Lightweight Spatial Conjunctive Query Answering using Keywords - Extended Version

Thomas Eiter, Thomas Krennwallner, and Patrik Schneider

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria
{eiter, tkren, patrik}@kr.tuwien.ac.at

Abstract. With the advent of publicly available geospatial data, ontology-based data access (OBDA) over spatial data has gained increasing interest. Spatio-relational DBMSs are used to implement geographic information systems (GIS) and are fit to manage large amounts of data and geographic objects such as points, lines, polygons, etc. In this paper, we extend the Description Logic DL-Lite with spatial objects and show how to answer spatial conjunctive queries (SCQs) over ontologies—that is, conjunctive queries with point-set topological relations such as next and within—expressed in this language. The goal of this extension is to enable an off-the-shelf use of spatio-relational DBMSs to answer SCQs using rewriting techniques, where data sources and geographic objects are stored in a database and spatial conjunctive queries are rewritten to SQL statements with spatial functions. Furthermore, we consider keyword-based querying over spatial OBDA data sources, and show how to map queries expressed as simple keyword lists describing objects of interest to SCQs, using a meta-model for completing the SCQs with spatial aspects. We have implemented our lightweight approach to spatial OBDA in a prototype and show initial experimental results using data sources such as Open Street Maps and Open Government Data Vienna from an associated project. We show that for real-world scenarios, practical queries are expressible under meta-model completion, and that query answering is computationally feasible.

1 Introduction

By the ever increasing availability of mobile devices, location-aware search providers are becoming increasingly commonplace. Search providers (e.g., Google Maps http://maps.google.com/ or Nokia Maps http://here.net) offer the possibility to explore their surroundings for desired locations, also called points-of-interest (POIs), but usually miss the possibility to express spatial relations (e.g., next and within). For an expressive location-aware search, the combination of Semantic Web techniques and spatial data processing (with spatial relations) is appropriate, given they provide a data backbone for spatial and taxonomic information to query semantically-enriched POIs.

To realize location-aware semantic search support, one needs to capture categories of POIs (e.g., Italian restaurant), their relations to additional qualitative attributes (e.g., having a guest garden). Further, one needs to capture the spatial relations between

* Supported by the Austrian Research Promotion Agency (FFG) project P828897, and the Austrian Science Fund (FWF) project P20840.
Fig. 1: Ontology with integrated meta-model (TBox excerpt; role names start lowercase)

POIs (e.g., located inside a park). For modeling and interpreting a user’s intention, it seems suggestive to use ontology languages and associated reasoning services. However, for spatial aspects we need to extend or combine them with spatial data reasoning. Furthermore, we must respect that ordinary users of location-aware search need a plain query interface; they are not experts in query languages, and an interface to express search intentions by lists of keywords in a Google-like manner would be desirable.

However, we face several obstacles for a seamless keyword-based querying and integration of geospatial data sources and ontologies. First, for a meaningful search result, we need to consider data obtained by integrating multiple data sources, which may be provided by autonomous vendors in heterogeneous formats (e.g., OpenStreetMap or Open Government Data data, a restaurant guide, etc). Using various data sources of substantial size gives the opportunity to find intended POIs, which may fall into multiple concepts ranging from rather generic to more detailed ones such as “restaurant” vs. “pizzeria.” Moreover, we can exploit the structure of the taxonomic information that is implicit in the data sources by making it concrete in an ontology. Such ontology-based data access can be used to answer broad queries like “restaurants with Italian Cuisine,” that should return pizzerias, trattorias, and osterias.

Second, from keyword-based input, we must generate meaningful formal queries to an ontology. In that, we must respect that the users may have no prior knowledge of the domain. Thus, we must be able to recognize and generate relevant combinations of possible keywords according to the ontology that represents the domain.

Third, as we query mainly spatial data, we need to capture spatial relations between different spatial objects and give users the possibility to use a fixed set of keywords to express them. For spatial querying answering, we must define an appropriate semantics and provide techniques that combine spatial with ontological query answering.

Fourth, a lot of research has been put into efficient query answering techniques over lightweight ontology languages, such as the DL-Lite family [7]. Conjunctive query (CQ) evaluation over DL-Lite ontologies can be delegated, by first-order query rewriting, to a Relational Database Management System (RDBMS), which facilitates scalable query processing. To secure this for an extension with spatial reasoning, the first-order rewritability of the latter is desirable. Furthermore, as first-order rewritings of queries might get prohibitively large in general (a known feature), also issues of manageable query generation from keywords must be respected.

We address the above issues with the following approach outlined in a nutshell.

- Various data sources are integrated via a global schema represented by an DL-Lite$_R$ ontology that is enriched with spatial information. The ontology-based knowledge base (KB) is separated into a TBox, an ABox with normal individuals and a spatio-relational
database with spatial objects. We apply a mild extension to DL-Lite$_R$ by associating individuals to spatial objects by a predefined binding. A preprocessor creates this binding using a domain-specific heuristic (which is not considered here).

- The enriched ontology can be accessed, at the system level, by spatial conjunctive queries (SCQ), which extend conjunctive queries with spatial predicates (e.g., intersects). In such queries, individuals can be located with spatial objects whose relationships are determined. By rewriting techniques, and in exploiting the PerfectRef algorithm [7], SCQs can be rewritten to a union of conjunctive queries (UCQ). Under certain syntactic conditions, a 2-stage evaluation—evaluation of the ontology part of the query (over the ABox, which is stored in an RDBMS) followed by filtering via spatial conditions—is possible, which makes this approach attractive for practical realization.

- For keyword-based query answering, concepts of the ontology are labeled with keywords. On query evaluation, the keywords which the user enters are mapped to concepts and roles from the ontology; an auto-completion service aids the user to compensate lack of domain knowledge. Based on the keyword structure, a feasible CQ is generated and extended with spatial predicates to SCQs; in that, we use a specific meta-model that is stored in the ontology. Fig. 1 shows an excerpt of the ontology; the concept SpatialFeat intuitively says that the individual has spatial features, which is extended by the sub-roles of hasQVal with qualitative values, which are asserted to subconcepts of QVal. Furthermore, the individual is represented by a geometry, asserted to subconcepts of Geometry. However, also normal role assertions for qualitative attributes are considered (e.g., a restaurant with a guest garden).

