
Reasoning with Forest Logic Programs Using
Fully Enriched Automata?

Cristina Feier1 and Thomas Eiter2

1 Department of Computer Science, University of Oxford, Oxford, UK
2 Institute of Information Systems, Vienna University of Technology, Vienna, Austria

Abstract. Forest Logic Programs (FoLP) are a decidable fragment of Open An-
swer Set Programming (OASP) which have the forest model property. OASP
extends Answer Set Programming (ASP) with open domains—a feature which
makes it possible for FoLPs to simulate reasoning with the description logic
SHOQ. In the past, several tableau algorithms have been devised to reason with
FoLPs, the most recent of which established a NEXPTIME upper bound for rea-
soning with the fragment. While known to be EXPTIME-hard, the exact complex-
ity characterization of reasoning with FoLPs was still unknown. In this paper we
settle this open question by a reduction of reasoning with FoLPs to emptiness
checking of fully enriched automata which are known to be EXPTIME-complete.

1 Introduction

Open Answer Set Programming (OASP) [8] extends (function-free) Answer Set Pro-
gramming (ASP) [5] with an open domain semantics: programs are interpreted with
respect to arbitrary domains that might contain individuals which do not occur explic-
itly in the program. This enables to state generic knowledge using OASP; at the same
time, OASP inherits from ASP the negation under the stable model semantics.

While OASP is undecidable in general, several decidable fragments have been found
by restricting the shape of the rules. One such fragment are Forest Logic Programs
(FoLP), which enjoy the forest model property: a unary predicate is satisfiable iff it
is satisfied by a model representable as a labeled forest. FoLPs are quite expressive;
e.g., one can simulate satisfiability testing of an ontology in the Description Logic (DL)
SHOQ by them [4]. This led to f-hybrid KBs, which combine rules and ontologies
distinctly from other approaches like dl-safe rules [9], r-hybrid knowledge bases [10],
or MKNF+ knowledge bases, as the interaction between the signatures of the two com-
ponents is not restricted.

The simulation of SHOQ implies that reasoning with FoLPs is EXPTIME-hard;
however, the exact complexity was open. A tableau-based algorithm in [4] gave an
2NEXPTIME upper bound, which an improved algorithm in [2] lowered to NEXP-
TIME. In this paper, we close this gap and show that deciding satisfiability of unary
predicates w.r.t. FoLPs is EXPTIME-complete, by reducing emptiness checking of
Fully Enriched Automata (FEAs) to this problem; hence, adding FoLP rules to SHOQ
ontologies does not make reasoning harder. An extended version of the paper can be
found at http://www.kr.tuwien.ac.at/research/reports/rr1502.pdf.
? Work supported by the EPSRC grants Score! and DBOnto and the FWF grant P24090.

2 Preliminaries

We assume countably infinite disjoint sets of constants, variables, and predicate symbols
of positive arity. Terms and atoms are as usual. Atoms p(~t) are unary (resp. binary) if
p is unary (resp. binary). A literal is an atom a or a negated atom not a. Inequality
literals are of form s 6= t, where s and t are terms; all other literals are regular. For a
set S of literals or (possibly negated) predicates, S+ = {a | a ∈ S} and S− = {a |
not a ∈ S}. If S is a set of (possibly negated) predicates of arity n and ~t are terms, then
S(~t) = {l(~t) | l ∈ S}. For a set S of atoms, not S = {not a | a ∈ S}. A program is a
countable set P of rules r : α ← β, where α is a finite set of regular literals and β is a
finite set of literals. We denote as head(r) the set α, where α stands for a disjunction,
and as body(r) the set β, where β stands for a conjunction.

For R a rule, program, etc., let vars(R), preds(R), and cts(R) be the sets of vari-
ables, predicates, and constants that occur in R, resp. A universe U for a program P is
a non-empty countable set U ⊇ cts(P). We let PU be the grounding of P with U and
let BP be the set of regular atoms that can be formed from a ground program P .

