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Abstract.We present new probabilistic generalizations of Pearl’s entailment in System
�

[50, 32]
and Lehmann’s lexicographic entailment [39], called ��� - and �����	� -entailment, which are parameter-
ized through a value 
��� ������� that describes the strength of the inheritance of purely probabilistic
knowledge. In the special cases of 
���� and 
���� , the notions of ��� - and �����	� -entailment coincide
with the probabilistic notions of � - and ��� � -entailment recently introduced by the author in [45]
and [46], respectively. We show that the notions of � � - and ����� � -entailment have similar properties
as their classical counterparts. In particular, they both satisfy the rationality postulates of System !
and the property of Rational Monotonicity. Moreover, � � -entailment is weaker than ����� � -entailment,
and both � � - and ����� � -entailment are proper generalizations of their classical counterparts.
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1 Introduction

During the recent decades, there has been a significant amount of research in AI that focuses on probabilistic
reasoning with interval restrictions for conditional probabilities, also called conditional constraints [42].

For example, suppose that we have the knowledge “ostriches are birds”, “birds have legs”, “birds fly
with a probability of at least 0.95”, and “ostriches fly with a probability of at most 0.05”. What do we then
conclude about the property of having legs of birds (resp., ostriches) and their ability to fly?

One important approach for handling conditional constraints is model-theoretic probabilistic logic,
which can be traced back to Boole [10]. There is a wide spectrum of formal languages that have been
explored in model-theoretic probabilistic logic, ranging from constraints for unconditional and conditional
events [15, 19, 2, 18, 23, 33, 47, 41, 42, 44, 48] to rich languages that specify linear inequalities over
events [21]. The main algorithmic tasks related to model-theoretic probabilistic logic are deciding satisfia-
bility, deciding logical consequence, and computing tight logically entailed intervals.

In model-theoretic probabilistic logic, we conclude from the above knowledge that both birds and os-
triches have legs, and that birds (resp., ostriches) fly with a probability of at least 0.95 (resp., at most 0.05).

Another important approach to probabilistic reasoning with conditional constraints is based on the co-
herence principle of de Finetti and generalizations of it [7, 11, 12, 13, 14, 27, 28, 29, 54], or on similar
principles that have been adopted for lower and upper probabilities [51, 57]. The main tasks in this frame-
work are checking the consistency of a probabilistic assessment, and the propagation of a given assessment
to further conditional events.

In coherence-based probabilistic logic, we conclude from the above knowledge that birds (resp., os-
triches) have (resp., do not have) legs, and that they fly with a probability of at least 0.95 (resp., at most 0.05).

The relationship between model-theoretic and coherence-based probabilistic logic has been recently ex-
plored in [9]. In particular, it turned out that probabilistic entailment under coherence is strictly weaker
than model-theoretic probabilistic entailment, while the notion of consistency in probabilistic logic under
coherence is strictly stronger than the notion of satisfiability in model-theoretic probabilistic logic. Further-
more, it has been shown that probabilistic entailment under coherence is a generalization of classical default
entailment in System � , while model-theoretic probabilistic entailment is well-known to be a generalization
of model-theoretic entailment in classical propositional logics.

Recently, the author has shown in [45, 46] that other formalisms for default reasoning from conditional
knowledge bases can be extended to the probabilistic framework of conditional constraints, in order to
overcome some serious drawbacks of model-theoretic and coherence-based probabilistic logic.

The literature contains several different proposals for default reasoning from conditional knowledge
bases and extensive work on its desired properties. The core of these properties are the rationality postulates
of System � proposed by Kraus et al. [34]. It turned out that these rationality postulates constitute a sound
and complete axiom system for several classical model-theoretic entailment relations under uncertainty
measures on worlds. In detail, they characterize classical model-theoretic entailment under preferential
structures [55, 34], infinitesimal probabilities [1, 49], possibility measures [16], and world rankings [56, 31].
They also characterize an entailment relation based on conditional objects [17]. That these equivalences are
not incidental is shown by Friedman and Halpern [22], who prove that many approaches are expressible
as plausibility measures and thus they must, under some weak natural conditions, inevitably amount to the
same notion of inference. A survey of the above relationships is given in [5, 24].

Mainly to solve problems with irrelevant information, the notion of rational closure as a more adventur-
ous notion of entailment was introduced by Lehmann [38, 40]. It is equivalent to entailment in System �
by Pearl [50], to the least specific possibility entailment by Benferhat et al. [4], and to a conditional (modal)
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logic-based entailment by Lamarre [37]. Finally, mainly to solve problems with property inheritance from
classes to exceptional subclasses, the maximum entropy approach was proposed by Goldszmidt et al. [30];
lexicographic entailment was introduced by Lehmann [39] and Benferhat et al. [3]; conditional entailment
was proposed by Geffner [25, 26]; and a belief function approach was suggested by Benferhat et al. [6].

The main ideas behind the probabilistic generalizations of sophisticated default reasoning formalisms in
[45, 46] can be summarized as follows:

� The work [45] introduces probabilistic generalizations of Pearl’s entailment in System � [50, 32]
and Lehmann’s lexicographic entailment [39], which lie between model-theoretic probabilistic entail-
ment and probabilistic entailment under coherence. That is, the new notions of entailment general-
ize their classical counterparts, they are stronger than entailment under coherence, and weaker than
model-theoretic entailment. Roughly, the main difference between model-theoretic entailment and
entailment under coherence is that the former realizes an inheritance of logical knowledge, while the
latter does not. Intuitively, the new formalisms now add a strategy for resolving inconsistencies to
model-theoretic probabilistic logic, and a restricted form of inheritance of logical knowledge to prob-
abilistic logic under coherence. This is why the new notions of entailment are weaker than entailment
in model-theoretic probabilistic logic and stronger than entailment in coherence-based probabilistic
logic. The new formalisms can especially be used in place of model-theoretic probabilistic entailment
when one wants to resolve inconsistencies related to conditioning on zero events.

� The companion paper [46] presents similar probabilistic generalizations of Pearl’s entailment in Sys-
tem � [50, 32], Lehmann’s lexicographic entailment [39], and Geffner’s conditional entailment [25,
26]. The formalisms in [46], however, behave quite differently from the ones in [45]. Roughly, en-
tailment in model-theoretic probabilistic logic realizes some inheritance of logical knowledge, but no
inheritance of purely probabilistic knowledge. The new formalisms in [46] now add an inheritance of
purely probabilistic knowledge and a strategy for resolving inconsistencies (due to the inheritance of
logical and purely probabilistic knowledge) to entailment in model-theoretic probabilistic logic. This
is why they are generally much stronger than entailment in model-theoretic probabilistic logic. Thus,
they are especially useful where the notion of model-theoretic entailment is too weak, for example,
in probabilistic logic programming [44, 43]. Other applications are deriving degrees of belief from
statistical knowledge and degrees of belief, handling inconsistencies in probabilistic knowledge bases,
and probabilistic belief revision.

