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Abstract. Current optimistic model versioning systems, which are indispensable
to coordinate the collaboration within teams, are able to detect several kinds of
conflicts between two concurrently modified versions of one model. These systems
support the detection of syntactical problems such as contradicting changes, viola-
tions of the underlying metamodel, and violations of OCL constraints. However,
violations of the semantics remain unreported. In this paper, we suggest to use
redundant information inherent in models to check if the semantics is violated
during the merge process. In particular, we exploit the information encoded in
state machine diagrams to validate evolving sequence diagrams by means of the
model checker SPIN.

1 Introduction

In model-driven engineering, version control systems (VCS) are an essential tool to
manage the evolution of software models [4]. In this respect, optimistic version control
systems [1] are of particular importance. They provide reliable recovery mechanisms in
case changes have to be undone and support the collaboration of multiple developers.

An optimistic VCS stores the artifacts under development in a central repository,
which may be accessed by all team members at any time. A typical interaction with the
repository starts when a developer checks out the most recent version of the model under
development. The developer then performs the desired changes on a local copy. Upon
completion, the developer checks the modified local version back into the repository. If
the performed changes do not interfere with the concurrently introduced modifications
of another developer, the merge is straightforward and may be computed automatically.
Otherwise, a merge conflict [4] is at hand and the divergent versions need to be merged
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Fig. 1: State machine diagram for the class CoffeeMachine (CM).

manually. Without adequate tool support, the merged version may result in a syntactically
and/or semantically inconsistent version, even though both versions were consistent prior
to the merge. Obviously, it is of paramount importance to detect and resolve conflicts as
soon as possible to prevent their propagation through multiple development cycles.

Among the many possible merge conflicts [1], the most common are contradicting
changes. Given two developers working on the same model, this conflict may emerge if
both developers commit their changes and either (a) their changes may not be applied
in combination (i.e., delete/update), or (b) their changes are not commutable (i.e., up-
date/update). In the latter case, the different ordering of the changes results in different
models. In such a situation, often user interaction is required to resolve the conflict. Al-
ternatively, a predefined heuristic-based merge strategy may be applied to automatically
generate consolidated, syntactically correct versions. However, it cannot be asserted that
the model is semantically consistent.

Consider the following example, which describes a semantically inconsistent model
caused by an automatic merge of changes. Figure 1 depicts a UML state machine diagram
modeling a coffee machine and the upmost diagram S in Fig. 2 a possible behavior of
the same machine in terms of a sequence diagram. Two software engineers change the
sequence diagram at the same time: one includes the message turnOff (), resulting in
S′, the other adds the message prepareTea(), resulting in S′′. Each change on its own
results in a sequence diagram consistent with the state machine. The next step is to merge
the changes into a new sequence diagram Ŝ using an automatic versioning tool, e.g.,
as the one proposed by Brosch et al. [2]. As the messages of a lifeline are represented
as ordered list, an update/update conflict occurs, because both newly added messages
are stored at the same index of this list. A conceivable merging strategy is to consider
all possible combinations of the two diagrams. This may result in several syntactically
correct diagrams. Figure 2 shows two possibilities, Ŝ1 and Ŝ2: turnOff () can be placed
before or after prepareTea(). However, making tea after turning off the machine does
not make much sense and a modeler would avoid such a solution in a manual merge
process.

At first glance, it might seem necessary to provide additional knowledge, e.g., a
specifically tailored ontology, to support an automatic merge process aware of the
model’s semantics. However, in modeling languages like UML, the required knowledge
is distributed over different types of diagrams. Each diagram type provides a view on
a specific aspect of the described system. Yet, these views overlap in parts, effectively
duplicating certain aspects of the system across different diagrams. For our example, we
may ascertain, that the first merge option, i.e., turnOff () before prepareTea(), turns
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Fig. 2: Versioning scenario for a sequence diagram.

out to be inconsistent with respect to the state machine diagram, as preparing tea after
turning off the machine is not possible.