An interpretation of a ground, i.e. variable free, program P is a subset I of BP . We
write I |= p(~t) if p(~t) ∈ I and I |= not p(~t) if I 6|= p(~t). For ground terms s, t, we
write I |= s 6= t if s 6= t. For a set of ground literals L, I |= L if I |= l for every l ∈ L.
A ground rule r : α ← β is satisfied w.r.t. I , denoted I |= r, if I |= l for some l ∈ α
whenever I |= β. An interpretation I of a positive (i.e. not -free) ground program P is
a model of P if I satisfies every rule in P ; it is an answer set of P if it is a ⊆- minimal
model of P . For ground programs P with not , I is an answer set of P iff I is an answer
set of P I = {α+ ← β+ | α← β ∈ P, I |= not β−, I |= α−}.

An open interpretation of a program P is a pair (U,M) where U is a universe for
P and M is an interpretation of PU . An open answer set of P is an open interpretation
(U,M) of P , with M an answer set of PU .

Trees and Forests. Let N+ be the set of positive integers, and let 〈N+〉 be the set
of all sequences over N+, where ε is the empty sequence: for a sequence of constants
and/or natural numbers s, s · ε = c, where · is concatenation; also, by convention,
s · c · −1 = s · c, where c is a natural number, and ε · −1 is undefined. A tree T with
root c, also denoted as Tc, is a set of nodes, where each node is a sequence c · s, where
s ∈ 〈N+〉, and for every x · d ∈ Tc, d ∈ N+, x ∈ Tc. If c is irrelevant, we refer to Tc
as T . Given a tree T , its arc set is AT = {(x, y) | x, y ∈ T, ∃n ∈ N+.y = x · n}. We
denote with succT (x) = {y ∈ T | y = x · i, i ∈ N+} the successors of a node x in T
and with precT (x) = y, where x = y · i ∈ T , its predecessor.

A forest F is a set of trees {Tc | c ∈ C}, where C is a finite set of arbitrary
constants. Its node set is NF = ∪T∈FT and its arc set is AF = ∪T∈FAT . For a node
x ∈ NF , succF (x) = succT (x), and precF (x) = precT (x), where x ∈ T and T ∈ F .
For a node y = x · i ∈ T and T ∈ F , precF (y) = precT (y) = x. An interconnected
forest EF is a tuple (F,ES), where F = {Tc | c ∈ C} is a forest and ES ⊆ NF × C.
Its set of nodes is NEF = NF , and its set of arcs is AEF = AF ∪ ES . A Σ-labelled
forest is a tuple (F, f) where F is an interconnected forest/tree and f : NF → Σ is a
labelling function, where Σ is any set of symbols.

3 Forest Logic Programs

Forest Logic Programs (FoLPs) are a fragment of OASP which have the forest model
property. They allow only for unary and binary predicates and tree-shaped rules.
Definition 1. A forest logic program (FoLP) is an OASP with only unary and binary
predicates, s.t. a rule is either:

– a free rule: a(s) ∨ not a(s)← (1) or f (s, t) ∨ not f (s, t)← (2)
– a unary rule: a(s)← β(s), γ1 (s, t1), . . . , γm(s, tm), δ1 (t1), . . . , δm(tm), ψ (3),

with ψ ⊆ {ti 6= tj |1 6 i < j 6 m} and m ∈ N,
– or a binary rule: f (s, t)← β(s), γ(s, t), δ(t) (4),

where a is a unary predicate, and f is a binary predicate; s, t, and ti-s are distinct
terms; β, δ, and δi-s are sets of (possibly negated) unary predicates; γ, and γi-s are
sets of (possibly negated) binary predicates; inequality does not appear in γ and γi;
γ+i 6= ∅, if ti is a variable, for every 1 6 i 6 m, and γ+ 6= ∅, if t is a variable.

A predicate q in a FoLP P is free if it occurs in a free rule in P . We denote with upr(P),
and bpr(P) (resp. urul(P), and brul(P)), the sets of unary and binary predicates (resp.
unary and binary rules) which occur in P . The degree of a unary rule r of type (3),
denoted degree(r), is the number k of successor variables appearing in r. The degree
of a free rule is 0. The degree of a FoLP P is degree(P) =

∑
p∈upr(P) degree(p),

where degree(p) = max{degree(r) | p ∈ preds(head(r))}.
A forest model of an OASP P that satisfies a unary predicate p is a forest which

contains for each constant in P a tree having the constant as root, and possibly one
more tree with an anonymous root; the predicate p is in the label of some root node.