We have implemented this approach in an experimental prototype, which is part of a more extensive system for semantically enriched route planning system (MyITS, http://myits.at/) over real world data sources such as OpenStreetMap (OSM), Open Government Data (OGD) of Vienna, and the Falter restaurant guide for Vienna. The data sources are integrated by a global schema represented by an ontology expressed in DL-Lite$_R$. It turns out that naively generated UCQs may be too large for execution on conventional RDBMS. We thus improved our approach by exploiting the structure of the TBox in an optimised generation of queries from keyword, to eventually obtain smaller UCQs. First experiments show that this approach is feasible in a real-world scenario. Furthermore, we show that the optimizations described are important for feasibility. An extended version of this paper provides more details that are omitted for space reasons.\(^1\)

2 Preliminaries

We adopt DL-Lite$_R$ [7] as the underlying ontological language and introduce an approach in which the FO-rewriting of PerfectRef (see [7] and [6] for details) is strictly separated from spatial querying. As a result of this separation, we only allow spatial predicates (e.g., Contains) on the top level of the query structure. Regarding the semantics, we following partly the ideas of [15], but focus primarily on query answering (not solely satisfiability). Furthermore, we use a different notion for spatial relations.

Point-Set Topological Relations. We follow the point-set topological relation model in [13], where spatial relations are defined in terms of pure set theoretic operations.

\(^1\)http://www.kr.tuwien.ac.at/staff/patrik/ESWC2013Ext.pdf
realization of spatial objects is based on a set \(P_E \subseteq \mathbb{R}^2 \) of points in the plane; the (names of) spatial objects themselves are in a set \(\Gamma_S \). While the set of points for a spatial object \(s \) is infinite (unless it is a point), it can be finitely defined by an associated admissible geometry \(g(s) \). The geometries are defined by sequences \(p = (p_1, \ldots, p_n) \) of points that induce a point \((n = 1)\), a line segment \((n = 2)\), a line \((n > 2)\), or a polygon. All points used for admissible geometries are from a finite set \(P_F \subseteq P_E \) of points.

Spatio-relational Database. Thus, we define a spatio-relational database over \(\Gamma_S \) as a pair \(S = (P_F, g) \) of a point set \(P_F \subseteq \mathbb{R}^2 \) and a mapping \(g : \Gamma_S \rightarrow \bigcup_{i \geq 1} P_F^i \).

The extent of a geometry \(p \) (full point set) is given by the function \(\text{points}(p) \) and is a (possibly infinite) subset of \(P_E \). For a spatial object \(s \), we let \(\text{points}(s) = \text{points}(g(s)) \).

We need *points* to evaluate the spatial relations of two spatial objects via their respective geometries. For our spatio-thematic KBs, we consider the following types of admissible geometries \(p \) over \(P_F \) (with their representation), and let \(P_E = \bigcup_{s \in \Gamma_S} \text{points}(s) \): a

- **point** is a sequence \(p = (p_1) \), where \(\text{points}(p_1) = \{ p_1 \} \);
- **line segment** is a sequence \(p = (p_1, p_2) \), and \(\text{points}(p) = \{ \alpha p_1 + (1 - \alpha) p_2 | \alpha \in \mathbb{R}, 0 \leq \alpha \leq 1 \} \);
- **line** is a sequence \(p = (p_1, \ldots, p_n) \) of line segments \((p_i, p_{i+1}) \), \(1 \leq i < n \), the first \((p_1, p_2) \) and last \((p_{n-1}, p_n) \) segments do not share an end-point, and \(\text{points}(p) = \bigcup_{i=1}^{n-1} \text{points}(p_i) \);
- **polygon** is like a line but \((p_1, p_2) \) and \((p_{n-1}, p_n) \) share an end point; we have \(\text{points}(a) = \bigcup_{i=1}^{n-1} \text{points}(p_i) \cup \text{int}(l_c) \), where \(\text{int}(l_c) \) is the interior built from the separation of \(P_E \) by \(p \) into two disjoint regions.

Some \(s \in \Gamma_S \) may serve to define via \(g \) a bounding box. We omit more complex geometries like areas or polygons with holes. Based on \(\text{points}(x) \), we can define the spatial relation of point-sets in terms of pure set operations:

- \(\text{Equals}(x, y) : \text{points}(x) = \text{points}(y) \) and \(\text{NotEquals}(x, y) : \text{points}(x) \neq \text{points}(y) \);
- \(\text{Inside}(x, y) : \text{points}(x) \subseteq \text{points}(y) \) and \(\text{Outside}(x, y) : \text{points}(x) \cap \text{points}(y) = \emptyset \);
- \(\text{Intersect}(x, y) : \text{points}(x) \cap \text{points}(y) \neq \emptyset \) and \(\text{NextTo}(x, y) : b(x) \cap b(y) \neq \emptyset \), where \(b(z) = \{ a \in P_E | \text{dist}(a, \text{points}(z)) \leq d_B \} \) for a distance function \(\text{dist} : \mathbb{R}^2 \rightarrow \mathbb{R}_0^+ \) and a distance value \(d_B \in \mathbb{R} \).

Now for any spatial relation \(S(s, s') \) and \(s, s' \in \Gamma_S \), holds on a spatio-relational DB \(S \), written \(S \models S(s, s') \), if \(S(g(s), g(s')) \) evaluates to true. Relative to \(\text{points} \) and \(\text{dist} \) (and \(d_B \)), this is easily captured by a first-order formula over \((\mathbb{R}^2, \leq)\), and with regard to geo-spatial RDBMS trivially first-order expressible.

Note that the space model of [13] differs from the more detailed 9-Intersection model (DE-9IM) of [10], which considers strict separation of the interior and object boundary; this leads to 9 instead of 5 spatial relations. We also omit spatial predicates in the signature, assuming a “standard” point-set interpretation of the spatial-relations [13]. Our approach is modular and flexible enough to allow further relations (e.g., *connects*) or use other interpretations such as DE-9IM.

Syntax and Semantics of DL-Lite\(_R\) . We recall the definitions from [7]. Consider a vocabulary of individual names \(\Gamma_I \), atomic concepts \(\Gamma_C \), and atomic roles \(\Gamma_R \). Given atomic concepts \(A \) and atomic roles \(P \), we define basic concepts \(B \) and basic roles \(R \), complex concepts \(C \) and complex role expressions \(E \), and \(P^- \) be the inverse of \(P \) as

\[
\begin{align*}
B & ::= A \mid \exists R \\
C & ::= B \mid \neg B \\
R & ::= P \mid P^- \\
E & ::= R \mid \neg R
\end{align*}
\]
A DL-Lite\(_R\) knowledge base is a pair \(K = (\mathcal{T}, \mathcal{A})\) where the TBox \(\mathcal{T}\) consists of a finite set of inclusion assertions of the form \(B \subseteq C\) and \(R \subseteq E\), and the ABox \(\mathcal{A}\) is a finite set of membership assertions on atomic concepts and on atomic roles of the form \(A(a)\) and \(P(a, b)\), where \(a\) and \(b\) are individual names.