In the present paper, we define a general approach to nonmonotonic probabilistic reasoning, which sub-
sumes the two approaches in [45] and [46] as special cases. Roughly, the main idea behind this new approach
is to add to the notion of logical (resp., g-coherent) entailment (i) some inheritance of purely probabilistic
(resp., logical and purely probabilistic) knowledge, where the inheritance of purely probabilistic knowledge
is controlled by a strength � ��� ��� ��� , and (ii) a mechanism for resolving inconsistencies due to the inheritance
of logical and purely probabilistic knowledge.

The main contributions of this paper can be summarized as follows:
� We present new probabilistic generalizations of Pearl’s entailment in System � [50, 32] and Leh-

mann’s lexicographic entailment [39], which are parameterized through a value � ��� ��� ��� that de-
scribes the strength of the inheritance of purely probabilistic knowledge. In the special case of �	� �
(resp., �
� � ), these new formalisms coincide with the formalisms presented in [45] (resp., [46]).

� We show that the new probabilistic formalisms of strength � have similar properties as their classical
counterparts. In particular, they both satisfy the rationality postulates of System � and the prop-
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erty of Rational Monotonicity. Furthermore, entailment in System � of strength � is weaker than
lexicographic entailment of strength � .

� We show that the notions of entailment in System � of strength � and of lexicographic entailment of
strength � are proper generalizations of their classical counterparts. Moreover, they are weaker than
some notion of logical entailment in model-theoretic probabilistic logic, and under certain conditions
they coincide with this notion of entailment.

The rest of this paper is organized as follows. Section 2 gives some technical preliminaries, and recalls
basic concepts from model-theoretic and coherence-based probabilistic logic. In Section 3, we introduce
the new notions of entailment in System � of strength � , and of lexicographic entailment of strength � .
Section 4 explores some general properties of the new formalisms. In Section 5, we review the special cases
of strength �	� � and �
� � . Section 6 summarizes the main results and gives an outlook on future research.
Note that detailed proofs of all results are given in Appendices A and B.

2 Preliminaries

In this section, we first recall probabilistic knowledge bases. We then recall the notions of satisfiability
and of logical entailment from model-theoretic probabilistic logic, and the notions of g-coherence and of
g-coherent entailment from probabilistic logic under coherence.

2.1 Probabilistic Knowledge Bases

We now recall the concept of a probabilistic knowledge base. We start by defining logical constraints and
probabilistic formulas, which are interpreted by probability distributions over a set of possible worlds.

We assume a set of basic events � ������� ������� �	��
� with ��� � . We use � and � to denote false and
true, respectively. We define events by induction as follows. Every element of ������� ����� is an event. If �
and � are events, then also ��� and ��� �!�#" . A conditional event is an expression of the form �%$&� with
events � and � . A conditional constraint is an expression of the form �'�($&�)" � * ��+ � with events � ��� , and real
numbers * ��+ ��� ��� ��� . We define probabilistic formulas by induction as follows. Every conditional constraint
is a probabilistic formula. If , and - are probabilistic formulas, then also �., and �	,/�(-0" . We use �	,21�-0"
and �	,435-0" to abbreviate �6���7,4����-8" and �9���.,4��-0" , respectively, where , and - are either two events
or two probabilistic formulas, and adopt the usual conventions to eliminate parentheses. A logical constraint
is an event of the form �:3;� .

A world < is a truth assignment to the basic events in � (that is, a mapping <�=>��?@�BADC�EGF �IHKJ�L'MBF� ),
which is inductively extended to all events by <���0" �NHKJ�L'MBF , <���0" �%ADC�EGF , <�����)" �OADCPEGF iff <���)" �(HQJ�L'MBF ,
and <�����)���#"�" �RADC�EGF iff <S���)" �T<�'�9" �!ADCPEGF . We use U�V to denote the set of all worlds for � . A world <
satisfies an event � , or < is a model of � , denoted <($ �N� , iff <���)" �TADC�EGF . We extend worlds < to conditional
events �($&� by <S�'�($&�)" �%AWC�EGF iff <O$ �X����� , <S�'�($&�)" �%HQJ�L'MBF iff <($ �N���:��� , and <S�'�($&�)" �8Y	ZG[GF\ADF]C�^2Y	Z>J_ADF
iff <($ �N��� . A probabilistic interpretation `9a is a probability function on UbV (that is, a mapping `#a�=\U�V
? � ��� ��� such that all `9ac�	<c" with < � U�V sum up to 1). The probability of an event � in the probabilistic
interpretation `#a , denoted `9ac���)" , is the sum of all `#ad�	<]" such that < � U�V and <%$ �N� . For events � and �
with `9ac���)"Se � , we write `9ac�'�%$&�S" to abbreviate `9a]�'�f�!�)"dg.`#a_���)" . The truth of logical constraints and
probabilistic formulas , in a probabilistic interpretation `#a , denoted `9ah$ �i, , is defined as follows:

� `9ah$ �j� 35� iff `#ac�'� ���)" �k`#ad���S" .
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� `9ah$ � �'�%$&�)" � * ��+ � iff `#ac���S" � � or `#ad�'�($&�)" � � * ��+ � .
� `9ah$ �R�., iff not `#a�$ �j, .

� `9ah$ � �	, ��-0" iff `#a�$ �j, and `9ah$ �R- .

We say `#a satisfies , , or `9a is a model of , , iff `9a9$ �!, . We say `#a satisfies a set of logical constraints
and probabilistic formulas

�
, or `#a is a model of

�
, denoted `9ah$ � �

, iff `9a is a model of all , � � .
A probabilistic knowledge base ��� � ��� � ��" consists of a finite set of logical constraints � and a finite

set of conditional constraints � such that (i) *�� + for all �'�($&�)" � * ��+ � � � , and (ii) �O��$&� �
	�!��� $&�� for any
two distinct �'�#��$&� � " � * � �&+>� � �D�'���\$&���" � * � �&+� � � � . The following example illustrates the syntactic notion of a
probabilistic knowledge base.

Example 2.1 The knowledge “ostriches are birds”, “birds have legs”, “birds fly with a probability of at
least 0.95”, and “ostriches fly with a probability of at most 0.05” in our introductory example can be ex-
pressed by the following probabilistic knowledge base ��� � ��� � ��" :

� � �����'a�� 3������	a������)� �
� � �\���! #"$�]$%�&� a��" � � � ��� �D�('*)G$%���'a��" � �c�,+.- � ��� �D�('*)7$/�����	a������" � ��� �c� �0- � ���21

2.2 Model-Theoretic Probabilistic Logic

We now recall the model-theoretic notions of satisfiability and of logical entailment for probabilistic knowl-
edge bases.

