
Deploying Spatial-Stream Query Answering
in C-ITS Scenarios

Thomas Eiter1, Ryutaro Ichise2,3, Josiane Xavier Parreira4,
Patrik Schneider1,4, and Lihua Zhao3

1 Vienna University of Technology, Vienna, Austria
2 National Institute of Informatics, Tokyo, Japan

3 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
4 Siemens AG Österreich, Vienna, Austria

Abstract. Cooperative Intelligent Transport Systems (C-ITS) play an important
role for providing the means to collect and exchange spatio-temporal data via V2X
between vehicles and the infrastructure, which will be used for the deployment of
(semi)-autonomous vehicles. The Local Dynamic Map (LDM) is a key concept
for integrating static and streamed data in a spatial context. The LDM has been
semantically enhanced to allow for an elaborate domain model that is captured
by a mobility ontology, and for queries over data streams that cater for semantic
concepts and spatial relationships. We show how this approach can be extended
to address a wider range of use cases in the three C-ITS scenarios traffic statistics,
events detection, and advanced driving assistance systems. We define for them
requirements derived from necessary domain-specific features and report, based
on them, on the extension of our query language with temporal relations, delaying,
numeric predictions and trajectory predictions. An experimental evaluation of
queries that reflect the requirements, using the real-world traffic simulation tool
provides evidence for the feasibility/efficiency of our approach in the new scenarios.

1 Introduction
The development of (semi)-autonomous vehicles involves extensive communication
between vehicles and the infrastructure, which is covered by Cooperative Intelligent
Transport Systems (C-ITS). These systems collect temporal data (e.g., traffic light signal
phases) and geospatial data (e.g., GPS positions), which are exchanged in vehicle-to-
vehicle, vehicle-to-infrastructure, and combined communications (V2X). This aids (a) to
improve road safety by analyzing traffic scenes that could lead to accidents (e.g., red light
violations), and (b) to reduce emissions by optimizing traffic flow (e.g., dissolve traffic
jams). A key technology for this is the Local Dynamic Map (LDM) [2] as an integration
platform for static, semi-static, and dynamic information in a spatial context.

In previous work, we have semantically enhanced the LDM to allow for an elaborate
domain model that is captured by a mobility ontology, and for queries over data streams
that cater for semantic concepts and spatial relationships [14]. Our approach is based
on ontology-mediated query answering (OQA) and features conjunctive queries (CQs)
over DL-LiteA [10] ontologies that support window operators over streams and spatial
relations between objects. We believe that OQA is well suited for C-ITS applications, as
an ontology can be used to model vehicles, traffic, and infrastructure details, and map
to scalable stream database technology adding dynamicity to the model. For example,
the definition of a hazardous situation is complex, ranging from bad road conditions
to traffic jams [2]. Therefore, an expressive query language is crucial to fulfill C-ITS
specific requirements needed for retrieving dynamic data and expressing complex patterns
regarding, e.g., event detection. Furthermore, scalability and swift response time are
crucial since fast changing traffic demands a quick response time to avoid accidents [2].

In this paper, we continue the work in [13,14] with the goal of showing how spatial-
stream OQA can be used to address a wider set of C-ITS scenarios. For achieving this, the



2 T. Eiter, R. Ichise, J. X. Parreira, P. Schneider, L. Zhao

approach in [14] is extended with new domain-specific features beyond “generic” spatial-
stream OQA. In cooperation with ITS domain experts from Siemens and the Austrian
Institute of Advanced Industrial Science and Technology (AIST), the C-ITS scenarios
– traffic statistics, events detection, and advanced driving assistance systems (ADAS) –
were defined and used to single out requirements derived from a domain-specific list of
features. We then formulate for each use case, requirements that should be covered by our
approach. The focus of the new, more specific features will be on temporal relations, e.g.,
during, as well as numerical and trajectory predictions. For the assessment, we provide
a detailed report on the extension of the implementation with the new features such as
the temporal relations. The implementation is evaluated in an experimental setting using
queries matching to features, where a real-world traffic simulation is used to generate the
data. The results provide evidence for the feasibility and efficiency of our approach in
these scenarios. Our contributions are briefly summarized as follows:5

- we outline the field of V2X integration using LDMs and provide details on our ontology-
based LDM (Section 2);

- we define three scenarios, use cases, desired features, and requirements (Section 3);
- we present our current approach including data model, query language, and outline the

implemented features (Section 4 and 5);
- we evaluate our platform regarding the set of features/requirements based on a traffic

simulation and assess the results (Section 6).
In Section 7, we discuss related work, and conclude with ongoing and future work.

2 C-ITS Data Integration and Query Answering
Our setting is the ongoing efforts in data integration and querying in the C-ITS domain.
The base technologies for C-ITS are already available and experimentally deployed in
infrastructure projects as in [2]. The communication technology is based on the IEEE
802.11p standard, and the data integration effort is the Local Dynamic Map (LDM),
which are starting points for our work. IEEE 802.11p allows wireless access in vehicular
environments, called V2X communications, which enables messaging between vehicles
and the infrastructure. The messages are broadcast every 100ms by traffic participants, i.e.,
vehicles and roadside ITS stations, to update other participants about their current states
[2]. The main standardized message types are CAMs (Cooperative Awareness Messages)
for frequency status updates of participants, MAPs (Map Data Messages) for detailed
intersection topologies, SPATs (Signal Phase and Timing Messages) for traffic light signal
phases, and DENMs (Decentralized Environmental Notification Messages).
Local Dynamic Map. The V2X technology does not yet consider the integration of the
different types of messages. As a comprehensive integration effort, the EU SAFESPOT
project [2] introduced the concept of an LDM, which acts as an integration platform to
combine static geographic information system (GIS) maps, with dynamic environmental
objects (e.g., vehicles or pedestrians). The integration is motivated by advanced safety
applications, which need an “overall” understanding of a traffic environment. The LDM
consists of the four layers (see Figure 1a): permanent static, transient static, transient
dynamic, and highly dynamic, ranging from dynamic (as V2X messages) to permanent
static (as GIS maps) information. Recent research by Netten et al. [18], and Shimada et al.
[21] suggested that an LDM can be built on top of a spatial relational RDBMS enhanced
with streaming capabilities. Netten et al. recognize that an LDM should be represented
by a world model, world objects, and data sinks on the streamed input [18]. However, an
elaborate domain model captured by an LDM ontology, and extended query processing