The semantics of DL-Lite\(_R\) is given in terms of FO interpretations \(I = (\Delta^I, \mathcal{I})\), where \(\Delta^I\) is a nonempty domain and \(\mathcal{I}\) an interpretation function such that \(\mathcal{I}(a) \in \Delta^I\) for all \(a \in \Gamma_I\), \(\Delta^I \subseteq \Delta^I\) for all \(A \in \Gamma_C\), \(P^I \subseteq \Delta^I \times \Delta^I\) for all \(P \in \Gamma_R\), and \((\mathcal{I}(P)^I) = \{(a_2, a_1) | (a_1, a_2) \in \mathcal{I}(P)^I\}\); \((\exists \mathcal{I}(R)^I) = \{a_1 | \exists a_2 \in \Delta^I \text{ s.t. } (a_1, a_2) \in \mathcal{I}(R)^I\}\); \((\neg \mathcal{I}(B))^I = \Delta^I \setminus \mathcal{I}(B)^I\); and \((\neg \mathcal{I}(R))^I = \Delta^I \times \Delta^I \setminus \mathcal{I}(R)^I\).

The notions of satisfaction of inclusion axioms and assertions, TBox and ABox resp. knowledge base is as usual, as well as logical implication; both are denoted with \(\models\). We assume the unique name assumption holds for different individuals and values.

Checking satisfiability of DL-Lite\(_R\) ontologies is first-order (FO) rewritable [7], i.e., for all \(\mathcal{T}\), there is a Boolean FO query \(Q_{\mathcal{T}}\) (constructible from \(\mathcal{T}\)) s.t. for every \(A, \mathcal{T} \cup \mathcal{A}\) is satisfiable iff \(DB(\mathcal{A}) \not\models Q_{\mathcal{T}}\), where \(DB(\mathcal{A})\) is the least Herbrand model of \(\mathcal{A}\).

3 DL-Lite\(_R(S)\)

In this section, we extend DL-Lite\(_R\) with spatial objects to DL-Lite\(_R(S)\). We present its syntax and semantics, a transformation of to DL-Lite, and show that satisfiability and conjunctive query answering over DL-Lite\(_R(S)\) KBs are FO-rewritable.

Syntax. Let \(\Gamma_S\) and \(\Gamma_I\) be pairwise disjoint sets as defined above. A spatio-thematic knowledge base (KB) is defined as \(\mathcal{L}_S = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{B} \rangle\), where \(\mathcal{T}\) (resp. \(\mathcal{A}\)) is defined as a DL-Lite\(_R\) TBox (resp. ABox), \(\mathcal{S}\) is a spatio-relational database, and \(\mathcal{B} \subseteq \Gamma_I \times \Gamma_S\) is a partial function called the binding from \(A\) to \(S\), similar to [15]; we apply a mild extension to DL-Lite\(_R\) by associating individuals from \(A\) to spatial objects from \(\mathcal{S}\).

We assume \(\mathcal{B}\) to be already given. Furthermore, we extend DL-Lite\(_R\) with the ability to specify the localization of a concept. For this purpose, we extend the syntax with

\[
C :: = B \mid \neg B \mid (\text{loc}\ A) \mid (\text{loc}_s\ A), \quad s \in \Gamma_S,
\]

where \(A\) is an atomic concept in \(\mathcal{T}\); intuitively, \((\text{loc}\ A)\) is the set of individuals in \(A\) that can have a spatial extension, and \((\text{loc}_s\ A)\) is the subset which have extension \(s\).

Semantics. Our aim is to give a semantics to the localization concepts \((\text{loc}\ A)\) and \((\text{loc}_s\ A)\) such that a KB \(\mathcal{L}_S = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{B} \rangle\) can be readily transformed into an ordinary DL-Lite\(_R\) KB \(K_S = \langle \mathcal{T}', \mathcal{A}' \rangle\), using concepts \(C_{\mathcal{S}_s}\) and \(C_s\) for individuals with some spatial extension resp. located at \(s\). Note that \(C_{\mathcal{S}_s}\) cannot be forced to be the union of all \(C_s\), as this would introduce disjunction (this hinders the passing from the open to the closed world assumption, which is important for the FO-rewriting of DL-Lite).

An (DL-Lite\(_R\)) interpretation of \(\mathcal{L}_S\) is a structure \(I = (\Delta^I, \mathcal{I}, b^I)\), where \((\Delta^I, \mathcal{I})\) is an interpretation of \(\langle \mathcal{T}, \mathcal{A} \rangle\), and \(b^I \subseteq \Delta^I \times \Gamma_S\) is a partial function that assigns some individuals a location, such that for every \(a \in \Gamma_I\), \((a, s) \in b^I\) implies \(b^I(a^I) = s\).

We extend the semantics of the previous section with \((\text{loc}\ A), (\text{loc}_s\ A)\), where \(A\) is an atomic concept in \(\mathcal{T}\):

\[
(\text{loc}\ A)^I \supseteq \{e \in \Delta^I \mid e \in A^I \land \exists s \in \Gamma_S : (e, s) \in b^I\}, \quad (\text{loc}_s\ A)^I = \{e \in \Delta^I \mid e \in A^I \land (e, s) \in b^I\}.
\]
The interpretation of complex concepts, satisfaction, etc. is then as usual. For example, \(A \subseteq (\text{loc}, A) \) expresses that all individuals in \(A \) are located at \(s \); \(B \subseteq (\text{loc} A) \) states that individuals in \(B \) can have a location if they are in \(A \).

Transformation to DL-Lite. Let \(C_{S_T} \) and \(C_s \), for every \(s \in T_S \), be fresh concepts. We transform \(L_S \) to \(K_S = (T', A') \), where \(T' = \tau(T) \cup T_S \) and \(A' = \tau(A) \cup A_B \), and:

- \(\tau(X) \) replaces each occurrence of \((\text{loc} A)\) and \((\text{loc}_s A)\) in \(X \) with \(C_{S_T} \cap A \) and \(C_s \cap A \), respectively, and splits \(\cap \) up;
- \(T_S \) represents generic localization information via concepts, and contains the axiom \(C_s \subseteq C_{S_T} \), and the constraints \(C_s \subseteq \neg C_{s'} \) for all \(s \neq s' \in T_S \);
- \(A_B \) represents the concrete bindings between \(A \) and \(T_S \), and for every \((a, s) \in B \), we add \(C_s(a) \in A_B \). Note that we do not assert \(\neg C_s(a) \) for \((a, s) \not\in B \), keeping the open world assumption for bindings.

For example, let \(A \) (resp. \(C_{S_T} \)) be the concept \(\text{Park} \) (resp. \(\text{SpatialFeat} \)), \(cp \) be the spatial object of “City Park,” and the polygon \(\text{poly} _cp \) representing \(cp \)’s spatial extend. The KB has the assertions \(\text{Park} \subseteq (\text{loc} \text{Park}) \), \(\text{CityParkCafe} \subseteq (\text{loc}_{\text{cp}} \text{Park}) \), and \(\text{CityParkCafe}(a) \). Then, the transformation produces \(\text{Park} \subseteq (\text{SpatialFeat} \cap \text{Park}) \), \(\text{CityParkCafe} \subseteq (C_{\text{poly} _cp} \cap \text{Park}) \), \(C_{\text{poly} _cp} \subseteq \text{SpatialFeat} \), and \(C_{\text{poly} _cp}(cp) \).