A set of logical constraints and probabilistic formulas
�

is satisfiable iff a model of
�

exists. A condi-
tional constraint �'�%$&�S" � * ��+ � is a logical consequence of

�
, denoted

� $&$ � �'�($&�)" � * ��+ � , iff each model of
�

is
also a model of �'�($&�)" � * ��+ � . It is a tight logical consequence of

�
, denoted

� $&$ �43(576�893_�'�%$&�)" � * ��+ � , iff * (resp.,
+ ) is the infimum (resp., supremum) of `9ac�'�%$&�S" subject to all models `9a of

�
with `#ad���)"Se � . Here, we

define * � � and + � � , when
� $&$ � ����$&�8" � ��� � � .

A probabilistic knowledge base �:� � ��� � ��" is satisfiable iff � � � is satisfiable. A conditional con-
straint �'�($&�)" � * ��+ � is a logical consequence of ��� , denoted �:� $&$ � �'�%$&�S" � * ��+ � , iff �:� � $&$ � �'�%$&�S" � * ��+ � . It is
a tight logical consequence of ��� , denoted �:� $&$ �23/5 6;8�3��'�($&�)" � * ��+ � , iff �:� � $&$ �<3(576�893_�'�%$&�)" � * ��+ � . We give an
example to illustrate the above concepts.

Example 2.2 Consider again the probabilistic knowledge base �:� � ��� � ��" of Example 2.1. In model-
theoretic probabilistic logic, �:� represents the logical knowledge “all ostriches are birds” and “all birds have
legs” (that is, in model-theoretic probabilistic logic, a logical constraint �:35� � � has the same meaning
as a conditional constraint �'�%$&�S" � � � ��� � � ), and the probabilistic knowledge “birds fly with a probability
of at least 0.95” and “ostriches fly with a probability of at most 0.05”. It is not difficult to see that �:� is
satisfiable, and that some tight logical consequences of ��� are given by:

��� $&$ �=3/5 6;8�3����% >"$�c$%�&� a���" � � � ��� �?�:� $&$ �=3/5 6;8�3��('@) $%���'a��" � �c�,+.- � ��� �
��� $&$ �=3/5 6;8�3����% >"$�c$/�����	a������" � � � ��� �?�:� $&$ �=3/5 6;8�3��('*) $/�����	a������S" � ��� �c� �0- � �

Hence, under logical entailment, the logical property of having legs is inherited from the class of birds down
to the subclass of ostriches. 1
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2.3 Probabilistic Logic under Coherence

We now recall the notions of g-coherence and of g-coherent entailment. We define them by using some
characterizations through concepts from default reasoning [9]. We first give some preparative definitions.

A probabilistic interpretation `#a verifies a conditional constraint �'�%$&�)" � * ��+ � iff `#ad���)"Se � and `#a�$ �
�'�($&�)" � * ��+ � . We say `#a falsifies �'�%$&�S" � * ��+ � iff `9a]���)"Se � and `#a 	$ � �'�($&�)" � * ��+ � . A set of conditional con-
straints � tolerates a conditional constraint �'�%$&�S" � * ��+ � under a set of logical constraints � iff �f� � has
a model that verifies �'�($&�)" � * ��+ � . We say � is under � in conflict with �'�%$&�S" � * ��+ � iff no model of �2� �
verifies �'�($&�)" � * ��+ � .

A conditional constraint ranking � on a probabilistic knowledge base ��� � ��� � ��" maps each element
of � to a nonnegative integer. It is admissible with ��� iff every �

���
� that is under � in conflict with

some � � � contains a conditional constraint � � such that � ��� � "�� � ���8" .
We are now ready to define the concept of g-coherence for �:� . A probabilistic knowledge base �:� is

g-coherent iff there exists a conditional constraint ranking on �:� that is admissible with �:� .
We next define the notion of g-coherent entailment. Let �:� � ��� � � " be a g-coherent probabilistic

knowledge base, and let �'�%$&�)" � * ��+ � be a conditional constraint. Then, �'�($&�)" � * ��+ � is a g-coherent conse-
quence of ��� , denoted �:�
	 �� �'�($&�)" � * ��+ � , iff ��� � �2� �\�'�%$&�S" � � �	� � ��" is not g-coherent for all � � � ��� * ".�
�'+ � ��� . We say �'�($&�)" � * ��+ � is a tight g-coherent consequence of �:� , denoted ����	 � �3/576�8�3 �'�%$&�S" � * ��+ � , iff *
(resp., + ) is the infimum (resp., supremum) of � subject to all g-coherent ��� � �2� �\�'�($&�)" � � �	� � ��" . The fol-
lowing example illustrates the notions of g-coherence and g-coherent entailment.

Example 2.3 Consider again the probabilistic knowledge base ��� � ��� � ��" of Example 2.1. In probabilis-
tic logic under coherence, �:� represents the logical knowledge “all ostriches are birds”, the default logical
knowledge “generally, birds have legs” (that is, in probabilistic logic under coherence, a logical constraint
��35� � � does not have the same meaning as a conditional constraint �'�($&�)" � � � ��� � � ), and the default
probabilistic knowledge “generally, birds fly with a probability of at least 0.95” and “generally, ostriches
fly with a probability of at most 0.05”. It is not difficult to see that ��� is g-coherent, and that some tight
g-coherent consequences of �:� are given by:

�:�
	 � �3/5 6;8�3 ���% >"$�]$%�&� a���" � � � ��� �?�:�
	 � �3/5 6;8�3 �('@) $%���'a;�" � �c�,+.- � ��� �
�:�
	 � �3/5 6;8�3 ���% >"$�]$/�����	a������" � ��� ��� �?�:�
	 � �3/5 6;8�3 �('@) $/�����	a������" � ��� �c� �0- � �

Hence, under g-coherent entailment, the logical property of having legs is not inherited from the class of
birds down to the subclass of ostriches. 1

3 Nonmonotonic Probabilistic Logics

In this section, we introduce new probabilistic generalizations of Pearl’s entailment in System � and Leh-
mann’s lexicographic entailment. The new probabilistic formalisms are parameterized through a value � �
� ��� ��� that describes the strength of the inheritance of purely probabilistic knowledge.

We first describe the main ideas behind the new formalisms, we then define the concept of � -consistency
for probabilistic knowledge bases, and we finally introduce the new notions of ��� - and *���� � -entailment.

3.1 Key Ideas

The property of inheritance of knowledge along subclass relationships can be divided into the properties of
inheritance of logical knowledge and of inheritance of purely probabilistic knowledge. The inheritance of
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logical knowledge (L-INH) is the following property (for all events � , � , and ��� , all probabilistic knowledge
bases ��� , and all � � � ��� ��� ):
L-INH. If ����	 � �'�($&�)" � � ��� � and �(3;� � is valid, then �:�
	 � �'�%$&� � " � � ��� � .
The inheritance of purely probabilistic knowledge (P-INH) is defined as follows (for all events � , � , and ��� ,
all probabilistic knowledge bases ��� , and all intervals � * ��+ � � � ��� ��� different from � ��� � � , � � � ��� , and � � � � � ):
P-INH. If ����	 � �'�($&�)" � * ��+ � and �O3;��� is valid, then ����	 � �'�($&��� " � * ��+ � .