5 As to [14], Sec. 3, 5, 6 are entirely new content, and 4 changed with the focus on new features.



Deploying Spatial-Stream Query Answering in C-ITS Scenarios 3

Fig. 1: (a) The four Layers of a LDM [2] and (b) LDM Ontology

or rule evaluation methods over spatial data streams, were still missing in the current
approaches. An ontology-based LDM has advantages regarding the maintainability and
understandability of the model, since dependencies between the concepts are clearly
defined and easy extendable without altering the underlying database (DB).
Ontology-based LDM. With the support of Siemens and AIST domain experts, we have
worked on our LDM ontology (shown partially in Figure 1b, available at http://www.
kr.tuwien.ac.at/research/projects/loctrafflog/LocalDynamicMapITS-v0.4-Lite.owl) to
capture the four levels of the LDM, as well as V2X-specific elements such as maneuvers.
The LDM ontology is represented in DL-LiteA [10], which is the logical underpinning for
the W3C standard OWL 2 QL. Apart from the restriction to DL-LiteA , our methods are
ontology-agnostic; hence other mobility ontologies could be used. We follow a layered
approach starting with a simple separation between the top concepts of V 2XFeature that
is the representation of V2X objects, such as details of an intersection topology including
lanes (V 2XLane) and traffic lights (V 2XSignalGroup). GeoFeature represents the
GIS aspects of the LDM including POIs, areas like parks, and road networks with
Geometry as the geometrical representation of them. Actor is the concept that includes
persons, vehicles, as well as roadside ITS stations, which are autonomous and are the
main generator of streamed data. CategoricalV alues specify the different categories
such as signal phases, or vehicle roles used in the emergency domain. Besides “domain
specific” roles and attributes like speedLimit, hasRole, speed, or position, we also
introduced generic roles that have an inherent meaning, e.g., isPartOf .
Spatial-Stream Query Answering. The OQA component is central to the usage of a
semantically enhanced LDM, since it allows us to access the streamed data in the LDM.
Example 1. The following query detects red-light violations on intersections by searching
for vehicles (in y) with an aggregated trajectory and speed above 30km/h in a 8s window,
projecting 3s into the future (represented as a negative time point), which move on lanes
(in x) during these lanes signals will turn to “Stop”, i.e., red, in a 10s window:
q1(x, y) : LaneIn(x) ∧ hasLoc(x, u) ∧ intersects(u, v) ∧ V ehicle(y)

∧ pos(y, v)[traject line, 5s,−3s] ∧ speed(y, r)[mov avg, 5s,−3s]
∧ (r > 30) ∧ during(v, s) ∧ isManaged(x, z)
∧ SignalGroup(z) ∧ hasState(z, s)[last, 5s,−5s] ∧ (s = ′Stop′)

Query q1 exhibits the different dimensions that need to be combined: (a) LaneIn(x),
V ehicle(y) and isManaged(x, z) (assigning traffic lights z to lanes x) are ontology atoms,
which have to be unfolded in respect to the concept/role hierarchies of the LDM ontology;



4 T. Eiter, R. Ichise, J. X. Parreira, P. Schneider, L. Zhao

(b) intersects(u, v) and hasLoc(x, u) are spatial atoms, where the first checks spatial inter-
section and the second returns the object geometries; (c) speed(y, r)[traject line, 5s,−3s]
and pos(y, v)[mov avg, 5s,−3s] define window operators that aggregate and predict the
moving average of speed and positions of the vehicles over speed and pos, respectively,
and hasState(z, s)[last, 5s,−5s] returns the traffic lights that have their last phase on
“Stop”; (d) the relation during(v, s) checks if “v happens during s”, where v is all the
occurrences of trajectories on the set of time intervals t1, and s are the traffic light phases
that are on “Stop” in the set of time intervals t2, were t1 and t2 are derived from the
trajectory aggregations and the phase duration of the traffic lights.

3 Development of C-ITS Scenarios
In this section, we present three application scenarios that are used to define requirements
and features split into three complexity levels. On the infrastructure side, we have C-ITS
(roadside) stations that receive nearby V2X messages and send messages to inform other
participants on their current state, i.e., the traffic light phases. Other participants such as
vehicles share their states such as their current speed, acceleration, and position. On the
vehicle side, ADAS perceive driving environments and make safe driving decisions to
improve safety of autonomous vehicles. The ADAS use sensors such as Lidar/Radar or
cameras, and process the sensor data to avoid accidents by detecting pedestrians, vehicles,
or other obstacles [23]. The sensor data can be linked to our ontology-based LDM and
enables the system to represent the driving environments.
S1: Traffic Statistics. The focus of this scenario is on the collection of statistical data
that concerns stops, throughput, traffic distribution, or types of participants by aggregating
the streaming data on specific intersections. Regarding this scenario, we have identified
the following use cases and related challenges:
1. Object level: for a single vehicle or station, the average speed, acceleration, number

of stops, or on a sensor data such as the temperature could be collected;
2. Road/Intersection level: on this level, besides calculating a summary of road/lane

level indicators such as average throughput, waiting time, the amount of stops, also
matrices regarding transfers (e.g. how many cars head straight on), modality, and type
mix, (e.g. which vehicle classes are present) could be determined;

3. Network level: on the network level, intersections are represented by nodes connected
by roads. We could collect statistical summaries of indicators on intersections. For
instance, estimating the transfer times and traffic flow between intersections.

S2: Hazardous Events Detection. An important C-ITS application is road safety [2],
where a reliable event detection is central to find unexpected, hazardous events. This
is a more challenging case, since it requires the combination of the topology, vehicle
maneuvers, and temporal relations that might be evaluated over longer and shorter periods.
We identified the following events as possibly hazardous:
1. Simple vehicle maneuvers: the following maneuvers are relevant for this case and

are directly extractable from trajectories: (1) quick slow down/speed up; (2) drive
straight on, turn left, turn right; (3) stop, unload, park;

2. Complex vehicle maneuvers: the aim is to detect lane changes, overtakes, u-turn are
complex maneuvers, which are a composite of simple maneuvers;

3. Red-light violation: as shown in Ex. 1, red-light violations can be detected by checking
the spatial intersection of lanes that change to “Stop” and vehicles current trajectory
taking their speed into account. This could be enhanced by trajectory predictions;

4. Vehicle breakdown/accident: this event is based on the stop maneuver, where we
identify vehicles that are not moving and are inside a dangerous area of an intersection.
This case can be extended to several vehicles;



Deploying Spatial-Stream Query Answering in C-ITS Scenarios 5

5. Traffic congestions: this is a more complex event, where short and long term observa-
tions must be combined. Queuing cars could indicate a congestion and be detected by
checking the stop maneuvers of several vehicles that are behind each other, but not
stopped by a longer red light phase.

S3: ADAS and Autonomous Driving. ADAS are an important step towards autonomous
driving by enabling the vehicle to take control of speed or breaking, where drivers still
have the “full” control over the vehicle. The following challenges come for ADAS:
1. Self monitoring: Self-monitoring is a central requirement of ADAS, where intelligent

speed adaptation is an important feature to improve roadway safety;
2. Obstructed view: It concerns dangerous situations where a vehicle might collide with

another vehicle, since they have no visual contact due to an obscured view (e.g.,
buildings). The overlap of predicted trajectories of two vehicles should be checked.

3. Traffic rules: The embedding of traffic rules like checking of traffic rules such as
right-of-way rules could become an important requirement for autonomous driving.