Note that \(K_S \) is indeed a DL-Lite\(_R\) ontology, by the syntactic restrictions on localization concepts. It is not hard to verify that the models of \(L_S \) and \(K_S \) with the same domain \((\Delta^\mathbb{F} = \Delta^\mathbb{F})\) coincide on common concepts and roles as follows: (i) if \(I \models L_S \), then \(I' \models K_S \) where \(C_{S_T}^I = \{ e \in \Delta^\mathbb{F} \mid (e, s) \in b^I \} \), \(C_s^I = \bigcup_{s' \in T_S} C_{s'}^\mathbb{F} \) \((= \text{dom}(b^I))\); conversely, (ii) if \(I' \models K_S \), then \(I \models L_S \) where \(b^I = \{ (e, s) \mid e \in C_{S_T}^I \} \) and \((\text{loc} A)^I = \bigcup_{s' \in T_S} C_s^I \cap \Delta^\mathbb{F} \). As an easy consequence of this correspondence, we obtain:

Proposition 1. Satisfiability checking and CQ answering for ontologies in DL-Lite\(_R(S)\) is FO-rewritable.

As the models of \(L_S \) and \(K_S \) correspond, we can check satisfiability on \(K_S \), i.e., a standard DL-Lite\(_R\) KB. An ontology CQ \(q \) over \(L_S \) is easily rewritten to a CQ over \(K_S \).

4 Query Answering in DL-Lite\(_R(S)\)

We next define spatial conjunctive queries (SCQ) over \(L_S = (T, A, S, B) \). Such queries may contain ontology and spatial predicates. Formally, an SCQ \(q(x) \) is a formula

\[
Q_{O_1}(x, y) \land \cdots \land Q_{O_n}(x, y) \land Q_{S_1}(x, y) \land \cdots \land Q_{S_m}(x, y),
\]

where \(x \) are the distinguished variables and \(y \) are either non-distinguished (bound) variables or individuals from \(T_I \). Each \(Q_{O_i}(x, y) \) is an atom for \(T \) and of the form \(A(z) \) or \(P(z, z') \), with \(z, z' \) from \(x \cup y \); the atoms \(Q_{S_i}(x, y) \) are over the vocabulary for the spatial relations in Sec. 2 and of the form \(S(z, z') \), with \(z, z' \) from \(x \cup y \).

For example, \(q(x) = \text{Playground}(x) \land \text{Within}(x, y) \land \text{Park}(y) \) is a SCQ which intuitively returns the playgrounds located in parks.

Semantics. Let \(I = \langle \Delta^\mathbb{F}, T, b^I \rangle \) be an interpretation of \(L_S \). A match for \(q(x) \) in \(I \) is a function \(\pi : x \cup y \rightarrow \Delta^\mathbb{F} \) such that \(\pi(e) = c^I \), for each constant \(c \) in \(x \cup y \), and for each \(i = 1, \ldots, n \) and \(j = 1, \ldots, m \), (i) \(\pi(z) \in A^\mathbb{F} \), if \(Q_{O_i}(x, y) = A(z) \); (ii) \(\langle \pi(z), \pi(z') \rangle \in P^\mathbb{F} \), if \(Q_{O_i}(x, y) = P(z, z') \); and (iii) \(\exists s, s' \in T_S : (\pi(z), s) \in \)
Alternatively, we can replace it with S_uq. The resulting formula is easily cast into form $guish two cases depending on the type of the node n

efficient methods to do so.

Second, each node n_T in J_T is visited in a bottom-up left-to-right order. We distinguish two cases depending on the type of the node n_T:

- **Spatial Conjunctive Query Evaluation.** The above SCQ rewriting is exponential in the number of spatial atoms, which incurs limitations. However, if no bounded variables occur in spatial atoms, we can separate query answering into an ontology part and a spatial query part, which can be efficiently evaluated in two stages:

 1. **evaluate the ontology part of the query $q(x)$ (i.e., drop all spatial atoms) over $L_{S'}$.**

For that we can apply the standard DL-Lite$_R$ query rewriting of $PerfectRef$ and evaluate the result over the ABox, stored in an RDBMS.

 2. **filter the result of Step (1), by evaluating the formulas (2) on the bindings $π$ for the distinguished variables x (which are mapped to individuals).** For that, retrieve in IG_S all instances of C_s, for all $s \in IG_S$.

Step (2) amounts to computing a spatial join $\bowtie_{S'}$, for which (at least) different evaluation strategies exist. One strategy, denoted as O_D, relies entirely on the functions of a spatial-extended RDBMS. The other, denoted as O_I, relies on an internal evaluation of $\bowtie_{S'}$, i.e., spatial relations, where the intermediate results are kept in-memory.

We have considered both strategies, restricting to acyclic queries (i.e., the query hypergraph is tree-shaped; see e.g. [12] for a definition). For such queries, join trees can be built, which can be processed in a bottom up manner. In doing so, we distinguish between ontology and spatial nodes, and actually interleave the DL-Lite$_R$ query rewriting (Step (1)) and spatial join checking (Step (2)). In the following, we describe the main steps of our query evaluation:

First, a join tree J_T is build from the SCQ. We refer to [12] for a discussion of efficient methods to do so.
(1) n_T is an ontological node with an atom of Q_O:
We keep track of all atoms, adding them to a set S_{Sub}. If the parent of n_T is a Q_S, we apply the rewriting of PerfectRef on the conjunction of S_{Sub} and keep the result in a temporary relation called R_{Sub} (which is RDBMS view);

(2) n_T is a spatial node with an atoms of Q_S:
We process the spatial join $\bowtie_{\mathcal{S}}$ of all children n_{T_1}, \cdots, n_{T_n} in n_T using either strategy O_D or O_I:

(a) For O_D, we use a classical join \bowtie with the spatial relation as the selection condition. In this case, we utilize existing spatial functions of the RDBMS, where the optimization is left to the RDBMS. This leads to the case, that the whole join tree N_T is evaluated as a single large query (rewritten to a SQL expression) over A and \mathcal{S}.

(b) For O_I, we evaluate every n_{T_1}, \cdots, n_{T_n} in n_T separately and calculate the spatial relations in-memory. This strategy implies that no spatial functions of the RDBMS is used. However, the intermediate results have to be stored in-memory, as these results will be used in the higher level spatial joins of J_T.

Note that for strategy O_D, we rewrite the spatial atoms (Contains, Within, etc.) directly to corresponding functions (cf. [8] for details) of the spatial-extension of the RDBMS. The different strategies noticeably affect the performance (see Sec. 8).