It is not difficult to verify that the notion of logical entailment satisfies (L-INH), but does not satisfy
(P-INH), whereas the notion of g-coherent entailment satisfies neither (L-INH) nor (P-INH).

The basic idea behind the new probabilistic generalizations of Pearl’s entailment in System � and
Lehmann’s lexicographic entailment in this paper is that they add to the notion of logical (resp., g-coherent)
entailment (i) some inheritance of purely probabilistic (resp., logical and purely probabilistic) knowledge,
where the inheritance of purely probabilistic knowledge depends on a strength � � � ��� ��� , and (ii) a mecha-
nism for resolving inconsistencies due to the inheritance of logical and purely probabilistic knowledge.

The strength � � � ��� ��� determines to which extent purely probabilistic knowledge is inherited from
classes down to subclasses. In the extreme cases of �	� � and �
� � , purely probabilistic knowledge is
not inherited at all [45] and completely inherited [46], respectively, while for � � � � � , given the interval� * ��+ � for the property of a class, some interval � � ��� � 	 � * ��+ � is inherited down to all subclasses, where the
largeness of the interval � � ��� � depends on the strength � (roughly, the smaller is � , the larger is � � ��� � ).

3.2 
 -Consistency

We now introduce the notion of � -consistency for probabilistic knowledge bases. We first give some prepar-
ative definitions.

A probabilistic interpretation `9a � -verifies (resp., � -falsifies) a conditional constraint �'�%$&�S" � * ��+ � iff `#a
verifies (resp., falsifies) �'�($&�)" � * �&+ � and `9ac���)" � � . A set of conditional constraints � � -tolerates a condi-
tional constraint � under a set of logical constraints � iff �f� � has a model that � -verifies � . We say

� is under � in � -conflict with � iff no model of ��� � � -verifies � . A conditional constraint ranking �
on a probabilistic knowledge base �:� � ��� � � " is � -admissible with �:� iff every �

� �
� that is under �

in � -conflict with some � � � contains some � � such that � ��� � "�� � ���8" .
We are now ready to define the notion of � -consistency for probabilistic knowledge bases ��� . We say

�:� is � -consistent iff there exists a conditional constraint ranking � on ��� that is � -admissible with ��� .
The following theorem characterizes the � -consistency of ��� � ��� � ��" through the existence of an

ordered partition of � .

Theorem 3.1 A probabilistic knowledge base �:� � ��� � ��" is � -consistent iff there exists an ordered par-
tition � ��� ������� � �� " of � such that every ��� , � ������ , is the set of all � ��� ��� � � � that are � -tolerated

under � by � ��� � � � .
We next give some other useful definitions. A probability ranking � maps each probabilistic interpreta-

tion on U>V to a member of � ��� � �������'� � ��� � such that �>��`9a " � � for at least one interpretation `#a . We use
the expression ��� � to abbreviate the probabilistic formula �9���7$&�0" � ��� � ���X���7$&�0" � � � ��� .

It is extended to all logical constraints and probabilistic formulas , as follows. If , is satisfiable,
then �>�	, " ���! #" �$�G��`#a " $�`9a9$ �!,h� ; otherwise, �>�	,�" ��� . A probability ranking � is � -admissible
with a probabilistic knowledge base �:� � ��� � ��" iff �>���7,�" �%� for all , � � and �>����� �"��&� and
�>����� �O� �'�($&�)" � * ��+ �'"��'�>����� �O���9�'�%$&�S" � * ��+ �'" for all �'�($&�)" � * ��+ � � � .
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3.3 System Z of Strength 

We now define a generalization of Pearl’s entailment in System � [50, 32] of strength � � � ��� ��� for � -
consistent probabilistic knowledge bases ��� � ��� � ��" . The new notion of entailment is linked to an ordered
partition of � , a conditional constraint ranking � � on �:� , and a probability ranking ��� � .

The � � -partition of �:� is the unique ordered partition � � � ������� � ��P" of � such that every � � , � � � ��������� �� � , is the set of all � � � ��� � � � that are � -tolerated under � by � ��� � � � . Observe that by Theorem 3.1,
every � -consistent probabilistic knowledge base �:� has a � � -partition. The following two examples show
some � � -partitions.

Example 3.2 Let the probabilistic knowledge base ��� � ��� � ��" be given by:

� � ���&� a�� 3  �� ".�! � �
� � �\���! #".�c$%���'a;�S" � � � ��� �D�('@)G$%�&� a��" � �c�,+.- � ��� ���

Then, for every � � � ��� ��� , the ��� -partition of ��� is given as follows:

� ���D" � �Q�\���% >"$�c$%�&� a��" � � � ��� �D�('*)G$%���'a��" � �c�,+.- � ��� ��"�21

Example 3.3 For every � � � ��� �c� �0- ������� � , the � � -partition of the probabilistic knowledge base ��� �
��� � � " of Example 2.1 is given as follows:

� � � " � �Q�\���% >"$�c$%�&� a��" � � � ��� �D�('*)G$%���'a��" � �c�,+.- � ��� �D�('*)�$/���9�	a9�����S" � ��� �c� �0- � ��"�
For every other � � � ��� ��� , the ��� -partition is given as follows:

� � � � �b� " � �Q�\���! #".�c$%���'a��" � � � ��� �D�('*)G$%���'a;�S" � �c�,+.- � ��� � � �\�('@).$/���9�	a9���&�S" � ��� �c� �0- � ��"�21

We next define � � and � � � . For every 	 � � ��������� � � � , each � � � � is assigned the value 	 under � � . The
probability ranking ��� � on all probabilistic interpretations `#a is then defined as follows:

�
� � ��`#a " �
��� ���
� if `9a 	$ � �

� if `9ah$ � �!� �
��� ��������������
��� � � � ������" otherwise.

The probability ranking � � � defines a preference relation on probabilistic interpretations as follows. For
probabilistic interpretations `9a and `9a � , we say `#a is ��� -preferable to `#a � iff �!� � ��`#a "����
� � ��`#a � " . A model
`#a of a set of logical constraints and probabilistic formulas

�
is a � � -minimal model of

�
iff no model of

�
is � � -preferable to `#a .