Definition 2. Let P be a program. A predicate p ∈ upr(P) is forest satisfiable w.r.t. P
if there exist an open answer set (U,M) of P ; an interconnected forest EF = ({Tρ} ∪
{Ta | a ∈ cts(P)},ES), where ρ is a constant, possibly from cts(P); and a labelling
function ef : {Tρ}∪{Ta | a ∈ cts(P)}∪AEF → 2preds(P) s. t. p ∈ ef(ρ); U = NEF ;
ef(x) ∈ 2upr(P), when x ∈ Tρ ∪{Ta | a ∈ cts(P)}; ef(x) ∈ 2bpr(P), when x ∈ ATρ ;
M = {p(x) | x ∈ NEF , p ∈ ef(x)} ∪ {f(x, y) | (x, y) ∈ AEF , f ∈ ef(x, y)}; and
for every (z, z · i) ∈ AEF : ef(z, z · i) 6= ∅. We call such a pair (U,M) a forest model.

P has the forest model property if every unary predicate p that is satisfiable w.r.t.
P , is forest satisfiable w.r.t. P ; FoLPs enjoy this property [7].

4 Fully Enriched Automata

Fully enriched automata (FEAs) were introduced in [1] as a tool to reason in hybrid
graded µ-calculus. They accept forests as input. We describe them following [1].

For a set Y , we denote with B+(Y) the set of positive Boolean formulas over Y ,
where true and false are also allowed and where ∧ has precedence over ∨. For a set
X ⊆ Y and a formula θ ∈ B+(Y), we say that X satisfies θ iff assigning true to
elements in X and assigning false to elements in Y − X makes θ true. For b > 0, let
Db = {〈0〉, 〈1〉, . . . , 〈b〉} ∪ {[0], [1], . . . , [b]} ∪ {−1, ε, 〈root〉, [root]}.

A fully enriched automaton (FEA) is a tuple A = 〈Σ, b,Q, δ, q0,F〉, where Σ
is a finite input alphabet, b > 0 is a counting bound, Q is a finite set of states, δ :

Q × Σ → B+(Db × Q) is a transition function, q0 ∈ Q is an initial state, and F =
{F1,F2, . . . ,Fk}, where F1 ⊆ F2 ⊆ . . . ⊆ Fk = Q is a parity acceptance condition.
The number k of sets in F is the index of the automaton.

A run of a FEA on a labeled forest (F, V) is an NF × Q-labeled tree (Tc, r) s.t.
r(c) = (d, q0), for some root d in F , and for all y ∈ Tc with r(y) = (x, q) and
δ(q, V (x)) = θ, there is a (possibly empty) set S ⊆ Db ×Q such that S satisfies θ and
for all (d, s) ∈ S, the following hold: (i) if d ∈ {−1, ε}, then x · d is defined and there
is j ∈ N+ such that y · j ∈ Tc and r(y · j) = (x · d, s); (ii) if d = 〈n〉, then there is a set
M ⊆ succF (x) of cardinality n + 1 s.t. for all z ∈ M , there is j ∈ N+ s.t. y · j ∈ Tc
and r(y · j) = (z, s); (iii) if d = [n], then there is a set M ⊆ succF (x) of cardinality
n s.t. for all z ∈ succF (x) −M , there is j ∈ N+ s.t. y · j ∈ Tc and r(y · j) = (z, s);
(iv) if d = 〈root〉 (d = [root]), then for some (all) root(s) c ∈ F there exists j ∈ N+

s.t. y · j ∈ Tc and r(y · j) = (c, s);
If θ above is true, then y does not need to have successors. Moreover, since no set

S satisfies θ = false, there cannot be any run that takes a transition with θ = false.
A run is accepting if each of its infinite paths π is accepting, that is if the minimum
i for which Inf(π) ∩ Fi 6= ∅, where Inf(π) is the set of states occurring infinitely
often in π, is even. The automaton accepts a forest iff there exists an accepting run of
the automaton on the forest. The language of A, denoted L(A), is the set of forests
accepted by A. We say that A is non-empty if L(A) 6= ∅.

Theorem 1 (Corollary 4.3 [1]). Given a FEA A = 〈Σ, b,Q, δ, q0, F〉 with n states
and index k, deciding whether L(A) = ∅ is possible in time (b+ 2)O(n3·k2·log k·log b2).