5 From Keywords to Spatial Conjunctive Queries

In this section, we provide the details for the generation of SCQ from a valid sequence of keywords. We shall consider in the next section how such sequences are obtained in a controlled way, by automatic completion and checking keyword combinations.

We assume an ontology O_U, which has an associated meta-model for structuring the query generation (described below). The generation is realized in three steps. First, the keywords are mapped to concepts from O_U and to spatial predicates. Then, a set of completion rules (which regard the meta-model) is applied to the resulting sequence of atomic formulas. Finally the completed sequence is converted into a SCQ.

We assume that spatio-thematic KBs are labeled, i.e., they are of the form $\mathcal{L}_S = \langle T, A, \mathcal{S}, B, \mathcal{N} \rangle$, where \mathcal{N} is a set of textual labels representing keywords. The labels of \mathcal{N} are assigned by rdfs:label to the concepts of T. Multiple labels can be assigned to a single element, which allows to have synonyms. Further, translations for keywords in different languages can be enabled by the assignments.

Meta-Model for Structured Query Generation. We require on the top level of the ontology in use a strict separation of the concepts for spatial features SpatialFeat (e.g., Park, Restaurant, etc.), qualitative values $QVal$ (e.g., operator Op, Cuisine, etc.), and Geometry (e.g., Point, Polygon, etc.). Since our approach is designed to query spatial objects, every query has to be related to some SpatialFeat, which is extended by the subroles of hasQVal with qualitative values (asserted to $QVal$) and is represented by the role hasGeometry as a geometry (asserted to Geometry). By this separation on the top level (which also exists in GeoOWL http://www.w3.org/2005/Incubator/geo/XGR-geo/), we have a meta-model, which is then used for the generation of “meaningful”
We generate the query q assigned to different concepts do not often exist within geospatial data sources. Between relationship, if two spatial features are queried. Rewriting them to a simple conjunction QualAttributes rules (R2)–(R4), Table 1 shows in fact a simplified version, as they could be extended to extend the query as follows:

The results R might not consist of spatial objects. E.g., we could have a query (R1)–(R4) denoted as subquery (SQ) because even if the transducer generates syntactically correct queries, their results are applicable, resulting in a sequence K:

$$x_1 \land \cdots \land x_n$$

where $x_i = E_{i,1}(\vartheta(E_{i-1,1}), y_i) \land E_{i,2}(y_i)$ and C_1 is a concept atom; each $E_{i,1}$ is either empty, a role atom, or a spatial atom, and each $E_{i,2}$ is either empty or a concept atom; $\vartheta(E_{i,1})$ is x_i if $E_{i,1}$ is a spatial atom, and x_{i-1} if $E_{i,1}$ is a role atom. These assignments ensure that the spatial atoms are always related to the top concept, while role atoms are related to the next level in the query tree.

After these steps, we obtain a valid SPQ $q(x)$ for query evaluation (Sec. 4). For rules (R2)–(R4), Table 1 shows in fact a simplified version, as they could be extended to arbitrary sequences of QualAttributes. Furthermore, rule (R6) defines a default relationship, if two spatial features are queried. Rewriting them to a simple conjunction between $C_1(x)$ and $C_2(x)$ would often lead to empty results, as two identical objects assigned to different concepts do not often exist within geospatial data sources.

Table 1: Completion rules; the result of rules (R1)–(R4) is denoted as subquery (SQ)
6 Generating Keyword Sequences

Since our approach is designed to have a single text-field for the keyword entries, we aim to provide fast automatic completion, keywords detection, and keyword combination functions. If a user enters keywords on a user interface (UI), we guide her by automatic completion and by showing possible combinations compliant with the ontology. For that, we must take the structure of the KB into account. Furthermore, as many combinations may be compliant, a selection of “relevant” combinations must be provided.

As the need for very low response time (e.g., below 100ms) makes on-demand calculation from the KB infeasible, a prefix index is created offline that stores all possible prefixes for a label of \(N \). It amounts to a function \(f_P(e) \) which maps a string \(e \) to all possible labels of \(N \), such that \(\bigcup_{e \in N} (\text{Pref}(e) \subseteq \text{Pref}(n)) \).

For example, the labels \(N = \{\text{pub, public, park}\} \), \(f_P \) map \(\text{p} \), \(\text{pub} \), and \(\text{park} \) as follows: \(\{\text{p}\} \rightarrow \{\text{park, pub, public}\}, \{\text{pu}\} \rightarrow \{\text{pub, public}\}, \{\text{park}\} \rightarrow \{\text{park}\} \).

Syntactic Connectivity of Concepts. As multiple keywords are entered, we need to determine which concepts are connectable. We use a notion of syntactic connectivity \(C \) based on the syntactic structure of the KB, which captures the connection between two concepts through subconcepts and roles, but also through a common subsumer. For two concepts, we follow the inclusion assertion and check whether they share a common subsumer denoted as \(C_S \), excluding the top concept. As the KB is based on DL-Lite\(_R\), we can capture the following inclusion assertions: (i) concept inclusion \(M_C : C_1 \sqsubseteq C_2 \); role hierarchies \(M_R : R_1 \sqsubseteq R_2 \); (ii) role membership which covers the range (resp. domain) of a role as \(M_R : \exists R \sqsubseteq C \) (resp. \(M_D : \exists R \sqsubseteq C) \); and (iii) mandatory participation \(M_P : C \sqsubseteq \exists R \). We deliberately do not consider disjoint concepts as \(C_1 \sqsubseteq \neg C_2 \) in the inclusions, and distinguish direct and indirect connections between two concepts.

A direct connection between concepts \(C_A \) and \(C_B \) exists, denoted \(\phi_D(C_A, C_B) \), if a sequence \(C_A \rightarrow_M \exists R_1 \rightarrow_M C_1 \rightarrow_M \exists R_1 \ldots C_n \rightarrow_M \exists R_n \rightarrow_M C_B \) exists, where \(M = M_D \cup M_H \cup M_C \cup M_R \cup M_P \). Furthermore, an indirect connection between \(C_A \) and \(C_B \) exists, denoted \(\phi_I(C_A, C_B) \), if \(\phi_D(C_A, C_S) \land \phi_D(C_B, C_S) \) holds for some \(C_S \).