In this paper, we thus propose to exploit this redundant information and use the
overlapping parts of the diagrams as gluing points to construct a coherent picture of the
system. In this way, we are able to assert that the modifications performed on a sequence
diagram are consistent with the specification stated in a state machine diagram. For this
purpose, we employ model checking techniques and integrate this approach into the
merging component of the model versioning system AMOR [2].

Starting with a review of related work in Section 2, we proceed to present our
semantics-aware merging approach in Section 3. We then showcase how the above
presented example is solved with our approach in Section 4. Section 5 concludes the
paper with a discussion of future work directions.

2 Related Work

The fields of model versioning and model verification are both related to our work, which
we describe in what follows.

Model Versioning. In the last decade more than a dozen model versioning systems have
been proposed (see [1] for an overview). Many existing model versioning systems take
advantage of the graph-based structure of software models. As a consequence, conflicts
resulting from contradicting changes are more precisely detected, sometimes even
automatically resolved. Since changes are rarely introduced independently of each other,
think of refactorings for example, some approaches analyze the set of composite changes



to recognize the user’s intention, and try to derive suitable resolution strategies when
conflicting versions are checked into the repository [2, 6]. However, the semantic aspects
of models are mostly neglected by current model versioning systems. To the best of our
knowledge, only two approaches consider semantics in the context of model versioning.
The first approach suggests the usage of semantic views, which are constructed by a
manually defined normalization process that removes all duplicate representations of one
and the same concept from the original metamodel [13]. When two divergent versions of
the same base model are checked into the repository, the two versions are normalized
and compared to determine possible conflicts. Although the normalization procedure
integrates a semantic layer into the model versioning process, the actual comparison of
the normalized models is still performed on a syntactic level.

Another elegant technique, which employs diff operators to compare models, is
presented by Maoz et al. [10]. A diff operator diff (m1,m2) expects two models, m1

and m2, as input and outputs a set of so-called diff witnesses, i.e., instances of m1 which
are not instances of m2. For example, two syntactically different models m1 and m2

are semantically equivalent if each instance of m1 is an instance of m2 and vice versa.
While [10] focuses solely on the semantic differencing aspect of model versioning, we
aim to advance to a semantics-aware model merging process that is supported by an
inter-diagram based consistency verification technique.

Model verification. Decoupled from the above sketched research field of model ver-
sioning systems, various works propose the verification of the syntactical consistency
of models, many of which focus on the verification of UML diagrams (e.g. [7, 11]).
The verification process may be enhanced by the addition of semantic information. For
example, Cabot et al. [5] verify the behavioral aspects of UML class diagrams annotated
with so-called operation contracts, which are declarative descriptions of operations spec-
ified as OCL pre- and postconditions. The class diagram and the operation contracts are
thereby transformed into a constraint satisfaction problem, which is solved with respect
to a set of consistency properties expressing, e.g., the applicability or the executability
of an operation. A formal verification technique for UML 2.0 sequence diagrams em-
ploying linear temporal logic (LTL) formulas and the SPIN model checker [8] to reason
about the occurrences of events is introduced by Lima et al. [9]. In contrast to these
single-diagram verification techniques, multi-view approaches assert the consistency
across a set of diagrams. Proponents in this area are, among others, the tools HUGO [14]
and CHARMY [12]. HUGO verifies whether the interactions of a UML collaboration
diagram are in accordance with the corresponding set of state machine diagrams. The
tool automatically translates the state machine diagrams to PROMELA, the input language
of SPIN, and generates so-called “never claims” from the collaboration diagrams. The
generated artifacts form the input for SPIN, which performs the verification. While HUGO
operates on UML diagrams, CHARMY provides a modeling, simulation, and verification
environment for software architectures (SA), which share many commonalities with
UML. SAs describe the static and behavioral structures of systems with component,
state transition, and sequence diagrams. Again, CHARMY translates the modeled artifacts
to PROMELA and calls upon SPIN to either locate deadlocks and unreachable states in
the state machines, or to verify temporal properties of the system. In contrast to the
standalone, snapshot-based verification procedure implemented by CHARMY and HUGO,



our approach integrates the consistency verification procedure into the model versioning
process to enable the semantics-aware merging of models.

