizations and complexity of equivalences
in answer set programming. ACM Transactions on Computational Logic 8(3) (2007) 1–53

12. Woltran, S.: A common view on strong, uniform, and other notions of equivalence in answer-
set programming. Theory and Practice of Logic Programming 8(2) (2008) 217–234

13. Oikarinen, E., Janhunen, T.: Achieving compositionality of the stable model semantics for
SMODELS programs. TPLP 8(5-6) (2008) 717–761

14. Inoue, K., Sakama, C.: Equivalence of logic programs under updates. In: JELIA’04. Volume
3229 of LNCS, Springer (2004) 174–186

15. Oetsch, J., Tompits, H.: Program correspondence under the answer-set semantics: The non-
ground case. In: ICLP’08. Volume 5366 of LNCS, Springer (2008) 591–605