Example 1. Given the keywords \(K = (\text{italian cuisine, non-smoking, in, park}) \), we apply the first step, where we replace every \(k_i \) with an associated concept \(C_i \) from \(N \): \(K' = (\text{ItalianCuisine, NonSmoking, Within, Park}) \). In the second step we apply the completion rules to obtain \(K'' = (((\text{SpatialFeat hasQVal ItalianCuisine}) \text{ hasQVal NonSmoking}) \text{ Within Park}) \). Finally we get a SCQ \(q(x_1, x_2) = f(K'') \) with

\[
\text{SpatialFeat}(x_1) \land \text{hasQVal}(x_1, y_1) \land \text{ItalianCuisine}(y_1) \land \text{hasQVal}(x_1, y_2) \land \text{NonSmoking}(y_2) \land \text{Within}(x_1, x_2) \land \text{Park}(x_2) .
\]

Example 2. In the example Fig. 1, the concepts \(\text{Supermarket} \) and \(\text{Op} \) are directly connected: \(\text{Supermarket} \rightarrow_{M_C} \text{Shop} \rightarrow_{M_P} \exists \text{hasOp} \rightarrow_{M_R} \text{Op} \). On the other hand, \(\text{GuestGarden} \) and \(\text{Wlan} \) are indirectly connected: \(\text{GuestGarden} \rightarrow_{M_C} \text{QVal} \rightarrow_{M_P} \exists \text{hasQVal} \rightarrow_{M_R} \text{SpatialFeat} \leftarrow_{M_n} \exists \text{hasQVal} \leftarrow_{M_P} \text{QVal} \leftarrow_{M_C} \text{Wlan} \).

In general, several sequences that witness \(\phi_D(C_A, C_B) \) resp. \(\phi_I(C_A, C_B) \) exist.
Automatic Completion, Detection, and Combination of Keywords. As we get a sequence of entered strings $E = (e_1, e_2, \ldots, e_n)$, we need several steps to create the completed keywords, as the strings could be prefixes or misspelled.

First, we obtain the set of labels $L \subseteq \mathcal{N}$ by applying the prefix function $f_p(e_i)$ for every $e_i \in E$. Second, we build several levels of labels L_1, \ldots, L_m based on the size of the subsets of L. As every L_i has the subsets $L_{i,1}, \ldots, L_{i,o}$ of the same size, we check for every $L_{i,j}$, if every pair of concepts (assigned to the labels of $L_{i,j}$) is syntactically connected at least in one direction. If we have found a $L_{i,j}$ with connected concepts, we add all sets of L_i (which are connectable) to the results. This is done by concatenating the labels of every set of L_i and add them to the result strings. We refer to Algorithm 1 for a detailed description.

By introducing an iterative algorithm, we return the largest possible combinations of keywords, thus excluding misspelled strings. However, we have in the worst-case exponentially many connectivity checks in the lengths of E.

Algorithm 1: Create Keywords Combinations

Input: A sequence of words $E = (e_1, e_2, \ldots, e_n)$

Output: Set of keyword combinations $K = \{k_1, k_2, \ldots, k_n\}$

$K \leftarrow \emptyset$;
$L \leftarrow \text{get all possible keywords for } E \text{ applying the prefix function}$;
$P \leftarrow \text{build the power set from keywords } L$;

while $K = \emptyset$ and $P \neq \emptyset$ do

$P_i \leftarrow \text{get the largest subset of } P$, if some have same size, take one by one;
$O_i \leftarrow \emptyset$;
foreach keyword k_j in set P_i with $\text{len}(k_j) > 1$ do

$O_i \leftarrow \text{add the set of concepts assigned to } k_j$;
$T_i \leftarrow \text{add a pair } \langle C_A, C_B \rangle \text{ for each possible combinations of concepts in } O_i$;
$\text{combine} \leftarrow \text{True}$;
foreach element $\langle C_A, C_B \rangle$ in T_i do

if $\langle C_A, C_B \rangle$ are not syntactic connected then

$\text{combine} \leftarrow \text{False}$

if $\text{combine} = \text{True}$ then

concatenate P_i and add to R;
else

remove P_i from P

Example 3. Given $E = (\text{rest}, \text{in}, \text{non-smok})$, we obtain the labels $L = \{\text{restaurant, indian food, intl food, non-smoking}\}$. The first level of L contains the sets $L_{1,1} = \{\text{restaurant, indian food, non-smoking}\}$ and $L_{1,2} = \{\text{restaurant, intl food, non-smoking}\}$. The concepts assigned to them are $C_{1,1} = \{\text{Restaurant, IndianCuisine, NonSmoking}\}$ and $C_{1,2} = \{\text{Restaurant, IntlCuisine, NonSmoking}\}$. Then, we check for $C_{1,1}$, if every pair (C, C'), $C \neq C' \in C_{1,1}$, is syntactically connected, and likewise for $C_{1,2}$. The first two pairs are directly connected and the last pair is indirectly connected by the common subsumer SpatialFeat. Hence, the concepts in $C_{1,1}$ (and in $C_{1,2}$) are connectable. Then, we concatenate $L_{1,1}$ (resp. $L_{1,2}$) and add the strings to the results.
7 Refinement of Conjunctive Query Generation

While FO-rewritability of CQ answering over DL-Lite\(_R\) KBs implies tractable data complexity, the size of the rewriting can increase exponentially with the number of atoms in the input CQ. Empirical findings [20] are that queries with more than 5–7 atoms can lead to large UCQs (e.g., unions of thousands of CQs) which cannot be handled by current RDBMS. Similar problems emerge with our generated SCQ (Sec. 8). One reason is the completion step in the SCQ generation. The generated SCQ can be too general, as we complete the intermediate sequence \(K'\) (Sec. 5) with the concept \(\text{SpatialFeat}\) and role \(\text{hasQVal}\), which are at the top-level (by our meta-model) of an ontology.

The refinement \(O_Q\) of the completion step is applied on every ontological subquery of a SCQ of the form \(S(x_1) \land R_1(x_1, y_1) \land C_1(y_1) \land \ldots \land R_n(x_{n-1}, y_n) \land C_n(y_n)\), where \(S \subseteq \text{SpatialFeat}, \{R_1, \ldots, R_n\} \subseteq \text{hasQVal}, \text{and} \{C_1, \ldots, C_n\} \subseteq \text{QualAttribute}\). It is based on the following ideas:

- Reduce the concept and role hierarchies: every edge in a path of \(\phi_D\) or \(\phi_I\) is an inclusion assertion, which increases the size of the rewritten UCQ; in particular, role inclusions can cause an exponential blow up [7];
- keep connectivity: by choosing paths according to \(\phi_I\), we keep the domain, range, mandatory participation, regarding the roles connecting \(S\) to \(\{C_1, \ldots, C_n\}\).

Before applying \(O_Q\), note that so far, \(S\) is a most common subsumer different from the top concept with respect to \(\phi_I\); i.e., for every pairs \((S, C_1), \ldots, (S, C_i), \phi_I(S, C_j)\) holds for all \(j\) and the sum of path lengths for \(\phi_I(S, C_j)\) is maximal. Thus, we try to minimize the path lengths under the constraint that \(\phi_I\) is fulfilled for all pairs \(\phi_I(S, C_j)\).