3 Semantics-Aware Model Versioning

To detect semantic merge problems as described above, we propose to use a model
checker like SPIN [8] within the merge process. The idea is to generate possible merge
results and to check for each if it is consistent with the behavior defined by the cor-
responding state machine. We first give a short definition of the modeling language
concepts needed, and then introduce our approach in detail. In particular, we consider a
simplified subset of the UML state machine and sequence diagrams.

3.1 Definitions

For our purposes, a software model U consists of a set M of state machines and a
sequence diagram S, defined as follows: A state machine M = (Q,T, τ, v0, A) is a
deterministic finite automaton, where

– Q is a set of states,
– T is a set of transition labels (or possible input symbols),
– τ : Q× T → Q is the transition function,
– q0 ∈ Q is a designated initial state, and
– A ⊆ Q is a set of accepting states.

A sequence diagram S is a tuple (N,L), where N is a set of messages and L is a set
{L1, . . . ,Ln} of lifelines. A lifeline, L, in turn, is a tuple (M,L, tr), where

– M ∈M is a state machine,
– L is a finite sequence (n1, . . . , nm) of elements of N and
– tr : N → T is a bijective function, mapping each message to a transition of the

corresponding state machine.

A model U is consistent iff for each lifeline L = (M,L, tr) of S, there exists a path
(tr(n1), . . . , tr(nm)) in the state machine M , where L = (n1, . . . , nm).

3.2 Versioning Scenarios

Our versioning scenarios involve concurrent modifications on a sequence diagram.
The state machine diagrams remain unchanged. A modification concerns one or more
messages, each being of either of the following three types:

– insert: a message n ∈ N is inserted at any index of a lifeline;
– delete: a message n is removed from a lifeline; and
– update: a message n is replaced by n′ ∈ N different from n.

Concurrent changes may result in different sequence diagrams. It is then up to the
versioning tool to merge these changes into a new version of the diagram, which must
be syntactically correct and consistent with the state machine diagrams.

Merging sequence diagrams is done as follows: For each lifeline, any possible se-
quence of messages originating from both diagrams is syntactically correct, but possibly
inconsistent with the behavior defined in the corresponding state machine diagrams.
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Fig. 3: Workflow of the merging process.

3.3 Semantics-Aware Model Merging

We propose to integrate the model checker SPIN [8] to support the generation of merged
sequences. SPIN is a software verification tool: It takes as input a software abstraction,
or model, encoded in SPIN’s input language PROMELA and relevant properties of the
software model in LTL. SPIN can be run in two modes: In simulation mode, where
the PROMELA model is executed, and in verification mode, where the LTL formula is
checked for satisfiability with respect to the PROMELA model.

For our basic definition of a software model, we propose a simple encoding that
allows to check for the consistency between a sequence diagram and a set of state
machines by running SPIN in simulation mode, which is much faster than verification
mode and sufficient for our purpose. The state machines are encoded as deterministic
finite automata and the sequence diagram as set of arrays containing transition labels of
the respective automata. The verification task in this case is to check if each word (i.e.,
array of transition labels) is accepted by its automaton.

The workflow of the merging process, as depicted in Fig. 3, is as follows:

0. The setM of state machine diagrams is encoded in PROMELA automata. Other than
for sequence diagrams, this encoding is done only once per application scenario.

1. The versioning operations diff (comparison) and conf (conflict detection) are exe-
cuted on the original sequence diagram S and the two modifications S′ and S′′.

2. The versioning operation merge is performed based on the output of Step 1 and a
merge strategy. In order to produce a syntactically correct sequence diagram, the
merge strategy defines conditions on the possible orderings of the merged messages
on a lifeline. A possible strategy is one that orders messages in a first-come, first-
serve manner, or one that allows any possible combination. A strategy may allow
more than one possible sequence diagram as result of the merge. In this case, the
choice is made deterministically.

3. The output of merge, i.e., a syntactically correct sequence diagram Ŝ, is encoded as
set of PROMELA arrays, describing each lifeline as a word from the alphabet of the
respective automaton encoded in Step 0.