Features for Spatial-Stream QA. The eight “standard” requirements: volume, velocity,
variety, incompleteness, complex domain models, etc., as well as the three entailment
levels for stream reasoning systems: stream-, window-, and graph-level entailment iden-
tified by [12] are not discussed here, but should hold for mobility stream systems as
well. Besides the generic features F1, F2, F3, and F9, we also focus on domain specific
features that are mapped to requirements crucial for enabling the above scenarios. For
this, we distinguish for each feature the levels of fulfillment basic (L1), enhanced (L2),
and advanced (L3). We have identified the following feature sets:
- F1 - Time model: possible time models are point-based (L1), and interval-based (L2),

where L1 is the “simplest” representation. On point-based data, applying aggregations
can be represented by intervals based on point-based data items. If we apply an interval-
based model, temporal relations (L3) such as Allen’s Time Interval Algebra [1] with
operators like before can be used for querying and inference.

- F2 - Process paradigm: queries that are processed in a pull-based (L1) manner should be
the baseline. Push-based processing (L2) in particular with sliding windows is already
more challenging. If we allow a combined (L3) processing, we could treat high velocity
(resp. low velocity) atoms as push-based (resp. as pull-based).

- F3 - Query features: these “basic” features include nesting of queries (L1), or unions of
CQs (L2). Other feature relate to the computation of spatial relations using a simple
point-set model (L1) or the more detailed 9-Intersection model (L2).

- F4 - Numerical aggregations: aggregations can be “simple” functions such as sum or
average on either a set or multiset (bag) of data items (L1). These could be extended by
basic statistical function such as median (L2). Aggregation over multisets is important,
since we often have data items of different objects in a single stream.

- F5 - Spatial aggregations: a wide range of spatial aggregations can be applied to
geometric objects like points and lines (L1) and the aggregation functions need to take
the peculiarities of geometries into account, e.g., convex vs. concave objects. Smoothing
and simplification of complex objects could also be included (L2).

- F6 - Numerical predictions: predictions allow the generation of unknown data items
projecting from the past into the future. Several prediction functions such as moving
average (L1) or exponential smoothing (L2) regression should be available. Depending
on the task, also more complex machine learning methods could be envisioned (L3).

- F7 - Trajectory predictions: we predict a vehicle’s movement, by linearly projecting
the trajectory into the future (L1). More accurate results could be achieved by (1) a



6 T. Eiter, R. Ichise, J. X. Parreira, P. Schneider, L. Zhao

Table 1: Requirement Matrix (L1/L2/L3 is required, blank is not required, P is possibly)
Use Case F1 F2 F3 F4 F5 F6 F7 F8 F9

S1.1 (Object statistics) L1 L1 L2 P
S1.2 (Road/Intersection statistics) L2 L1 L2 L2 L1 L1 L1 P
S1.3 (Network statistics) L2 L1 L2 L2 L1 L2 L1 P P

S2.1 (Simple maneuvers) L1 L1 L1 L1 L1 P P P
S2.2 (Complex maneuvers) L2 L2 L2 L1 L1 L1 L1 L1 P
S2.3 (Red-light violation) L2 L2 L2 L1 L1 L1 L1 L1 P
S2.4 (Vehicle breakdown) L2 L1 L2 L1 L1 L1 P P
S2.5 (Traffic congestion) L2 L3 L2 L2 L1 L2 P P

S3.1 (Self monitoring) L1 L2 L1 L1 P P P
S3.2 (Obstructed view) L1 L2 L2 L1 L1 L1 L1 L1 P
S3.3 (Traffic rules) L2 L2 L2 L2 L2 L1 L1 L1 L1

“point-to-curve” aggregation, and (2) calculating possible paths using a road graph (L2),
and the usage of machine learning for trajectory predictions (L3).

- F8 - Spatial matching: basic spatial matching is the extraction of specific features such
as angles from the objects (L1). Advanced features include the matching of complex
geometries such as road graphs (L2).

- F9 - Rules: rules will reach beyond the expressivity of query answering and can include
“simple” implications as b(x, y) ∧ c(y, z) → a(x, z) (L1), but also more advanced
features such as aggregation, negation as failure (L2), and recursion (L3).

Requirements. In Table 1, we show the requirements that are derived by analyzing each
scenario and use case regarding the necessary features. The requirements build the base
line for the implementation and a later experimental assessment. In case of single features,
we only distinguish between L1 to L3 for required, blank for not required, and “P” for
possibly required. For instance, in S2.2 for F1, a point-based time model (L1) suffices
for detecting left/right turns, however, if we want to detect u-turns, interval-based model
in combination with temporal relations (L2) might be needed. Furthermore, push-based
queries are desired for swift reaction on changes. In [14], we partially support L1 for
F1 to F5, but we aim to push the level beyond that and need new features such as time
intervals, temporal relations, and unions of CQs. F6, F7, and F8 are entirely new features.

4 Approach for Spatial-Stream Query Answering
We start from previous work in [14], which introduced spatial ontology-mediated query
answering over Mobility Streams using DL-LiteA [10]. We focus on pull-based queries
that are evaluated at one single time point called the query time Ti.
Data Model and Knowledge Base. Our data model is point-based and captures the
valid time, extracted from the V2X messages, saying that some data item is valid at that
time point. Importantly, while evaluating a query, the model can change (temporary) to an
interval-based model that results from the window and aggregation functions. To capture
streaming data, we introduce the timeline T, which is a closed interval of (N,≤). A data
stream is a triple D=(T, v, P ), where T is a timeline, v : T → 〈F ,SF 〉 is a function
that assigns to each element of T data items of 〈F ,SF 〉, where F (resp. SF ) is a stream
(resp. spatial-stream) DB, and the integer P is called pulse defining the general interval
of consecutive data items on the timeline (cf. [8]); this naturally induces a stream of
data items. We always have a main pulse with a fixed interval length that defines the
highest granularity of the validity of data points, and larger pulses for streams with lower
frequency can be defined. The pulse also aligns the data items that arrive asynchronously
in the DB to the timeline.



Deploying Spatial-Stream Query Answering in C-ITS Scenarios 7

Example 2. For the timeline T = [0, 100], we have the stream FCAM = (T, v, 1) of
vehicle positions and speed at the assigned time points for the individuals c1, c2 and b1:
v(0) = {speed(c1, 30), pos(c1, (5, 5)), speed(c2, 10), pos(c2, (4, 4)), speed(b1, 10), ...}
v(1) = {speed(c1, 29), pos(c1, (6, 5)), speed(c2, 0), pos(c2, (5, 4)), speed(b1, 5), ...}, ...
A “slower” stream FSPaT = (T, v, 5) captures the next signal state of a traffic light:
v(0) = {hasState(t1, Stop)} and v(5) = {hasState(t1, Go)}. The static ABox contains as-
sertions Car(c1), Car(c2), Bike(b1), and SignalGroup(t1). A different “annotated”
representation by applying the function v on FCAM yields {speed(c1, 30) @t0, ...,
speed(c1, 29)@t1}, which is better suited for an interval-based time model.