Briefly, it works as follows. We start the refinement \(O_Q\) by taking every subconcept \(S_i\) of \(S\). We choose a shortest path, say \(p_j\), according to \(\phi_I\) for every pair \((S_i, C_j)\), \(1 \leq j \leq n\), and we add up all path lengths \(|p_j|\) to \(\text{len}_{S_i}\). Finally, we choose the \(S_i\) with the lowest \(\text{len}_{S_i}\) as a replacement of \(S\) and \(R_1, \ldots, R_n\), where the latter are replaced with the roles appearing on the shortest paths \(p_j\) for \(S_i\). We refer to Algorithm 2 to give a more detailed view.

Example 4. Let \(q(x_1)\) be \(\text{SpatialFeat}(x_1) \land \text{hasQVal}(x_1, y_1) \land \text{ItalianCuisine}(y_1) \land \text{hasQVal}(x_1, y_2) \land \text{NonSmoking}(y_2)\). For the pairs \((\text{Rest}, \text{ItalianCuisine})\) and \((\text{Rest}, \text{NonSmoking})\), we have a path \(p_1\) of length 2 \((\text{Rest} \rightarrow \exists \text{hasCuisine} \rightarrow \text{ItalianCuisine})\) and another path \(p_2\) of length 2 \((\text{Rest} \rightarrow \exists \text{provides} \rightarrow \text{NonSmoking})\). Hence, the refinement \(O_Q\) produces the optimized query \(q'(x_1)\), as the original paths are both of length 3 and \(\text{Rest}\) is a subconcept of \(\text{SpatialFeat}\): \(\text{Rest}(x_1) \land \exists \text{hasCuisine}(x_1, y_1) \land \text{ItalianCuisine}(y_1) \land \text{provides}(x_1, y_2) \land \text{NonSmoking}(y_2)\).

We point out that after applying \(O_Q\), we may lose completeness with respect to the original SCQ, as shown by the following example. Given a spatio-thematic KB containing ABox assertions \(\text{Rest}(i_1), \text{hasCuisine}(i_1, i_2), \text{ItalianCuisine}(i_2), \text{SpatialFeat}(i_3), \text{hasQVal}(i_3, i_2), \text{and } \text{ItalianCuisine}(i_2)\), such that \(\text{hasCuisine}\) has defined domain \(\text{Rest}\) and range \(\text{Cuisine}\). The query \(q(x_1) = \text{SpatialFeat}(x_1) \land \text{hasQVal}(x_1, y_1) \land \text{ItalianCuisine}(y_1)\) evaluates to \(\{i_1, i_3\}\). If we refine \(q(x_1)\) to the SCQ \(q'(x_1) = \text{Rest}(x_1) \land \exists \text{hasCuisine}(x_1, y_1) \land \text{ItalianCuisine}(y_1)\), we just get \(\{i_1\}\) as a result. Informally, completeness can be lost if the ABox assertions are very general. One way
Algorithm 2: Optimization O_Q

Input: S subconcept of SpatialFeat, (R_1, \ldots, R_n) subroles of hasQVal,

(C_1, \ldots, C_n) subconcepts of QualAttribute, and TBox \mathcal{T}

Output: Concept S' and roles (R'_1, \ldots, R'_n)

$\text{len}_T \leftarrow 0$;

foreach $S_i \sqsubseteq S$ of \mathcal{T} do

sequence $T \leftarrow \emptyset$ and $\text{len}_{S_i} \leftarrow 0$;

foreach C_j of (C_1, \ldots, C_n) do

if $\phi_I(S_i, C_j)$ then

path $p_j \leftarrow$ get the shortest path between S_i and C_j keeping ϕ_I;

$\text{len}_{S_i} \leftarrow \text{len}_{S_i} + \text{length of } p_j$;

get (R_{j1}, \ldots, R_{jn}) from p_j with every role which is a subrole of hasQVal;

add (R_{j1}, \ldots, R_{jn}) to T;

if $\text{len}_{S_i} < \text{len}_T$ then

$\text{len}_T \leftarrow \text{len}_{S_i}$, $S' \leftarrow S_i$, and $(R'_1, \ldots, R'_n) \leftarrow T$;

to keep completeness is thus to impose conditions on the ABox, which ensure that ABox assertions have to fulfill certain conditions.

8 Implementation and Experimental Results

We have implemented a prototype of our keyword-based query answering approach. It is developed in Java 1.6 and uses PostGIS 1.5.1 (for PostgreSQL 9.0) as spatial-extended RDBMS. For the FO-rewriting of DL-Lite$_R$, we adapted OWL2R 0.1 [22] to obtain the perfect rewriting (with PerfectRef) of a CQ and the TBox. We evaluate spatial atoms in two different ways (Sec. 4), namely as O_D by using the query evaluation of PostGIS or as O_I as a built-in component of our query evaluation algorithm. For O_D, we use the PostGIS functions for evaluation, e.g., $\text{ST}_\text{Contains}(x, y)$, and for O_I, we apply the functions of the JTS Topology Suite (http://tsusiatsoftware.net/jts).

As part of a consortium with AIT Mobility Department (routing), Fluidtime (UI), ITS Vienna Region (data and routing), we have integrated our prototype for the keyword-based query answering in the MyITS system for intention-oriented route planning (http://myits.at/). Currently, the following services are available:

1. **Neighborhood routing**, where a user desires to explore the neighborhood for a keyword-based query; and

2. **Via routing**, where a route is calculated between a given origin-destination pair via some POI, which is dynamically determined by a keyword-based query.

Scenario. Our benchmarks are based on the usage scenarios of MyITS, which has a DL-Lite$_R$ geo-ontology with the following metrics: 324 concepts (with 327 inclusion assertions); 30 roles (with 19 inclusion assertions); 2 inverse roles; 23 (resp. 25) domains (resp. ranges) of roles; 124 normal individuals; a maximal depth of 7 (4) in the concept (role) hierarchy (http://www.kr.tuwien.ac.at/staff/patrik/GeoConceptsMyITS-v0.9-Lite.owl). For the spatial objects, we added and mapped
the POIs of greater Vienna contained in OSM (≈ 70k instances), in the Falter database (≈ 3700 instances), and parts of the OGD Vienna data (≈ 7200 instances). The annotation step created ≈18700 individuals, which lead to ≈18700 concepts and ≈26000 role assertions. The low annotation rate of 23% is related to the exclusion of some OSM POIs (e.g., benches, etc.) and the ongoing extensions of the mapping framework.

Experiments. We conducted our experiments on a Mac OS X 10.6.8 system with an Intel Core i7 2.66GHz and 4 GB of RAM. We increased `shared_buffers` and `work_mem` of PostgreSQL 9.0 to utilize available RAM. For each benchmark, the average of five runs for the query rewriting and evaluation time was calculated, having a timeout of 10 minutes, and a memout of 750 MB for each run. The results shown in Table 2 present runtime in seconds and query size (number of atoms in the CQ), and use —^a for DB errors (e.g., the stack depth limit of PostgreSQL 9.0 is reached), —^m for Java heap space limit has been reached (750 MB), and —^t for timeout.