We are now ready to define the notion of � � -entailment as follows. A conditional constraint �'�($&�)" � * ��+ � is
a � � -consequence of �:� , denoted ���
	 � � � �'�%$&�)" � * ��+ � , iff every � � -minimal model of � � ����� � � satisfies
�'�($&�)" � * ��+ � . We say that �'�($&�)" � * ��+ � is a tight � � -consequence of ��� , denoted ����	 � � �3(576�893 �'�%$&�)" � * ��+ � , iff* (resp., + ) is the infimum (resp., supremum) of `#ad�'�($&�)" subject to all � � -minimal models `9a of �#�b����� � � .

We now illustrate the notion of � � -entailment through some examples. The following example shows
that the notion of ��� -entailment realizes an inheritance of logical properties from classes to non-exceptional
subclasses, and an inheritance of purely probabilistic properties from classes to non-exceptional subclasses,
where the latter inheritance depends on the strength � .
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Example 3.4 Consider the probabilistic knowledge base ��� of Example 3.2. Some tight intervals under
� � -entailment, where � � � ��� �c� � � �c��� � �c� � � �d��� � ��� , are shown in Table 1. In particular, the logical knowledge
of having legs is inherited from the class of birds down to the class of eagles, independently from � , while
the purely probabilistic knowledge of being able to fly with a probability of at least �c�,+.- is also inherited,
but this is controlled by � . 1

However, � � -entailment does not inherit properties from classes to subclasses that are exceptional rel-
ative to some other property (and thus, like its classical counterpart, shows the problem of inheritance
blocking).

Example 3.5 Consider the probabilistic knowledge base ��� of Example 2.1. Some tight intervals under
� � -entailment, where � � � ��� �c� � � �c��� � �c� � � �c����� �P� , are shown in Table 2. In particular, for �8� �c� � , the logical
property of having legs is not inherited from the class of birds to its exceptional subclass of ostriches. Note
that in the case of �
� � , this logical property is inherited, since there is no inheritance of purely probabilistic
knowledge, and thus no conflict between the abilities to fly of birds and penguins. 1

Table 1: Tight intervals under � � - and *�� � � -entailment from ��� in Example 3.2.

Conditional Event ��� � � � �c� � � � �c��� � � �c� � ��� �c��� ��� �
�! #".�]$%���'a;� � � � ��� � � � ��� � � � ��� � � � ��� � � � ��� � � � ���
�! #".�]$% � "0�% � � � ��� � � � ��� � � � ��� � � � ��� � � � ��� � � � ���
'*) $%�&� a�� � �c�,+.- � ��� � �c�,+.- � ��� � �c�,+.- � ��� � �c�,+.- � ��� � �c�,+.- � ��� � �c�,+.- � ���
'*) $% �� ".�! ��� ��� � ��� ���
	 ��� � ��� ����� ��� � ��� ���� ��� � ��� ���� ��� � ��� ���	 ��� �

Table 2: Tight intervals under � � -entailment from �:� in Example 2.1.

Conditional Event � � � � � �c� � ��� �c��� � � �c� � � � �c��� � � �
�% >"$�]$%�&� a�� � � � ��� � � � ��� � � � ��� � � � ��� � � � ��� � � � ���
�% >"$�]$/�����	a������ � � ��� � ��� ��� � ��� ��� � ��� ��� � ��� ��� � ��� ��� �
'@) $%���'a�� � �c�,+.- � ��� � �c�,+.- � ��� � �c�,+.- � ��� � �c�,+.- � ��� � �c�,+.- � ��� � �c�,+.- � ���
'@) $/�����	a������ � ��� �c� �0- � � ��� �c� �0- � � ��� �c� �0- � � ��� �c� �0- � � ��� �c� �0- � � ��� �c� �0- �

3.4 Lexicographic Entailment of Strength 

We next define a generalization of Lehmann’s lexicographic entailment [39] of strength � � � ��� ��� for � -
consistent probabilistic knowledge bases ��� .

We use the ��� -partition � � � ������� � ��P" of �:� � ��� � ��" to define a lexicographic preference relation on
probabilistic interpretations as follows. For probabilistic interpretations `#a and `9a � , we say `#a is *���� � -
preferable to `9a � iff some � � � ��������� � � � exists such that $ ��� � � � $&`9a9$ � � �]$ e4$ ��� � � � $�`#a � $ � � �]$ and
$ ��� � � � $�`9a9$ � � �]$ � $ ��� � � � $I`#a � $ � � �]$ for all � � 	 � � . A model `#a of a set of logical constraints and
probabilistic formulas

�
is a *�� � � -minimal model of

�
iff no model of

�
is * � � � -preferable to `#a .
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We now define the notion of *���� � -entailment as follows. A conditional constraint �'�($&�)" � * ��+ � is a *���� � -
consequence of ��� , denoted ����	 �

� ��� � �'�($&�)" � * �&+ � , iff every *�� � � -minimal model of �:� ����� � � satisfies
�'�($&�)" � * ��+ � . We say �'�%$&�S" � * ��+ � is a tight *���� � -consequence of �:� , denoted �:�
	 �

� ��� �
3/5 6;8�3 �'�($&�)" � * �&+ � , iff * (resp.,

+ ) is the infimum (resp., supremum) of `9ac�'�%$&�)" subject to all * � � � -minimal models `#a of � ������� � � .
The following example shows that *�� � � -entailment realizes an inheritance of properties, without show-

ing the problem of inheritance blocking.

Example 3.6 Some tight intervals under *���� � -entailment from the probabilistic knowledge bases of Exam-
ples 3.2 and 2.1 are shown in Tables 1 and 3, respectively. As shown in Table 3, for all � , having legs is
inherited from the class of birds down to the exceptional subclass of ostriches. 1

Table 3: Tight intervals under *���� � -entailment from ��� in Example 2.1.

Conditional Event ��� � � � �c� � � � �c��� ��� �c� � � � �c��� � � �
�! #".�]$%���'a;� � � � ��� � � � ��� � � � ��� � � � ��� � � � ��� � � � ���
�! #".�]$/���9�	a9���&� � � ��� � � � ��� � � � ��� � � � ��� � � � ��� � � � ��� �
'*) $%�&� a�� � �c�,+.- � ��� � �c�,+.- � ��� � �c�,+.- � ��� � �c�,+.- � ��� � �c�,+.- � ��� � �c�,+.- � ���
'*) $/�$�9�	a9���&� � ��� �c� �0- � � ��� �c� �0- � � ��� �c� �0- � � ��� �c� �0- � � ��� �c� �0- � � ��� �c� �0- �

4 Properties

In this section, we explore some properties of � � - and * � � � -entailment. We first describe some general
nonmonotonic properties. We then explore the relationship between the formalisms, and the one to their
classical counterparts.

4.1 General Nonmonotonic Properties

We now analyze some general nonmonotonic properties of the new probabilistic entailment semantics in-
troduced in this paper.