We consider a vocabulary of individual names ΓI , domain values ΓV (e.g., N), and
spatial objects ΓS . A spatial-stream knowledge base is a tuple

K = 〈T ,A,SA, 〈F ,SF 〉 ,B〉,
where T (A, resp.) is a DL-LiteA TBox (ABox , resp.), SA is a spatial DB, and 〈F ,SF 〉
is a stream DB with spatial data support. Furthermore, B ⊆ ΓI × ΓS is a partial function
called the spatial binding from A to SA and F to SF . The TBox T and the ABox A
consist of finite sets of inclusion assertions, functionality assertions, and membership
assertions. To specify the localization of atomic concepts and roles. we extended standard
DL-LiteA (see [10]) with axioms (loc A), (locs A), and (locs Q) that assign an unspecific
or particular location to instances of atomic concepts A or basic roles Q. The extension
with streaming consists of the axiom schemes

(streamD C) and (streamD R),

where D is a particular stream over either complex concepts C or roles R in 〈F ,SF 〉.
More details are given in [14].
Example 3. A TBox may contain (streamCAM speed), (streamCAM (loc pos)),
(streamCAM V ehicle), and (streamSPaT hasState), and we have further axioms Car v
Vehicle , Bike v Vehicle , and Ambulance v ∃hasRole.Emergency .

Query Language. Our query language is based on conjunctive queries (CQs) and adds
spatial-stream capabilities (see Example 1). A spatial-stream CQ q(x) is a formula:∧m

i=1QOi(x,y) ∧
∧n

j=1QSj (x,y) ∧
∧o

k=1QDk(x,y) ∧
∧∧∧p

l=1 QTl(x,y) (1)

where x are the distinguished (answer) variables, y consists of non-distinguished (exis-
tentially quantified) variables, objects, and constant values:
- each atom QOi(x,y) has the form A(z) or P (z, z′), where A is a class name, P is a

property name of the LDM ontology, and z, z′ are from x or y;
- each atomQSj (x,y) is from the vocabulary of spatial relations and of the form S(z, z′),

where z, z′ represents geometries matched by S, where S is one of the following
relations: S={intersects, contains,next , equals,within, disjoint , outside};

- each atom QDk(x,y) is similar to QOi(x,y) but adds stream operators that relate to
Continuous Query Language operators. We have a window [agr, b, e] over a stream Dk,
where b and e are the bounds of the window in time units (positive for past, negative for
future) and an aggregate function agr applied to the data items in the window:
- [agr, b] represents the aggregate of last or next b time units of stream Dk;
- [b] represents the single tuple of Fj at index b with b = 0 if it is the current tuple;
- [agr, b, e]: represents the aggregate of a window [b, e] in the past/future of Dk.

- each atom QTl(x,y) = (T1(z1, z
′
1), . . . , Tq(zq, z

′
q)) represents a disjunction of tem-

poral relations, where the variables zi, z′i represent matches, i.e., individuals anno-
tated with time points/intervals, which are filtered by the temporal relation Ti. For
points, Ti = TP

i is from {<,≤,=,≥, >}; for intervals, we choose the relations
of Allen’s Time Interval Algebra [1], i.e., Ti = T I

i is from {before, equal ,meets,



8 T. Eiter, R. Ichise, J. X. Parreira, P. Schneider, L. Zhao

overlaps, during , starts,finishes} and the set of inverses, e.g., during−, which filter
variable matches according to the start/end points of the intervals.

The “historic” window operator [agr, b, e] is derived from Brandt et al. [8] and allows us
to query logs represented by data streams. Details on handling the temporal relations and
aggregate functions are given below. We also have added a limited form of disjunction in
our temporal relations; in general this would move the language beyond CQs.
Query Rewriting with Spatio-Temporal Relations. We consider answering pull-based
queries at a single time point Ti with stream atoms that define aggregate functions on
different window sizes relative to Ti. For this, we consider a semantics based on epistemic
aggregate queries (EAQ) over ontologies [11] by dropping the order of time for the data
and handling the streamed data items as bags (multi-sets). Roughly, we perform two steps:
(1) calculate only “known” solutions, and (2) evaluate the rewritten query, which includes
the TBox axioms as well, over them. Each EAQ is evaluated over filtered and merged
temporary ABoxes. The filtering and merging, relative to the window size and Ti, creates
for each EAQ a temporary ABox A�φ , which is the union of the static ABox A and the
filtered streaming data items from the stream DB. The EAQs are then applied on A�φ by
grouping and aggregating the normal objects, constant values, and spatial objects. We use
a bag-based epistemic semantics for the queries, in which we locally close our world for
the specific window and avoid “wrong” aggregations due to the open world semantics of
DL-LiteA . For details see [14].

At first sight, spatial and temporal relations could be treated similarly. As shown
in [14], we evaluate spatial relations regarding their Point-Set Topological Relations. It
amounts to pure set theoretic operations on point sets using the function points(p), which
defines the (infinite) set of points of a geometry p that is a sequence p = (p1, . . . , pn) of
(defined) points. For instance, the relation inside(x, y) between geometries is defined
as {(x, y) : points(y)⊆points(x)}. However, for temporal relations, we distinguished
point-based relations that can be encoded as simple arithmetic filters, from interval-based
relations, where in Allen’s Time Interval Algebra (IA) [1] 13 relations can hold between
two intervals. The domain of IA relations is the set of intervals {[p1], . . . , [pk]} over the
linear order of T defined as [pi] = [pi, pi] with pi < pi. The binary basic IA relations are
defined according to their start/end points as follows [1]:

before(x, y)={(x, y) : x < x < y < y}; meets(x, y)={(x, y) : x < x = y < y};
overlaps(x, y)={(x, y) : x < y < x < y}; starts(x, y)={(x, y) : x = y < x < y};
finishes(x, y)={(x, y) : y < x < x = y}; during(x, y)={(x, y) : y < x < x < y};
equal(x, y)={(x, y) : y = x < x = y}.
IA relations can be interpreted over the sets of intervals IA and IB in two ways: (a)

IA filtering, where each relation is treated as a single binary constraint. In that sense, the
temporal relation acts as a filter on all intervals in IA × IB that matching the relations
regarding their start/end points; (b) IA reasoning, which requires the computation of
the path consistency of all temporal relations over the intervals in IA ∪ IB using the
predefined composition table of [1]. The composition table is defined as a set of transitive
rules on basic relations, which are applied until no new general relations can be inferred.
For instance, if we have the edges during(I1, I2) and during(I2, I3), we can infer a
new relation during(I1, I3). Note that only with approach (b) all possible (chained)
relations between intervals are derivable. A well-known representation for IA relations
are IA graphs (also called IA networks), which are directed graphs, where the vertices
are the intervals of IA and IB and the edges represent the IA relations that hold between
two intervals. Hence, an IA graph (closed by transitive rules) is a materialization of all
relations that can hold between intervals, and can be used to check the relations if a
directed edge exists.