5 From Forest Logic Programs to Fully Enriched Automata

In this section we reduce satisfiability checking of unary predicates w.r.t. FoLPs to
emptiness checking for FEAs. For a FoLP P and a unary predicate p, we introduce a
class of FEAs Ap,Pρ,θ , where ρ is one of cts(P) or a new anonymous individual and θ :

cts(P)∪{ρ} → 2upr(P)∪cts(P)∪{ρ} is s.t. oi ∈ θ(oi), and oj /∈ θ(oi), for every oi, oj ∈
cts(P) ∪ {ρ}, s.t. oi 6= oj . Furthermore, p ∈ θ(c), where c is one of cts(P) ∪ {ρ} and
c is ρ if ρ /∈ cts(P). Intuitively, Ap,Pρ,θ accepts forest models of p w.r.t. P encoded in a
certain fashion: for every root in the forest model, the root node will appear in its own
label; function θ fixes a content for the label of each root of accepted forest models.

Let d = degree(P) and let PATP = {∗} ∪ cts(P) be the set of term patterns,
where ∗ stands for a generic anonymous individual: a term t matches a term pattern
pt, written t 7→ pt, iff t = pt, when t is a constant; if t is not a constant, the match
trivially holds. We use term patterns as a unification mechanism: a variable matches
with a constant or an anonymous individual, but a constant matches only with itself.
Ap,Pρ,θ will run on forests labelled using the following alphabet: Σ = 2S , where S =

upr(P)∪{1, . . . , d}∪cts(P)∪{ρ}∪{↑of | f ∈ bpr(P)}∪{↓tf | f ∈ bpr(P), t ∈ PATP }.
Unlike forest models, arcs of forests accepted by FEAs are not labelled: as such,

binary predicates occur in the label of nodes in an adorned form. These adorned predi-
cates are of form ↓tf , in which case they represent an f -link between the predecessor of
the labelled node, which has term pattern t and the node itself, or of form ↑of , in which

case the current node is linked to a constant o from P via the binary predicate f . Be-
sides unary predicates, labels might contain natural numbers and constants, which will
be used as an addressing mechanism for successors of a given node and nodes which
stand for constants in accepted forests, resp. The set of states of the automaton are as
follows: Q = Qi ∪Q+ ∪Q−, with:

– Qi = {q0, q1} ∪ {qo | o ∈ cts(P) ∪ {ρ}} ∪ {q¬k | 1 6 k 6 d},
– Q+ = {qt,a, qt,ra , qt1,t2,u, qt1,t2,rf , qk,t,∗,u | t, t1, t2 ∈ PATP , a ∈ upr(P), f ∈

bpr(P), u is of form a, f,not a or not f, 1 6 k 6 d, ra ∈ urul(P), rf ∈ brul(P)},
– Q− = {qt,a, qt,ra , qt1,t2,u, qt1,t2,rf , qk,t,∗,u | t1, t2, t, a, f, u, k, ra, rf as above}.

Positive states in Q+ (resp. negative states in Q−) are used to motivate the presence
(resp. absence) of atoms in an open answer set. Qi contains q0, the initial state, q1, a
state which will be visited recursively in every node of the forest, qo, a state correspond-
ing to the initial visit of each constant node, and q¬k, a state which asserts that for every
node in an accepted forest there must be at most one successor which has k in the label.

We next describe the transition function of Ap,Pρ,θ . The initial transition prescribes
that the automaton visits a root of the forest in state qo, for every o ∈ cts(P) ∪ {ρ}:

δ(q0, σ) =
∧
o∈cts(P)∪{ρ}(〈root〉, qo) (5)

In every such state qo, it should hold that o and only o is part of the label. Furthermore,
the automaton justifies the presence and absence of each unary predicate a and adorned
upward binary predicate in the label3 by entering states qo,a, qo,o′,f , qo,a, and qo,o′,f
resp. At the same time every successor of the constant node is visited in state q1:

δ(qo, σ) = o ∈ σ ∧
∧
o′∈cts(P)∪{ρ}−{o} o

′ /∈ σ ∧
∧
a∈θ(o)(ε, qo,a) ∧

∧
a/∈θ(o)(ε, qo,a)

∧
∧
↑o′f ∈θ(o)

(ε, qo,o′,f) ∧
∧
↑o′f /∈θ(o)