We first consider the postulates Right Weakening (RW), Reflexivity (Ref), Left Logical Equivalence
(LLE), Cut, Cautious Monotonicity (CM), and Or proposed by Kraus et al. [34], which are commonly
regarded as being particularly desirable for any reasonable notion of nonmonotonic entailment. The fol-
lowing result shows that ��� - and *���� � -entailment both satisfy (probabilistic versions of) these postulates.
Here, ���
	 � � ���7$ �71 � � " � * ��+ � , where � � � � � � *���� �c� , denotes that `9a9$ � ����$ �P" � * ��+ ��1 ���7$ � � " � * ��+ � for all � -min-
imal models `#a of �X� ��� � � 1�� � � �)� .
Theorem 4.1 Let � � � ��� � *���� �d� , let ��� � ��� � ��" be a � -consistent probabilistic knowledge base, let � ��� � �
� ��� be events, and let

* � * � ��+ ��+ � � � ��� ��� . Then,

RW. If ���7$&�0" � * ��+ �
	 �'�($&�0" � * � ��+ � � is logically valid and �:�
	 � � ���7$ �P" � * ��+ � , then �:�
	 � � �'�($ ��" � * � ��+ � � .
Ref. ����	 � � ���c$ ��" � � � ��� .
LLE. If ����

�
is logically valid, then �:� 	 � � ���7$ �P" � * ��+ � iff �:� 	 � � ���7$ � � " � * ��+ � .
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Cut. If �:� 	 � � ���]$ � � " � � � ��� and �:� 	 � � ���7$ ��� � � " � * ��+ � , then ��� 	 � � ���7$ � � " � * ��+ � .
CM. If �:� 	 � � ���]$ � � " � � � ��� and �:� 	 � � ���7$ � � " � * ��+ � , then �:� 	 � � ����$ �P� � � " � * ��+ � .
Or. If �:� 	 � � ����$ �P" � * ��+ � and ��� 	 � � ���7$ � � " � * ��+ � , then ��� 	 � � ���7$ ��1 � � " � * ��+ � .

Another desirable property is Rational Monotonicity (RM) [34], which describes a restricted form of
monotony and allows to ignore certain kinds of irrelevant knowledge. The next theorem shows that � � -
and *���� � -entailment both satisfy (a weak form of) RM. Here, �:� 		 � � �9��� � $ ��" � � � ��� , � � � � � � *�� � �]� , denotes
that `#a6$ � ��� � $ ��" � � � ��� for some � -minimal models `#a of �!� ��� � �)� .
Theorem 4.2 Let � � � ��� � *���� �c� , let �:� � ��� � ��" be a � -consistent probabilistic knowledge base, and let
� ��� � ��� be events. Then,

RM. If �:� 	 � � �'�($ ��" � � � ��� and ��� 		 � � �9��� � $ �P" � � � ��� , then �:� 	 � � �'�($ �P� � � " � � � ��� .

4.2 Relationship between Probabilistic Formalisms

We now explore the relationship between � � - and *�� � � -entailment. The following theorem shows that � � -
entailment is weaker that *�� � � -entailment. Moreover, it shows that * � � � -entailment of �'�%$&�S" � * ��+ � from
�:� � ��� � ��" is weaker than logical entailment of �'�%$&�)" � * ��+ � from �:� �4� ����� � � .
Theorem 4.3 Let ��� � ��� � ��" be a � -consistent probabilistic knowledge base, and let �'�%$&�)" � * ��+ � be a
conditional constraint. Then,

(a) �:�
	 � � � �'�%$&�S" � * ��+ � implies ����	 �
� ��� � �'�($&�)" � * ��+ � .

(b) �:�
	 �
� ��� � �'�($&�)" � * ��+ � implies � � �2� ����� �)� $&$ � �'�($&�)" � * ��+ � .

In general, the converse implications do not hold, as follows from Examples 3.5 and 3.6 for �
� � . But,
in the special case when � � �N������� �)� is satisfiable, the notions of � � - and *�� � � -entailment of �'�%$&�)" � * ��+ �
from �:� � ��� � ��" both coincide with the notion of logical entailment of �'�%$&�S" � * ��+ � from ��� �N����� � � � .
This result is expressed by the following theorem.

Theorem 4.4 Let ��� � ��� � ��" be a � -consistent probabilistic knowledge base, and let �'�%$&�)" � * ��+ � be a
conditional constraint such that �:� � � ����� � � is satisfiable. Then,

(a) �:�
	 � � � �'�%$&�S" � * ��+ � iff �:� 	 �
� ��� � �'�($&�)" � * ��+ � .

(b) �:�
	 �
� ��� � �'�($&�)" � * ��+ � iff � � �4� ����� �)� $&$ � �'�($&�)" � * ��+ � .

4.3 Relationship to Classical Formalisms

We now analyze the relationship between the new formalisms of this paper and their classical counterparts.
We first give some technical preparation.

The operator � on conditional constraints, sets of conditional constraints, and probabilistic knowledge
bases replaces each conditional constraint of the form �'�%$&�S" � � � ��� by the classical default ���5� . We use the
expressions $� � and $�

� ���
to denote the classical notions of Pearl’s entailment in System � and Lehmann’s

lexicographic entailment, respectively.
The following theorem shows that the new notions of � � - and *�� � � -entailment for � -consistent proba-

bilistic knowledge bases generalize their classical counterparts for � -consistent conditional knowledge bases.
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Theorem 4.5 Let ��� � ��� � ��" be a � -consistent probabilistic knowledge base, where � �2�\�'� � $&� � " � � � ��� $� � � � ������� ���7� � , and let ��� $ �7" � � � ��� be a conditional constraint. Then,

(a) ���
	 � � � ��� $ ��" � � � ��� iff � �#��� " $� � � ��� .

(b) ���
	 �
� ��� � ���#$ ��" � � � ��� iff � �#�:� " $�

� ���
� ��� .

5 Special Cases

The notions of ��� - and *�� � � -entailment of strength �
� � and �	� � are special cases explored in [45] and
[46], respectively. In this section, we briefly review these special cases and some of their applications.

5.1 System � and Lexicographic Entailment of Strength �
Roughly, the notions of ��� - and �! �� � -entailment add to logical entailment (resp., g-coherent entailment) a
strategy for resolving inconsistencies due to the inheritance of logical knowledge (resp., a restricted form
of inheritance of logical knowledge). This is why the notions of � � - and �! �� � -entailment are weaker than
logical entailment and stronger than g-coherent entailment.

Hence, � � - and �% 	� � -entailment are refinements of both logical and g-coherent entailment. They can
be used in place of logical entailment, when we want to resolve probabilistic inconsistencies related to
conditioning on zero events. Here, they are especially well-suited as they coincide with logical entailment
as long as we condition on non-zero events. Furthermore, � � - and �! �� � -entailment can be used in place of
g-coherent entailment, when we also want to have a restricted form of inheritance of logical knowledge.