Deploying Spatial-Stream Query Answering in C-ITS Scenarios 9

Our intervals are an intermediate product of the EAQ evaluation and annotate the
resulting objects. As mentioned, for each stream atom we have a temporary ABox derived
from Ti and the window [agr, b, e]. In a first approach, we directly use Ti and the window
size for the interval generation. For instance, having T5 and speed[avg, 3,−1], we would
annotate each grouped/aggregated match with the interval [2, 6]. In a second, approach,
we extract for each grouped/aggregated match of an EAQ the upper and lower bounds of
the time points annotated to the data items in that window, where the window size is the
outer bound. More sophisticated approaches might include the segmentation of the data
items, thus creating different fragmented subintervals.
Query Evaluation. The four types of query atoms need different evaluation techniques
over separate DB entities. Ontology atoms are evaluated over the static ABox A using
a “standard” DL-LiteA query rewriting, i.e., PerfectRef [10]. For spatial atoms, we need
to dereference the bindings to the spatial ABox SA and evaluate the spatial relations to
filter spatial objects. Stream atoms are computed as EAQ to group and summarize over
the temporary ABoxes of the different streams. For temporal atoms, we consider three
techniques. For time points, we simply add the filter conditions to the rewritten query.
For intervals, two techniques are suitable: (a) IA filtering, hence we can rewrite each IA
relation of QTl into a filter that encodes the equation with the start/end points (as defined
before); (b) IA reasoning, where the closed IA graph is constructed applying the transitive
rules on all intervals derived from an EAQ. We then extract all derived intervals with the
annotated objects from the IA graph that hold according to the queried relations in QTl .

In [14], we introduced two spatial query evaluation strategies assuming that no
bounded variables occur in spatial atoms and the CQ is acyclic (roughly has no proper
cycle between join variables). One strategy is based on the query hypergraph and the
derived join plan and is well-suited for implementing spatial-stream CQs, as it gives us
fine-grained caching, full control over the evaluation, and possibly handling different DB
entities. Details are given in standard DB literature such as [17].
Example 4. The following example of a simplified q1, where the layers distinguish be-
tween ontology (first), stream/temporal (second), and spatial (third line) atoms:
q2(x, y) : LaneIn(x) ∧ isManaged(x, z) ∧ SignalGroup(z) ∧ V ehicle(y)

∧ pos(y, v)[line, 10s] ∧ during(v, s) ∧ hasState(z, s)[last, 5s,−5s]
∧ hasLoc(x, u) ∧ intersects(u, v) ∧ (s = ′Stop′)

Based on the hypergraph decomposition, we have the following evaluation order:
(1) q2F1

(y, v@iv) : V ehicle(y) ∧ pos(y, v@iv)[line, 10s]; (2) q2N1
(x, u) : LaneIn(x) ∧ hasLoc(x, u);

(3) q2F2
(z, s@is) : SignalGroup(z) ∧ hasState(z, s@is)[last, 5s,−5s] ∧ (s = ′Stop′);

(4) q2T1
(y, v) : q2F1

(y, v@iv) ∧ during(v@iv, s@is) ∧ q2F2
(z, s@is);

(5) q2(x, y) : q2T1
(y, v) ∧ intersects(u, v) ∧ q2N1

(x, u).

Stream Aggregation and Predictions. For normal objects and constant values, we
allow the aggregate functions count, first, and last on the stream data items. For last
and first, we need to search the bag of data items, as the sequence of time is lost. This
is achieved by iteratively checking if we have a match at one of the points in time. In
the implementation, the first and last match can be simply cached while processing the
stream. For individuals and constant (numerical) values, we allow a range of aggregation
and prediction functions on the streamed data items:
- order: first, last, where they give the first or last element in the stream, respectively;
- simple: count, min, max, sum, and avg;
- descriptive statistics (DS): mean, sd, var, median, where each function calculates

the mean, standard deviation, variance, and median as expected;
- predictions: We apply predefined regression methods to predict values from existing

(time-series) data items inside a window. Model building (i.e., the training) and predic-
tion should be fast, hence we support the following lightweight methods: (a) mov avg



10 T. Eiter, R. Ichise, J. X. Parreira, P. Schneider, L. Zhao

Fig. 2: (a) System Architecture and (b) Four Intersection Scenario

calculates the moving average of the past values; (b) exp smooth applies simple expo-
nential smoothing; and (c) grad boost uses gradient boosting with regression trees.

Note, since the order of items is lost due to the bag semantics, the temporal annotation (e.g.,
speed(c1, 50)@10) are needed in the prediction functions as the second dimension. We
allow different regression methods with increasing complex models. On small windows
with a required fast response time, mov avg and exp smooth is preferable, while on
larger windows, e.g., for traffic predictions, grad boost could be applied.

For spatial objects, geometric aggregate functions are applied to the bag of data items
that represent geometries, i.e., the sequence of points p = (p1, . . . , pn). We allow these
functions to derive new geometries (among others):
- point: we evaluate the function last to get the last data item pn on the stream;
- line: we create a sequence of points representing a path by calculating a total order on

the bag of points, such that we have a starting point using last and iterate backwards
finding the next point by Euclidean distance;

- line angle: the angle (in degrees) of line regarding a reference system is calculated;
- traject line and traject heading are simple techniques to project possible trajec-

tories from past points. The former is linearly projecting the trajectory based on the
previous points and the current speed. The later calculates the trajectory based on the
last point and the last heading of the vehicle.

For the trajectory computation, besides a simple linear also a curvature-based models
could be applied. To improve the accuracy of the model, we could use the speed of the
last data points, so a speed-up or slow down would be taken into account.

5 Implementation
We have implemented a prototype of our spatial-stream OQA approach in JAVA 1.8 using
the stream RDBMS PIPELINEDB 9.8.1 (https://www.pipelinedb.com/). The system archi-
tecture is shown in Figure 2a. We chose PIPELINEDB, as it is built on top of PostgreSQL
(https://www.postgresql.org/) and PostGIS (http://postgis.net/) and thus supporting stream
and spatial data. It distinguishes between streams and continuous views, where streams
are write-only, so the query evaluator has to access the read-only continuous views. We
created an 1-to-1 mappings from streams to continuous views, and further to the TBox
concepts and roles; e.g., vehicle positions are fed into the stream stream pos(id, pos, tp),
where id is the vehicle id, pos its position, and tp the time point of adding; stream pos is
accessed via the continuous view view pos, which is mapped to the property pos. We also
provide an integration framework that constantly receives V2X messages and adds the
raw message data either to normal tables of the static DB, spatial tables of the GIS DB, or
the streams of the stream DB.