Benchmarks. We designed the first benchmark B_1 based on keywords to measure the refinement O_Q on CQ without spatial predicates. The queries used in B_1 are

- Q_1: `(spar)` matches individuals run by “Spar”;
- Q_2: `(guest garden)` returns the individuals with a guest garden;
- Q_3: `(italian cuisine, guest garden)` retrieves individuals that serve italian cuisine (including Pizzerias, etc.) and have a guest garden;
- Q_4: `(italian cuisine, guest garden, wlan)` gives individuals of Q_3 that in addition provide WLAN; and
- Q_5: `(italian cuisine, guest garden, wlan, child friendly)` returns individuals of Q_4 that in addition are child-friendly.

As described above, the keywords are completed to SCQ prior to evaluation as described.

The benchmark B_2 aims at comparing the database (denoted O_D) and internal evaluation of spatial predicates (denoted O_I) under the refinement O_Q. Its queries are

- Q_6: `(playground, within, park)` returns playgrounds in a park;
- Q_7: `(supermarket, next to, pharmacy)` matches supermarkets next to a pharmacy;
- Q_8: `(italian cuisine, guest garden, next to, atm, next to, metro station)` gives individuals with Italian food and a guest garden, whereby these individuals are next to an ATM and a metro station. The nesting of the query is as previously defined `(((italian cuisine, guest garden), next to), . . . , metro station));` and
- Q_9: `(playground, disjoint, park)` retrieves playgrounds outside a park.

As the results in Table 2 show, the refinement O_Q is essential for feasibility. Without it, Java exceeds heap space limitation during perfect rewriting in most cases, and SQL queries become too large for the RDBMS. The ontology of our scenario is big, yet captures only a domain for cities using OSM, OGD Vienna, and Falter.

As ground truth we assume the unrefined query. We lost completeness only in Q_1; this is due to three objects, which were tagged in OSM as shops but not supermarkets. With respect to the benchmark queries, the OSM tagging and our (heuristic) mapping has a minor effect on the completeness. Further, the results for Q_2 to Q_5 reflect the fact that adding keywords extends the selectivity of the query (smaller results), but enlarges the UCQ considerably.

We were surprised by the large difference between internal and external evaluation of the spatial relations. We would have expected the external evaluation by the RDBMS
Table 2: Benchmark Results (Evaluation time in secs), unrefined results in parentheses

(a) Benchmark B1

<table>
<thead>
<tr>
<th>Instances</th>
<th>Query Size</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>106 (109)</td>
<td>438 (2256)</td>
</tr>
<tr>
<td>Q2</td>
<td>1623 (1623)</td>
<td>51 (2256)</td>
</tr>
<tr>
<td>Q3</td>
<td>204 (— s)</td>
<td>28 (71712)</td>
</tr>
<tr>
<td>Q4</td>
<td>32 (— m)</td>
<td>56 (— m)</td>
</tr>
<tr>
<td>Q5</td>
<td>3 (— m)</td>
<td>112 (— m)</td>
</tr>
</tbody>
</table>

(b) Benchmark B2, time only with OQ

<table>
<thead>
<tr>
<th>Instances</th>
<th>Query Size</th>
<th>Time</th>
<th>O_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q6</td>
<td>93 (93)</td>
<td>2 (2)</td>
<td>1.54</td>
</tr>
<tr>
<td>Q7</td>
<td>378 (378)</td>
<td>4 (4)</td>
<td>2.22</td>
</tr>
<tr>
<td>Q8</td>
<td>26 (— t)</td>
<td>30 (71714)</td>
<td>3.37</td>
</tr>
<tr>
<td>Q9</td>
<td>151 (151)</td>
<td>2 (2)</td>
<td>2.02</td>
</tr>
</tbody>
</table>

is more efficient. Rewritten SQL queries have a three-leveled nesting, which consists of spatial joins (≽≤ S) on the first, unions (∪) on the second, and normal joins (≽≤) on third level. It seems that standard query evaluation and optimization (in Postgres 9.0) are overwhelmed by such complex structures.

9 Related Work and Conclusion

Regarding SCQ, the closest to our work is [18], where crisp results for the combination of FO-rewritability of DL-Lite combined with the RCC-family (which offers qualitative models of abstract regions in topological space) are provided. For more expressive DLs, Lutz et al. [17] introduced the notion of ω-admissibility, which allows the combination of ALC and $RCC8$ [19], for subsumption testing. In PelletSpatial [21], the authors implemented a hybrid combination of $SHOIN\mathcal{R}$ and $RCC8$. We follow a different approach in which the spatial regions are considered as point sets as in [14, 15]. However, we focus on scalable query answering (without distance primitives) and the related implementation issues. In this way, we face similar challenges as recent Geo-SPARQL engines did (e.g., Strabon [16] and Parliament [3]). However, we have a stronger focus on ontology-based data access than on linked open-data (with an RDF data model).

Keyword-based search on the Semantic Web is a well-covered field of research. A necessarily incomplete list of relevant approaches is SemSearch [24], XXploreKnow [23], and QUICK [25] which are general purpose search engines. The KOIOS [4], DO-ROAM [9], and the system of [2] support (text-based) spatial queries using ontologies. Our approach differs from these systems regarding the expressivity of DL-Lite, with the addition of spatial querying; the use of a meta-model for suitable query generation; and a focus on gradual extendibility with new data sources.

In this paper, we presented an extension of DL-Lite$_R$ with spatial objects using point-set topological relations for query answering. The extension preserves FO-rewritability, which allows us to evaluate a restricted class of conjunctive queries with spatial atoms over existing spatio-relational RDBMS. Second, we provided a technique for the generation of spatial conjunctive queries from a set of keywords. For this, we introduced a combination of a meta-model and completion rules to generate “meaningful” queries. Third, we implemented a prototype and performed experiments to evaluate the applicability in a real-world scenario. From our point of view, the first results are encouraging,
as the evaluation time appeared to be moderate (always below 5 secs). Furthermore, our
keyword-based approach is easy to extend, the text-based input is lightweight, and it has
a reasonable precision through auto-completion and keyword combinations. However,
precision could be improved by more advanced query expansion techniques (cf. [11]).

Future research is naturally directed to variants and extensions of the presented
ontology and query language. E.g., one could investigate how spatial conjunctive queries
work over \mathcal{EL} [1] or Datalog $^+$ [5]. For our motivating application, the point set model
was sufficient, but extending our approach with the DE-9IM model [10] would be appealing
and introduce further spatial relations. Then, one could work on query expansion
techniques and on refinement of query generation, in a way such that completeness is
ensured. Finally, regarding the implementation, one could investigate the reason for
the unexpected performance on very large queries with spatial functions and conduct
further experiments on larger geospatial DBs, possibly comparing our approach to the
mentioned Geo-SPARQL engines.

References