4. The PROMELA code is fed into SPIN, which checks if each of the words generated
in Step 3 is accepted by the respective automaton. It returns either a success message
or the state and transition where the verification failed.



5. If the SPIN output does not contain an error message, the current merged sequence
diagram Ŝ and the SPIN output are returned to the user. Otherwise, the procedure
continues at Step 2 with a new merged sequence diagram Ŝ different from the
previous ones.

For the encoding we make use of the following elements of PROMELA [8]:

– active proctype: defines a process behavior that is automatically instantiated
at program start;

– label: identifies a unique control state (we also use the prefix end, which defines
a termination state);

– mtype: a declaration of symbolic names for constant values;
– array: a one-dimensional array of variables (we use arrays of mtype elements to

encode words checked by the automaton);
– if: a selection construct, used to define the structure of the automaton; and
– goto: an unconditional jump to a label, also used to define the structure of the

automaton.

The PROMELA encoding of a state machine is done as follows:

– The state machine is encoded as active proctype that contains all the neces-
sary elements of the state machine.

– Each transition t ∈ T is encoded as an element of mtype. The additional element
acc is added to model transitions to the end state.

– Each q ∈ Q is encoded as a label marking a state of the active proctype. The
additional state end is added.

– The state q0 is placed at the beginning of the respective process in order to be
executed at process initiation.

– τ is encoded as a set of if conditions inside each PROMELA state q: For each t
such that (q, t) is defined by τ , the current symbol of an input sequence (which is, as
described below, the encoding of a lifeline) is compared to t. If the condition holds,
a goto statement jumps to state τ(q0, t).

– Our sequence diagram semantics does not require a lifeline to end with a specific
message, so all states are accepting states. We thus place a transition goto end if
the current symbol equals our additional transition label acc into each state except
the end state.

A lifeline is encoded as array S of mtype. Each field of S with index i contains the
mtype element tr(ei) where ei is the i-th element of the sequence L.

The PROMELA code is executed as simulation. It prints a success message if the
word encoded in the array is accepted. In this case, the lifeline is consistent with the
corresponding state machine. Otherwise it aborts when it hits a transition label that is
undefined in the current state.

We have implemented the outlined approach based on the Eclipse Modeling Frame-
work (EMF)4. In particular, the presented language excerpt of UML has been specified
as an Ecore-based metamodel. The transformations of state machines into PROMELA

4 http://www.eclipse.org/modeling/emf.



automata and sequence diagrams into PROMELA arrays have been implemented as
model-to-text transformations using Xpand5. The implementation is available at http:
//modelevolution.org.

4 Application Scenario

We illustrate our approach using the example from Section 1. First, we translate the state
machine of Fig. 1 by means of the encoding presented in the previous section as follows:

– The state machine is defined as active proctype named Coffeemachine.
– The transition labels of the coffee machine, along with an additional label acc, are

contained in mtype.
– Each state of the coffee machine is represented by a label, such as Off or Idle, and

an end state is added. The start and end states of the coffee machine are summarized
in label Off.

– For each state, all defined transitions are encoded using if and goto statements.
– A counter is added to keep track of the current index of the input word.

Listing 4.1: State machine encoding in PROMELA.
1 mtype = {turnOff,turnOn,prepareCoffee,coffeeComplete,prepareTea,teaComplete,
2 acc};
3

4 a c t i v e proctype Coffeemachine() {
5 byte h = 0;
6 mtype CM[3];
7

8 CM[0] = turnOn; CM[1] = prepareCoffee; CM[2] = coffeeComplete; CM[3] = acc;
9

10 Off:
11 printf("Off\t %e\n", CM[h]);
12 i f
13 :: CM[h] == turnOn -> h++; goto Idle
14 :: CM[h] == acc -> goto end
15 f i ;
16 Idle:
17 printf("Idle\t %e\n", CM[h]);
18 i f
19 :: CM[h] == prepareCoffee -> h++; goto PreparingCoffee
20 :: CM[h] == prepareTea -> h++; goto PreparingTea
21 :: CM[h] == turnOff -> h++; goto Off
22 :: CM[h] == acc -> goto end
23 f i ;
24 PreparingCoffee:
25 printf("PreparingCoffee\t %e\n", CM[h]);
26 i f
27 :: CM[h] == coffeeComplete -> h++; goto Idle
28 :: CM[h] == acc -> goto end
29 f i ;
30 PreparingTea:
31 printf("PreparingTea\t %e\n", CM[h]);
32 i f
33 :: CM[h] == teaComplete -> h++; goto Idle
34 :: CM[h] == acc -> goto end
35 f i ;
36 end:
37 printf("end!\n")
38 }