Deploying Spatial-Stream Query Answering in C-ITS Scenarios 11

Implementation Details. The parser/decomposer component is used for parsing the
input spatial-stream CQ, and then decomposing the query hypertree using Gottlob et al.’s
(https://www.dbai.tuwien.ac.at/proj/hypertree/) implementation. Depending on the size of the
CQ, the decomposition can be expensive, hence it is performed as a preprocessing step,
whereas the decompositions are cached in-memory. The decomposer gives us the join tree
Jq and the sub CQs assigned to each tree node. For each node, we also keep the label that
includes the subquery type, windows size, and aggregation/prediction function. The query
evaluator traverses Jq bottom up, left-to-right, and (1) checks if the result of a sub CQ are
cached; (2) if not, instantiates one of the evaluators according to the sub CQ type.
Ontology evaluator: this evaluator uses the DL-LiteA query rewriter OWLGRES 0.1 [22],
but a more efficient implementation as in ONTOP [20] is planned.
Stream evaluator: for each stream sub CQ qi, it detemporalizes the streams by group-
ing/aggregating the data items by performing the following steps:
(1) extract the data items according to the defined window size;
(2) evaluate qi (no rewriting) and store the “known solutions” in memory as Ri,1;
(3) evaluate q′i (with rewriting) over Ri,1 and store it in memory as Ri,2;
(4) apply the prediction function on Ri,2 and add the predicted data items;
(5) apply the grouping/aggregation function on Ri,2, and produce the outcome Ri,3.
Predictors: the prediction function is an integrated part of the stream evaluator, where we
apply the predictions on the aggregated data items. We provide a standard implementation
for the functions mov avg and exp smooth. For grad boost, we use the state-of-art
library XGBOOST (https://xgboost.readthedocs.io/en/latest/).
Spatial evaluator: it handles the different spatial relations. For performance reasons, we
do not compile them to SQL, but evaluate the spatial relations in-memory using the
functions of the JTS TOPOLOGY SUITE (https://github.com/locationtech/jts).
Temporal evaluator: this evaluator supports the mentioned IA filtering technique, since
temporal relations can be directly rewritten into SQL by encoding the relations as joins,
where each relations is encoded as a filter on the start/end points of the aggregated data
items. The second technique IA reasoning is planned for future work.

6 Experiments and Evaluation
We evaluated our platform regarding the requirements/features (cf. Table 1) derived from
the use cases. The requirements are encoded into a set of queries that include the desired
features. The ontology, queries, experimental setup, logs, results, and the implementation
are available on http://www.kr.tuwien.ac.at/research/projects/loctrafflog/ekaw2018.
Scenario Data. For having realistic traffic data, we generated our streaming data with the
microscopic traffic simulation tool PTV VISSIM (http://vision-traffic.ptvgroup.com/en-us/
products/ptv-vissim/), which allows us to simulate realistic driving and traffic light behavior,
as well as the possibility to create unexpected events like accidents. We extract the actual
state of each Vissim simulation step, and store the result as JSON in a log, and provide a
log player that replays the simulation by feeding the data to PIPELINEDB. For varying
the data throughput, we adjust the following parameters: (a) replay with 5ms, 10ms, 50ms,
100ms delay, where 5ms are the fastest updates (i.e., simulating sensors) and 100ms is
the real-time speed of the Vissim simulation; (b) we simulate light, medium, and heavy
traffic in our scenario, where we have approx. 20, 50, and 150 vehicles respectively. We
modeled a real-world scenario shown in Fig. 2b, which is based on a grid layout with
four intersections of four roads crossing, and two incoming and outgoing lanes per street.
The two incoming lanes of each side have traffic light controllers assigned; all maneuvers
(turn left/right, straight on) to outgoing lanes are allowed. The main traffic flow is from
north to south and west to east. We encode the structure of the full intersections into static



12 T. Eiter, R. Ichise, J. X. Parreira, P. Schneider, L. Zhao

ABox instances as follows: (a) intersections, roads, lanes, signal groups, and vehicles as
concept assertions; (b) geometries for each lane, road, etc. as attribute assertions; and (c)
lane connectivity, signal group assignments, etc. as role assertions.
Queries for Experiments. Based on the requirements, we derived a set of queries to
assess each scenario. Each query aims at answering a specific problem of the use case
taking the set of features into account. Note that commas between atoms are conjunctions,
disjunctions are explicitly stated using or. For the use case S1.1 (object statistics), query
q1.1 determines the average and max speed of BMWs and VWs in the last 10 secs.
q1.1(x, u, v) : Vehicle(x ), vehicleMaker(x , z ), (z=′BMW ′ or z=′VW ′),

speed(x , u)[avg , 10s], speed(x , v)[max , 10s]

For the use case S1.2 (intersection statistics), we count vehicles according to their engine
type. Sub-queries q1.2a and q1.2b select cars with either diesel or petrol engine that pass
intersection i100. Query q1.2 aggregates the sub-queries and returns the count of diesel in
y and petrol vehicles in z, respectively:
q1.2a(x, y) : Vehicle(y), pos(y , z )[line, 10s], vehicleEngine(y ,m), (m=′Petrol ′),

intersects(z , u), hasLoc(x , u), Intersection(x ), x = ′i100 ′

q1.2b(x, y) : Vehicle(y), pos(y , z )[line, 10s], vehicleEngine(y ,m), (m=′Diesel ′),
intersects(z , u), hasLoc(x , u), Intersection(x ), x = ′i100 ′

q1.2(x, y, z) : q1 .2a(x , y)[count , 10s], q1 .2b(x , z )[count , 10s]

For the use case S1.3 (network statistics), we have two linked intersections i100 and i200.
Query q1.3 traces the vehicles that start at i100 and counts those passing through i200.
A delay of 7s allows to check the vehicle’s position 7s later, and the temporal relation
before ensures that a vehicle first passes i100 and then i200.
q1.3a(x, v) : Vehicle(x ), pos(x , v)[line, 6s], intersects(v , u), Intersection(r),

hasLoc(r , u), (r = ′i100 ′)
delay(7s)
q1.3b(x, z) : Vehicle(x ), pos(x , z )[line, 6s], intersects(z ,w), Intersection(r),

hasLoc(r ,w), (r = ′i200 ′)
q1.3c(x) : q1.3a(x, v), before(v, z), q1.3b(x, z)

For the use case S2.1 (simple maneuvers), query q2.1 returns all vehicles x and y
that turned left or right in the last 6s. Then both results are combined by unions of CQs
resulting in all vehicles performing the two maneuvers.
q2.1l(x, z) : Vehicle(x ), pos(x , y)[line, 6s],match(y , z )[angle,−175 ,−15 ],

intersects(y , u), hasLoc(r , u), Intersection(r), (r = ′i100 ′)
q2.1r(x, z) : Vehicle(x ), pos(x , y)[line, 6s],match(y , z )[angle, 15 , 175 ],

intersects(y , u), hasLoc(r , u), Intersection(r), (r = ′i100 ′)
q2.1(x, z) : q2.1l(x, z) or q2.1r(x, z)

In use case S2.2 (complex maneuvers), query q2.2 detects illicit lane changes in terms of
crossing the middle marker (i.e., a white line). This is detected by evaluating whether a
vehicle has moved from in-lane, temporally to an out-lane or vice versa.
q2.2(x, y) : LaneIn(z ), hasLoc(z , u), intersects(u, v), pos(x , v)[line, 6s, 3s],

Vehicle(x ), pos(x ,w)[line, 3s, 0s], intersects(t ,w), hasLoc(y , t),LaneOut(y)
For the use case S2.3 (red-light violation), we modified Ex. 1 by taking trajectory and
speed prediction into account, which allows us a more precise detection of violations,
since we can rule out vehicles that are slowing down or are about to change lanes.
q2.3(x, y) : LaneIn(x ), hasLoc(x , u), intersects(u, v), pos(y , v)[traject line, 5s,−3s],

Vehicle(y), speed(y , r)[mov avg , 5s,−3s], (r > 10 ), hasSignalGroup(x , z ),
SignalGroup(z), hasState(z, Stop)[last, 5,−5]

For the use case S2.4 (vehicle breakdown), we check with q2.4, if a car has stopped for
longer than 30s, while (using the during relation) it is located inside our intersections,
but not on one of the park lanes (using the disjoint relation).