The following example illustrates the use of �! �� � -entailment, instead of logical entailment, in order to
resolve inconsistencies related to conditioning on zero events.

Example 5.1 Let the probabilistic knowledge base ��� � ��� � ��" be given as follows:

� � ���&� a�� 3�
  � "�������� �
� � �\���! #".�]$%���'a;�S" � � � ��� �D�('@)G$%�&� a��" � � � ��� �D�('*)G$ 
  �� "������ " � ��� �c� �0- � ���

It is not difficult to see that ��� is satisfiable, and that some tight logical consequences of ��� are as follows:

�:� $&$ �=3/5 6;8�3����! #"$�]$%�&� a��" � � � ��� �?��� $&$ �=3/576�8�3��('*) $%�&� a��" � � � ��� �
�:� $&$ �=3/5 6;8�3����! #"$�]$ 
  � "������>" � � � � � � ��� $&$ �=3/5 6;8�3��('@) $ 
  ��"������>" � � � � � �

Here, the tight conclusions ��� $&$ � 3/576�8�3���! #".�]$ 
  ��"������ " � � � � � and �:� $&$ �=3/576�8�3��('*) $ 
  � "������>" � � � � � are due to
the fact that the logical property of being able to fly is under logical entailment inherited from birds to
penguins, and is incompatible there with the knowledge that penguins are able to fly with a probability of at
most 0.05. That is, our knowledge about penguins is inconsistent. This means that there does not exist any
model `9a of �:� � such that `#ad��
  � "������ "Se � , and thus we are conditioning on the zero event 
  �� "������ .

Hence, as far as the conditioning event 
  � "������ is concerned, logical entailment does not provide
the desired tight conclusions from ��� , which are ���! #".�]$ 
  ��"������ " � � � ��� and �('@) $ 
  �� "������ " � ��� �c� �0- � , rather
than ���! #".�]$ 
  ��"������>" � � � � � and �('@) $ 
  ��"������ " � � � � � , respectively.

However, �:� is � -consistent, and the tight conclusions from ��� under �! �� � -entailment are given by
���! #"$�]$ 
  � "������>" � � � ��� and �('*) $ 
  � "������ " � ��� �c� �0- � , respectively, which coincide with the desired ones.
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Note that �:� is also g-coherent, and that some tight g-coherent consequences of �:� are as follows:

���
	 � �3(576�893 ���! #".�]$%���'a;�S" � � � ��� � ��� 	 � �3/576�8�3 �('*) $%�&� a���" � � � ��� �
���
	 � �3(576�893 ���! #".�]$ 
  ��"������>" � ��� ��� � �:� 	 � �3/5 6;8�3 �('@) $ 
  ��"������>" � ��� �c� �0- � �

Hence, also g-coherent entailment does not provide the desired tight conclusions from ��� . 1

5.2 System � and Lexicographic Entailment of Strength �

Roughly, the notions of �\� - and �! ��>� -entailment add to logical entailment (i) some inheritance of purely
probabilistic knowledge, and (ii) a strategy for resolving inconsistencies due to the inheritance of logical
and purely probabilistic knowledge. For this reason, the notions of �_� - and �! �� � -entailment are generally
much stronger than logical entailment.

The notions of � � - and �! �� � -entailment can especially be used where logical entailment is too weak, for
example, in probabilistic logic programming [44, 43]. Other important applications are deriving degrees of
belief from statistical knowledge and degrees of belief, handling inconsistencies in probabilistic knowledge
bases, and probabilistic belief revision.

In particular, in reasoning from statistical knowledge and degrees of belief, ��� - and �! �� � -entailment show
a similar behavior as reference-class reasoning [53, 35, 36, 52] in a number of uncontroversial examples.
They, however, also avoid many drawbacks of reference-class reasoning. In detail, they can handle complex
scenarios and even purely probabilistic subjective knowledge as input. Moreover, conclusions are drawn in
a global way from all the available knowledge as a whole. See [46] for further details on these issues.

The following example illustrates the use of �% 	�.� -entailment for reasoning from statistical knowledge
and degrees of belief.

Example 5.2 Suppose that we have the statistical knowledge “all penguins are birds”, “between 90% and
95% of all birds fly”, “at most 5% of all penguins fly”, and “at least 95% of all yellow objects are easy
to see”. Moreover, assume that we believe “Sam is a yellow penguin”. What do we then conclude about
Sam’s property of being easy to see? Under reference-class reasoning, which is a machinery for dealing
with statistical knowledge and degrees of belief, we conclude “Sam is easy to see with a probability of at
least 0.95”. This is exactly what we obtain using the notion of �! ���� -entailment. More precisely, the above
statistical knowledge can be represented by the following probabilistic knowledge base �:� � ��� � ��" :

� � �����'a�� 3�
  �� "������>� �
� � �\�('*) $%�&� a��" � �c�,+ � �c�,+.- � �D�('*)7$ 
  �� "������>" � ��� �c� �0- � �D�  ���9) �#� �&  c$ )  �� �%���O" � �c�,+.- � ��� ���

It is then not difficult to verify that �:� is � -consistent, and that �  �����) �#� �&  c$ )  �� �%���O� 
  �� "������ " � �c�,+.- � ���
is a tight conclusion from �:� under �% 	�G� -entailment.

Note that ��� is also satisfiable and g-coherent, and that �  �����) �#� �&  c$()  &� �%��� � 
  �� "������ " � ��� ��� is a tight
conclusion from ��� under logical and g-coherent entailment. That is, under logical and g-coherent entail-
ment from �:� , we do not conclude the desired tight interval � �c�,+.- � ��� for  �$��) �#� �   c$ )  �� �/���(� 
  ��"������ . 1

6 Summary and Outlook

We have presented the notions of � � - and * � � � -entailment, which are probabilistic generalizations of Pearl’s
entailment in System � and Lehmann’s lexicographic entailment. They are parameterized through a value
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� � � ��� ��� that describes the strength of the inheritance of purely probabilistic knowledge. In the special cases
of �
� � and �
� � , the new probabilistic formalisms coincide with the notions of � - and �% 	� -entailment
in [45] and [46], respectively. We have shown that � � - and *���� � -entailment have similar properties as their
classical counterparts. In particular, they both satisfy the rationality postulates of System � and the property
of Rational Monotonicity. Moreover, � � -entailment is weaker than *�� � � -entailment, and both � � - and *���� � -
entailment have proper embeddings of their classical counterparts.

An interesting topic of future research is to develop algorithms for the new probabilistic formalisms and
to analyze their computational complexity, which can be done along the lines of [45, 46].

Another exciting topic of future research is to develop and explore further nonmonotonic probabilistic
logics. Besides extending other classical formalisms for default reasoning from conditional knowledge
bases, one may also combine the new formalisms of this paper with some probability selection technique
(as e.g. maximum entropy or center of mass).