5 http://www.eclipse.org/modeling/m2t/?project=xpand.



The sequence diagram contains one relevant lifeline, the instance cm of the coffee
machine, which is encoded as array CM of mtype: For each message ni received by cm,
CM[i]= tr(ni). Recall that tr returns an element of the set of transition labels and that
those are encoded as elements of mtype.

The resulting encoding of the state machine with the initial version S of the sequence
diagram is shown in Listing 4.1. It is easy to see that the above code eventually reaches
the end state. Replacing the array CM by the two modified sequence diagrams S′ and
S′′, encoded in the same manner, the code also reaches the end state. However, on the
merged sequence diagram Ŝ1, given in the following, the model checker will give up
when it reaches the Off state trying to match CM[4].
6 mtype CM[7];
7 CM[0] = turnOn; CM[1] = prepareCoffee; CM[2] = coffeeComplete; CM[3] = turnOff;
8 CM[4] = prepareTea; CM[5] = teaComplete; CM[6] = acc;

On the other hand, the second merged sequence diagram Ŝ2, given in the following, is
consistent. Hence, in our merging workflow, Ŝ2 will be returned to the user.
6 mtype CM[7];
7 CM[0] = turnOn; CM[1] = prepareCoffee; CM[2] = coffeeComplete;
8 CM[3] = prepareTea; CM[4] = teaComplete; CM[5] = turnOff; CM[6] = acc;

5 Conclusion and Future Work

In this paper, we proposed to use a model checker to detect semantic merge conflicts
in the context of model versioning. Model checkers are powerful tools used for the
verification of hardware and software. A model checker takes as input a model of a
system and a formal specification of the system and verifies if the former meets the
latter. We applied this technique to check the semantic consistency of an evolving
UML sequence diagram with respect to state machine diagrams that remain unchanged.
When contradicting changes occur, a unique automatic merge is not possible in general.
However, additional information on violations of the model’s semantics allows to identify
invalid solutions. Hence, a more goal-oriented search for a consistent merged version is
supported.

Our first experiments on this approach gave promising results, but for the full
integration into the versioning process several issues have to be considered which we
discuss in the following.
Extension of the Language Features. So far, we considered only a restricted, simplified
subset of the UML metamodel. In this setting, the execution semantics of the considered
diagrams is quite unambiguous. With the introduction of more advanced concepts,
several questions concerning the execution semantics will arise, which are not covered
by the UML standard and need detailed elaboration in order to translate them to the
formalisms supported by the model checker. When including these language features,
we expect to fully exploit the expressiveness of LTL for the needed assertions.
Integration in the Merge Component. We use the information obtained by the model
checker not only to verify the consistency of two diagrams, but to support the merge
process as necessary when models are versioned in an optimistic way. At the moment,
only the fact that the model checker failed to verify the provided encoding is propagated



back to the merge component. We plan to build an analyzer which is able to deduce
constraints from the output of the model checker. These constraints can then be used to
create an alternative merged version.
Visualization of the Conflicts. For reasons of usability, the representation of conflicts is
of paramount importance. In particular, we conjecture that conflicts have to be reported
in the concrete syntax of the modeling language [3]. Therefore, we propose a mechanism
based on UML profiles to include merging information directly into the model. We plan
to extend this mechanism to report semantical problems in the concrete syntax.
Benchmarking. Finally, we need more test cases to evaluate our approach. In particular,
it will be interesting to learn about precision and recall in various merging scenarios as
well as to study scalability with growing model size.
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