Deploying Spatial-Stream Query Answering in C-ITS Scenarios 13

q2.4(x, y) : Vehicle(x ), speed(x , r)[avg , 30s], (r < 1 ), pos(x , v)[line, 15s], inside(v , u),
hasLoc(y , u), Intersection(y), during(v , r), disjoint(v , z ), hasLoc(p, z ),ParkLane(p)

The use case S2.5 (traffic congestion) can be evaluated by a query similar to S2.4, but
with the extension that stop-and-go traffic can be excluded by checking if there is no
movement while the traffic light phases are on “Go”.
q2.5(x, y) : Vehicle(x ), speed(x , r)[avg , 30s], (r < 1 ), pos(x , v)[line, 30s], intersects(v , u),

hasLoc(y , u),LaneIn(y), hasSignalGroup(y , z ),SignalGroup(z ),
hasState(z , s)[last , 30s), (s = ′Go′), during(s, r)

For the use case S3.1 (self monitoring), we aim to detect with q3.1, if our ego vehicle
is exceeding the speed limit that is assigned to the lane our car is driving on.
q3.1(x, y) : LaneIn(y), hasLocation(y, u), intersects(u, v), pos(x, v)[line, 5s],

V ehicle(x), isEgo(x), speed(x, r)[max, 5s], speedLimit(y, s), (r > s)
In use case S3.2 (obstructed view) we compute query q3.2, where our system (as part of
the ego vehicle) aims to detect cars that very likely will collide in 2s on a busy intersection
by checking if our predicted trajectories will cross another car.
q3.2(x, y) : Vehicle(y), isEgo(y), pos(y , v)[traject line, 2s,−1s], intersects(v ,w), (r > 10 ),

Vehicle(x ), speed(x , r)[mov avg , 5s,−2s], pos(x ,w)[traject line, 2s,−1s]
In S3.3 (traffic rules), our ego vehicle approaches an uncontrolled intersection at the same
time with other vehicles. According to traffic rules in Austria, preference is given to the
vehicles on the main road. We can express these traffic rules in positive Datalog rules as:
willCross(x , y) ∧ straightOn(x ) ∧ turnLeft(y)→ giveWay(y , x )
willCross(x , y) ∧ turnRight(x ) ∧ turnLeft(y) ∧ crossOpposLane(y)→ giveWay(y , x )
vehicle(x ) ∧ vehicle(y) ∧ giveWay(y , x )→ stop(y)

The atom willCross(x , y) matches all vehicles that might collide and can be evaluated
by q3.2(x, y) (modified without isEgo(x ). The atoms turnLeft(x ), turnRight(x ), and
straightOn(x ) can be evaluated by the queries q2.1l(x), q2.1r(x), assuming the queries
are atomic rules with q(x) as the head. Then, the rules of S3.3 can be expressed as unions
of CQs, but this approach is not feasible if we need rule chaining and transitive rules.
Results. We conducted our experiments on a Mac OS X 10.13.3 system with an Intel
Core i7 2.9GHz, 8GB of RAM, and a 250GB SSD. The average of 21 runs for query
rewriting time and evaluation time was calculated. The results are in Table 2 presenting
the number of subqueries #Q with stream queries in brackets, the size of rewritten atoms
#A, and t as the average evaluation time (AET) in seconds for different traffic densities
and update delay in ms. The new experiments confirm results of [14] with closer to
“real-world” queries and simulation data. The AET ranges between 0.86s and 2.06s with
the exception of use case S3.3, which emulates rules using unions of CQs. Query q3.1
shows the highest delay of 2.06s, since the join condition of (r > s) is evaluated inline
and not on the DB, which adds a delay of 0.4s with larger windows. Our baseline query
is q1.1 tested with 100ms delay and low traffic. It has an AET of 0.86s, where 0.23s is the
time-to-load (TOL), 0.63s is needed for query evaluation of two stream atoms, where we
added an artificial delay of 0.18s before each stream atom evaluation. The artificial delay
is empirically determined and needed for PIPELINEDB to set up the continuous views
(CVs); ignoring this would lead to missing results. Note that the baseline time still could
be reduced by (a) pre-compiling the program, which shortens evaluation by 0.2s, and (b)
parallelization of stream atom evaluation that improves performance by approx. 20%;
details are available on the results website. The added functions for statistics, matching,
and predictions, i.e., mov avg and traject line do not affect performance, since they are
applied on small windows with few data items. However, if we would apply gradboost
for predictions on larger windows, our query time could rise considerably, since prediction
time (without a preprocessed training step) can be above 20s.



14 T. Eiter, R. Ichise, J. X. Parreira, P. Schneider, L. Zhao

#Q #A (l) with ms delay (m) with ms delay (h) with ms delay
5 10 50 100 5 10 50 100 5 10 50 100

q1.1 3(2) 42 1.35 1.18 0.95 0.86 1.45 1.30 0.99 0.88 1.46 1.35 1.14 0.99
q1.2 6(2) 43 1.30 1.20 1.01 0.96 1.33 1.24 1.04 1.00 1.41 1.38 1.07 1.01
q1.3 8(2) 44 1.44 1.35 1.15 1.08 1.47 1.37 1.23 1.09 1.45 1.44 1.30 1.20

q2.1 6(2) 43 1.31 1.20 1.01 0.98 1.43 1.29 1.09 0.99 1.48 1.40 1.13 1.02
q2.2 7(2) 45 1.36 1.26 1.05 1.00 1.47 1.29 1.08 1.03 1.51 1.43 1.13 1.06
q2.3 7(3) 50 1.57 1.50 1.27 1.21 1.63 1.53 1.30 1.22 1.72 1.65 1.37 1.27
q2.4 5(2) 46 1.24 1.21 0.98 0.92 1.28 1.24 1.06 0.97 1.28 1.29 1.13 0.99
q2.5 7(3) 43 1.44 1.38 1.16 1.08 1.50 1.41 1.20 1.11 1.55 1.47 1.26 1.17

q3.1 5(2) 43 1.85 1.72 1.40 1.32 1.89 1.79 1.48 1.35 2.06 2.04 1.57 1.38
q3.2 5(3) 63 1.41 1.34 1.23 1.17 1.48 1.43 1.27 1.20 1.56 1.51 1.31 1.21
q3.3 12(5) 43 3.02 2.80 2.42 2.39 3.26 2.98 2.58 2.38 3.36 3.20 2.66 2.44

Table 2: Results (t in secs) for scenario with (l)ow, (m)edium, and (h)eavy traffic

Feature Coverage. As shown with the queries, we covered in the implementation all
initial levels (L1) of features that are defined in the scenarios/uses cases. We support
temporal relations and a (partial) interval-based data model (F1) evaluated by pull-based
queries (F2). Then, we allow temporal relations and nested queries that include unions of
CQs (F3). But, we have not yet implemented the IA reasoning for temporal relations, since
an in-memory evaluation of the transitive rules completing the IA graph needs further
investigation. Regarding F4 and F5, we have implemented the initial set of numerical,
descriptive statistical, and spatial aggregation functions. For F6, we coveredmov avg and
exp smooth for fast, simple predictions, and support grad boost for long-term traffic
forecasting. For trajectory prediction (F7), we have implemented a method based on a
simple linear path calculation. But, more accurate trajectory predictions would be desired.
Feature F8 is covered by the atom match(y, z)[angle, 0, 15], and F9 is partially covered
by unions of CQs, but transitive rules are out of scope for this work.