(ε, qo,o′,f) ∧ ([0], q1) (6)

Whenever the automaton finds itself in state q1 it tries to motivate the presence and ab-
sence of each unary and each adorned binary predicate in its label and then it recursively
enters the same state into each successor of the current node:

δ(q1, σ) =
∧
a∈σ(ε, q∗,a) ∧

∧
a/∈σ(ε, q∗,a) ∧

∧
↓tf∈σ

(ε, qt,∗,f) ∧
∧
↓tf /∈σ

(ε, qt,∗,f)∧∧
↑o′f ∈σ

(ε, q∗,o′,f) ∧
∧
↑o′f /∈σ

(ε, q∗,o′,f) ∧ ([0], q1) ∧
∧

16k6d([1], q¬k) (7)

It also ensures that for each integer 1 6 k 6 d, the labels of each but one successor
do not contain k:

δ(q¬k, σ) = k /∈ σ (8)
To motivate a predicate in a node label, the automaton checks whether it is free

(using a test free(.)) or finds a supporting rule. We distinguish between unary and
binary predicates and the term pattern for the node where the predicate has to hold.
For unary predicates holding at a constant node, a first check is that we are at the right
node - this is needed as later the automaton will visit all roots in this state. For binary
predicates, depending on the term pattern, the label is checked for different types of
adorned binary atoms.

δ(q∗,a, σ) = a ∈ σ ∧
(
free(a) ∨

∨
ra:a(s)←β∈P

(ε, q∗,ra)
)

(9)

3 Constants have no predecessors, hence there are no adorned downward predicates in the label.

δ(qo,a, σ) = o /∈ σ ∨ a ∈ θ(o) ∧
(
free(a) ∨

∨
ra:a(s)←β∈P,s7→o

(ε, qo,ra)
)

(10)

δ(qt,∗,f , σ) = ↓tf∈ σ ∧
(
free(f) ∨

∨
rf :f(s,v)←β∈P,s7→t,v 7→∗

(ε, qv,∗,rf)
)

(11)

δ(qt,o,f , σ) = ↑of∈ σ ∧
(
free(f) ∨

∨
rf :f(s,v)←β∈P,s7→t,v 7→o

(ε, qt,o,rf)
)

(12)

Let ra : a(s)← β(s), (γi(s, vi), δi(vi))16i6m, ψ be a unary rule. Then, we denote with
Jra a multiset {ji | 1 6 i 6 m, ji ∈ {1, . . . , d}∪ cts(P)} such that for every ji ∈ Jra ,
vi ∈ cts(P) implies ji = vi, and for every ji, jl ∈ Jra , vi 6= vl ∈ ψ implies ji 6= jl.
A multiset provides a way to satisfy the successor part of a unary rule in a forest model
by identifying the successor terms of the rule with successors of the current element in
the model or constants in the program. Let MJ be the set of all such multisets. The
following transition describes how the body of such a rule is checked to be satisfiable:

δ(qt,ra , σ) =
∧
u∈β

(ε, q∗,t,u) ∧
∨

Jra∈MJ

(d∧
k=1

∧
ji=k,ji∈Jra

∧
u∈γi∪δi

(〈0〉, qk,t,∗,u)∧

∧
o∈cts(P)

∧
ji=o,ji∈Jra

∧
u∈γi∪δi

(ε, qt,o,u)
) (13)

State qk,t,∗,u checks that the (possibly negated) unary or adorned binary predicate u is
(is not) part of the label of the k-th successor of a given node:

δ(qk,t1,t2,u, σ) = k ∈ σ ∧
∧
j 6=k

j /∈ σ ∧ (ε, qt1,t2,u) (14)

State qt1,t2,u can be seen as a multi-state with different transitions depending on its
arguments (two transitions have already been introduced as rules (11) and (12) above):
if t2 = ∗, one has the justify the presence/absence of u in the label of the current
node; otherwise, when t2 = o, one has to justify it from the label of the root node
corresponding to constant o: note that, as it is not possible to jump directly to a given
root node in the forest, nor to enforce that there will be a single root node corresponding
to each constant, in transition (17) we visit each root node in state qo,a:

δ(qt1,t2,u, σ) =
(ε, q∗,a), if t2 = ∗ ∧ u = a (15) a /∈ θ(o), if t2 = o ∧ u = not a (16)
([root], qo,a), if t2 = o ∧ u = a (17) ↓tf /∈ σ, if t2 = ∗ ∧ u = not f (18)

a /∈ σ, if t2 = ∗ ∧ u = not a (19) ↑of /∈ θ(o), if t2 = o ∧ u = not f (20)

For binary rules: rf : f(s, v) ← β(s), γ(s, v), δ(v), where v is grounded using an
anonymous individual, we also look at the predecessor node to see if the local part of
the rule is satisfied. When v is grounded using a constant, the local part of the rule is
checked at the current node and the successor part at the respective constant.

δ(qt,∗,rf , σ) =
∧
u∈β

(−1, q∗,t,u) ∧
∧

u∈γ∪δ

(ε, qt,∗,u) (21)

δ(qt,o,rf , σ) =
∧
u∈β

(ε, q∗,t,u) ∧
∧

u∈γ∪δ

(ε, qt,o,u) (22)

The transitions of the automaton in the negative states can be seen as dual versions of
the ones for the counterpart positive states. They are presented in the technical report.

Finally we specify the parity acceptance condition. The index of the automaton is
2, with F1 = {qt,a, qt1,t2,f | a ∈ upr(P), f ∈ bpr(P), t, t1, t2 ∈ PATP } and F2 = Q.
Intuitively, paths in a run of the automaton correspond to dependencies of literals in the
accepted model and by disallowing the infinite occurrence on a path of states associated
to atoms in the model we ensure that only well-supported models are accepted.

Theorem 2. Let P be a FoLP and p be a unary predicate symbol. Then, p is satisfiable
w.r.t. P iff there exists an automaton Ap,Pρ,θ such that L(Ap,Pρ,θ) 6= ∅.
Theorem 3. Satisfiability checking of unary predicates w.r.t. FoLPs is EXPTIME-complete.

6 Discussion and Conclusion

We have described a reduction of the satisfiability checking task of unary predicates
w.r.t. FoLPs to emptiness checking of FEAs. This enabled us to establish a tight com-
plexity bound on this reasoning task for FoLPs. Other reasoning tasks like consistency
checking of FoLPs and skeptical and brave entailment of ground atoms can be polyno-
mially reduced to satisfiability checking of unary predicates [6]; thus, the complexity
result applies to those tasks as well. Also, by virtue of the translation from fKBs to
FoLPs, the result applies to fKBs as well: satisfiability checking of unary predicates
w.r.t. fKBs is EXPTIME-complete. Thus, reasoning with FoLP rules and SHOQ on-
tologies is not harder than reasoning with SHOQ ontologies themselves.

Finally, as our result shows that FoLPs have the same complexity as CoLPs, we plan
to further investigate the extension of the deterministic AND/OR tableau algorithm for
CoLPs [3] to FoLPs. As explained in [3], such an extension is far from trivial.

References
1. Piero A. Bonatti, Carsten Lutz, Aniello Murano, and Moshe Y. Vardi. The complexity of

enriched µ-calculi. Logical Methods in Computer Science, 4(3):1–27, 2008.
2. C. Feier. Worst-case optimal reasoning with Forest Logic Programs. In Proc. KR 2012,

pages 208–212, 2012.
3. C. Feier. Reasoning with Forest Logic Programs. PhD thesis, TU Wien, 2014.
4. C. Feier and S. Heymans. Reasoning with Forest Logic Programs and f-hybrid knowledge

bases. TPLP, 3(13):395–463, 2013.
5. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc.

of ICLP’88, pages 1070–1080, 1988.
6. S. Heymans. Decidable Open Answer Set Programming. PhD thesis, Theoretical Computer

Science Lab (TINF), Department of Computer Science, Vrije Universiteit Brussel, 2006.
7. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Open Answer Set Programming for the

Semantic Web. Journal of Applied Logic, 5(1):144–169, 2007.
8. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Open Answer Set Programming with

guarded programs. Transactions on Computational Logic, 9(4):1–53, August 2008.
9. B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL with rules. Journal of

Web Semantics, 3(1):41–60, July 2005.
10. R. Rosati. On combining description logic ontologies and nonrecursive datalog rules. In

Proc. RR, pages 13–27, 2008.