A Appendix: Proofs for Section 3

Proof of Theorem 3.1. ��3 " Assume that there exists an ordered partition � � � ������� � �� " of � such that every
� � , � ��� ��� , is the set of all � � � ��� � � � � -tolerated under � by � ��� � � � . We then define a conditional
constraint ranking � on ��� as follows. For every 	 � � ��������� � � � , each � � � � is assigned the value 	
under � . We now show that � is � -admissible with ��� . Towards a contradiction, assume the contrary.
That is, some �

� �
� is under � in � -conflict with some � � � , and � ��� � "S� � ����" for all � � � �

�
. But this

contradicts � being � -tolerated under � by ��� � � � $ � ��� � "S� � ���8" � . It thus follows that � is � -admissible
with ��� , and thus ��� is � -consistent.
� 	 " Assume that �:� is � -consistent. That is, there exists a conditional constraint ranking � on �:�

that is � -admissible with ��� . We now show that a partition � � � ������� � ��P" exists as stated in the theorem.
Towards a contradiction, assume the contrary. Hence, there exists some �

� �
� that is under � in � -conflict

with every � � �
�
. Let � � be a member of �

�
of smallest value under � . Then, � � is � -tolerated under �

by �
�
, which is a contradiction. Thus, a partition � � � ������� � �� " exists as stated in the theorem. 1

B Appendix: Proofs for Section 4

Proof of Theorem 4.1. Let � be any semantics among � � and *���� � .
RW. Assume that ����	 � � ���7$ ��" � * ��+ � . That is, `9ad$ � ���7$ �P" � * ��+ � for all � -minimal models `#a of �:� ��� � �)� .
Since ���7$&�0" � * �&+ �
	 �'�($&�0" � * � �&+ � � is logically valid, it thus follows that `9a9$ � �'�($ ��" � * � ��+ � � for all � -minimal
models `9a of �!� ��� � �)� . That is, �:�
	 � � �'�($ �P" � * � ��+ � � .
Ref. Since every `#a satisfies ���]$ ��" � � � ��� , it trivially holds �:�
	 � � ���c$ ��" � � � ��� .
LLE. Assume that ����	 � � ���7$ �P" � * ��+ � . That is, `9a9$ � ���7$ �P" � * ��+ � for all � -minimal models `#a of � �:��� � �)� .
Since ����

�
is logically valid, it follows that `#a6$ � ���7$ � � " � * ��+ � for all � -minimal models `9a of � ����� � � �)� .

That is, ��� 	 � � ����$ � � " � * ��+ � .
Cut. Assume that ���
	 � � ���c$ � � " � � � ��� and ����	 � � ���7$ ��� � � " � * �&+ � . That is, `#a $ � ���]$ � � " � � � ��� and `9a $ �
���7$ ��� � � " � * ��+ � for all � -minimal models `#a of � �f��� � � � � and � �f���7� � � � �)� , respectively. Hence,
`#a6$ � ���7$ � � " � * ��+ � for all � -minimal models `9a of �!� ��� � � �)� . That is, ����	 � � ���7$ � � " � * ��+ � .
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CM. Assume that ��� 	 � � ���c$ � � " � � � ��� and ����	 � � ���7$ � � " � * ��+ � . That is, `#a6$ � ���]$ � � " � � � ��� and `#a�$ � ���7$ � � " � * ��+ �
for all � -minimal models `#a of �f����� � � �)� . It thus follows that `9a9$ � ����$ �%� � � " � * ��+ � for all � -minimal
models `9a of �!�/���9��� � � �)� . That is, �:�
	 � � ���7$ �6� � � " � * ��+ � .
Or. Suppose that ���
	 � � ���7$ �P" � * ��+ � and �:� 	 � � ����$ � � " � * ��+ � . That is, `#a $ � ����$ �P" � * ��+ � and `#a6$ � ���7$ � � " � * ��+ �
for all � -minimal models `#a of �R� ��� � � � and � � ��� � � �)� , respectively. Thus, `9a9$ � ���7$ �P" � * ��+ � 1
����$ � � " � * ��+ � for all � -minimal models `#a of �X� ��� � � 1 � � � �)� . That is, �:�
	 � � ���7$ ��1 � � " � * ��+ � . 1
Proof of Theorem 4.2. Let � be any semantics among � � and *���� � . Assume that ���
	 � � �'�%$ ��" � � � ���
and ��� 		 � � �9��� � $ ��" � � � ��� . That is, `9aj$ � �'�($ �P" � � � ��� for all � -minimal models `9a of � � ��� � �)� , and
`#a6$ � ��� � $ ��" � � � ��� for some � -minimal model `#a of � � ��� � � � . Hence, `9a9$ � �'�($ ��� � � " � � � ��� for all � -
minimal models `9a of �!� ����� � � � �)� . That is, ����	 � � �'�%$ ��� � � " � � � ��� . 1

Proof of Theorem 4.3. (a) Suppose that ����	 � � � �'�%$&�)" � * ��+ � . That is, every � -minimal model `#a of �2�
��� � �)� satisfies �'�%$&�S" � * ��+ � . Since every *�� � � -minimal model `#a of � � ����� � � is also a � -minimal
model of �4������� � � , it follows that every *���� � -minimal model `#a of �4������� � � satisfies �'�($&�)" � * ��+ � .
That is, ����	 �

� ��� � �'�($&�)" � * ��+ � .
(b) Suppose that �:�
	 �

� ��� � �'�%$&�S" � * ��+ � . That is, every *���� � -minimal model `#a of �6�#����� � � is also a model
of �'�($&�)" � * ��+ � . Assume first that � � � �f����� � � is unsatisfiable. Then, � � �f����� � �)� $&$ � �'�($&�)" � * ��+ �
trivially holds. Assume next that � � �2� ����� �)� is satisfiable. It then follows that a probabilistic interpre-
tation `#a is a *�� � � -minimal model of � � ����� � � iff it is a model of � � �2� ����� � � . Hence, every model
of �!� � � ����� � � is also a model of �'�($&�)" � * ��+ � . That is, ��� $&$ � �'�($&�)" � * ��+ � . 1

Proof of Theorem 4.4. Immediate, as the existence of some model `9a of � � �2� ����� �)� implies that a
probabilistic interpretation `9a is a model of � � �4� ��� � �)� iff it is a *���� � -minimal model of � � ����� � �
iff it is a � � -minimal model of � � ����� � � . 1

Proof of Theorem 4.5. Let � be any semantics among � � and *���� � . Observe first that � � � ������� � �� " is the
� � -partition of ��� iff � � � � ��" ������� � � � �� "�" is the classical � -partition of � �#�:� " . The statement then follows
from the observation that every � -minimal model `#a of �:� � � � � � satisfies ��� $ �7" � � � ��� iff every classical
� -minimal model < of �:� � ��� satisfies � . 1
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