7 Related Work and Conclusions
RDF stream processing engines, such as C-SPARQL [5], SPARQLstream [9], and
CQELS [15], were proposed for processing RDF streams integrated with linked data
sources. EP-SPARQL [3] and LARS [6] introduce languages that extend SPARQL respec-
tively CQs with stream reasoning, but translate KBs into more expressive, less efficient
logic programs. Closest to our spatial-stream QA approach is the work of (i) [19] that sup-
ports spatial operators as well as aggregate functions over temporal features, (ii) [9] that
allows evaluating OQA queries over stream RDBMS, and (iii) [8] that extends SPARQL
with aggregate functions and statistic methods and is evaluated over streamed and ordered
ABoxes. Temporal QA is also investigated in [4] and [7], both are on the theoretical side
and provide no implementation yet. The work of Netten et al. [18] and Lécué et al. [16]
focus on longer-term diagnosis, but neglect the streaming nature of C-ITS data.

This work is sparked by applying spatial-stream QA as an integration and QA effort
for streamed mobility data, e.g., vehicle movements, in a spatial context over the complex
mobility domain. In [14], we have introduced simple aggregate queries over streams,
which often do not suffice to capture more complex use cases. We present an extension
with temporal relations, and numerical/trajectory predictions, which allows us to query
complex mobility patterns such as traffic statistics or complex events such as (potential)
accidents. Based on the newly developed scenarios of traffic statistics, event detection, and
ADAS, we have defined a set of domain-specific features such as trajectory computation,
which are matched with the scenarios/use cases to define the requirements. Given the new
features, we adjusted our LDM ontology, our spatial-stream query language, and extended
our methods accordingly. We also redesigned our system architecture and give insights
on the new components for temporal relations, prediction and trajectory calculation.



Deploying Spatial-Stream Query Answering in C-ITS Scenarios 15

The experimental evaluation provides evidence for the feasibility and efficiency of our
approach in the mentioned scenarios.

As discussed in feature coverage, ongoing and future research should be directed to
extend the languages, methods, and the platform to fulfill the defined requirements, which
will allow us to apply them to more scenarios such as logistics.
Acknowledgements. This work has been supported by the Austrian Research Promotion
Agency project LocTraffLog (FFG 5886550) and DynaCon (FFG 861263).

References
1. Allen, J.F.: Maintaining knowledge about temporal intervals. Com. ACM 26(11), 832–843

(1983)
2. Andreone, L., Brignolo, R., Damiani, S., Sommariva, F., Vivo, G., Marco, S.: Safespot final

report. Tech. Rep. D8.1.1 (2010), available online.
3. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language for event

processing and stream reasoning. In: Proc. of WWW 2011. pp. 635–644 (2011)
4. Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F., Zakharyaschev, M.:

First-order rewritability of temporal ontology-mediated queries. In: Proc. of IJCAI 2015. pp.
2706–2712 (2015)

5. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-sparql: a continuous query
language for rdf data streams. Int. J. Semantic Computing 4(1), 3–25 (2010)

6. Beck, H., Dao-Tran, M., Eiter, T., Fink, M.: LARS: A logic-based framework for analyzing
reasoning over streams. In: Proc. of AAAI 2015. pp. 1431–1438 (2015)

7. Borgwardt, S., Lippmann, M., Thost, V.: Temporalizing rewritable query languages over
knowledge bases. J. Web Sem. 33, 50–70 (2015)

8. Brandt, S., Kalayci, E.G., Kontchakov, R., Ryzhikov, V., Xiao, G., Zakharyaschev, M.:
Ontology-based data access with a horn fragment of metric temporal logic. In: Proc. of AAAI
2017. pp. 1070–1076 (2017)

9. Calbimonte, J., Mora, J., Corcho, Ó.: Query rewriting in RDF stream processing. In: Proc. of
ESWC 2016. pp. 486–502 (2016)

10. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and
efficient query answering in description logics: The dl-lite family. J. Autom. Reasoning 39(3),
385–429 (2007)

11. Calvanese, D., Kharlamov, E., Nutt, W., Thorne, C.: Aggregate queries over ontologies. In:
Proc. of ONISW 2008. pp. 97–104 (2008)

12. Dell’Aglio, D., Valle, E.D., van Harmelen, F., Bernstein, A.: Stream reasoning: A survey and
outlook. Data Science, IOS Press 1(1-2), 59–83 (2017)

13. Eiter, T., Parreira, J.X., Schneider, P.: Detecting mobility patterns using spatial query answering
over streams. In: Proc. of Stream Reasoning Workshop 2017 (2017)

14. Eiter, T., Parreira, J.X., Schneider, P.: Spatial ontology-mediated query answering over mobility
streams. In: Proc. of ESWC 2017. pp. 219–237 (2017)

15. Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive approach for
unified processing of linked streams and linked data. In: ISWC 2011. pp. 370–388 (2011)

16. Lécué, F., Tallevi-Diotallevi, S., Hayes, J., Tucker, R., Bicer, V., Sbodio, M.L., Tommasi, P.:
Smart traffic analytics in the semantic web with STAR-CITY: scenarios, system and lessons
learned in dublin city. J. Web Sem. 27, 26–33 (2014)

17. Maier, D.: The Theory of Relational Databases. Computer Science Press (1983)
18. Netten, B., Kester, L., Wedemeijer, H., Passchier, I., Driessen, B.: Dynamap: A dynamic map

for road side its stations. In: Proc. of ITS World Congress 2013 (2013)
19. Quoc, H.N.M., Le Phuoc, D.: An elastic and scalable spatiotemporal query processing for

linked sensor data. In: Proc. of SEMANTICS 2015. pp. 17–24. ACM (2015)
20. Rodriguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontology-based data access: Ontop

of databases. In: Proc. of ISWC 2013. pp. 558–573 (2013)
21. Shimada, H., Yamaguchi, A., Takada, H., Sato, K.: Implementation and evaluation of local

dynamic map in safety driving systems. J. Transportation Technologies 5(2), 102–112 (2015)
22. Stocker, M., Smith, M.: Owlgres: A scalable owl reasoner. In: Proc. of OWLED 2008 (2008)
23. Zhao, L., Ichise, R., Liu, Z., Mita, S., Sasaki, Y.: Ontology-based driving decision making: A

feasibility study at uncontrolled intersections. IEICE Trans. 100-D(7), 1425–1439 (2017)


