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1 Introduction

TheSemantic Web[3, 4, 25, 49] has recently attracted much attention, both from academia andindustry, and
is widely regarded as the next step in the evolution of the World Wide Web. It aims at an extension of the
current Web by standards and technologies that help machines to understand the information on the Web so
that they can support richer discovery, data integration, navigation, and automation of tasks. The main ideas
behind it are to add a machine-readable meaning to web pages, to use ontologies for a precise definition of
shared terms in web resources, to use KR technology for automated reasoning from web resources, and to
apply cooperative agent technology for processing the information of the Web.

The development of the Semantic Web proceeds in several hierarchical layers, where theOntology layer,
in form of theOWL Web Ontology Language[49, 120] (recommended by the W3C), is currently the highest
layer of sufficient maturity. OWL consists of three increasingly expressive sublanguages, namelyOWL Lite,
OWL DL, andOWL Full. Hence,ontologies[29] play a key role in the Semantic Web, and a major effort has
been put by the Semantic Web community into this issue. Informally, an ontology consists of a hierarchical
description of important andpreciselydefined concepts in a particular domain, along with the description of
the properties (of the instances) of each concept. Web content is then annotated by relying on the concepts
defined in a specific domain ontology.

OWL Lite and OWL DL are essentially very expressive description logics withan RDF syntax [49]. As
shown in [48], ontology entailment in OWL Lite and OWL DL reduces to knowledge base (un)satisfiability
in the expressive description logicsSHIF(D) andSHOIN (D), respectively. Hence, these expressive
description logics play an important role in the Semantic Web, since they are essentially the theoretical
counterparts of OWL Lite and OWL DL, respectively. More generally, description logics are a logical
reconstruction of frame-based knowledge representation languages,with the aim of providing a decidable
first-order formalism with a simple well-established declarative semantics to capture the meaning of the
most popular features of structured representation of knowledge.

However, classical ontology languages and description logics are less suitable in all those domains where
the information to be represented isimperfect, that is, eitheruncertain, or vague/imprecise, or both. In
particular, web content is very likely to be imperfect, and thus there is a strong need to deal with imperfect
knowledge in the Semantic Web. This need to deal with uncertainty and vagueness in ontologies for the
Semantic Web has been recognized by a large number of research efforts in this direction. In particular,
dealing with uncertainty and vagueness in ontologies has been successfully applied in ontology mapping
and information retrieval.

Due to the rising popularity of description logics and their use, the emergenceof dealing with uncertain
and vague information is increasingly attracting the attention of many researcher and practitioners towards
description logics able to cope with this lack of expressive power. The goal of this paper is to provide an
overview of the current state of the art about the management of uncertainty and vagueness in description
logics for the Semantic Web, which should help the reader to get insights on mainfeatures of the formalisms
proposed in the literature.

The rest of this paper is organized as follows. In Section 2, we give a brief introduction to uncertainty and
vagueness at the propositional level. In Section 3, we describe the classical description logicSHOIN (D),
which is the reference language in this paper. Sections 4 and 5 show how toextend classical description
logics by probabilistic and possibilistic uncertainty, respectively, while Section 6 describes how to extend
classical description logics for the management of vague/imprecise knowledge. In Section 7, we give a
summary and an outlook on open research.
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2 Uncertainty and Vagueness

There has been a long-lasting misunderstanding in the literature of artificial intelligence and uncertainty
modeling, regarding the role of probability/possibility theory and fuzzy/many-valued theory. A clarifying
paper is [19]. We recall here salient notes, which may clarify the role of these theories for the inexpert
reader.

A standard example that points out the difference between degrees of uncertainty and degrees of truth
is that of a bottle [19]. In terms of binary truth values, a bottle is viewed as fullor empty. If one accounts
for the quantity of liquid in the bottle, one may say the bottle is “half-full” for instance. Under this way of
speaking, “full” becomes a fuzzy predicate [125] and the degree of truth of “the bottle is full” reflects the
amount of liquid in the bottle. The situation is quite different when expressing our ignorance about whether
the bottle is either full or empty (given that we know only one of the two situationsis the true one). To say
that the probability that the bottle is full is0.5 does not mean that the bottle is half full.

We recall that underuncertainty theoryfall all those approaches in which statements rather than being
either true or false, are true or false to someprobability or possibility/necessity(for instance, “it will rain
tomorrow”). That is, a statement is true or false in any world, but we are “uncertain” about which world to
consider as the right one, and, thus, we speak e.g. about a probability distribution or a possibility distribution
over the worlds. For instance, we cannot exactly establish whether it will rain tomorrow or not, due to our
incompleteknowledge about our world, but we can estimate to which degree this is probable, possible, and
necessary.

On the other hand, undervagueness/imprecision theoryfall all those approaches in which statements
(for instance, “the tomato is ripe”) are true to some degree, which is taken from a truth space. That is,
an interpretation maps a statement to a truth degree, as we are unable to establish whether a statement is
completely true or false due to the involvement of vague concepts, such as “ripe”, which do not have aprecise
definition. For instance, we cannot exactly say whether a tomato is ripe or not, but rather just can say that
the tomato is ripe to some degree. Usually, such statements involve so-calledvague/fuzzy predicates[125].

Note that vague statements are truth-functional, i.e., the degree of truth of a statement can be calcu-
lated from the degrees of truth of its constituents, while uncertain statements cannot be a function of the
uncertainties of its constituents [18].

In the following, we illustrate a typical formalization of uncertain statements and vague statements. In
the former case, we consider a basic probabilistic/possibilistic logic, while in thelatter, we consider a basic
many-valued logic.

2.1 Probabilistic Logic

Probabilistic logic has its origin in philosophy and logic. Its roots can be tracedback to already Boole
in 1854 [6]. There is a wide spectrum of formal languages that have been explored in probabilistic logic,
ranging from constraints for unconditional and conditional events to richlanguages that specify linear in-
equalities over events (see especially the work by Nilsson [85], Fagin et al. [24], Dubois and Prade et al.
[17, 21, 1, 20], Frisch and Haddawy [26], and the first author [65,66, 68]; see also the survey on sentential
probability logic by Hailperin [33]). Recently, nonmonotonic generalizationsof probabilistic logic have
been developed and explored; see especially [70] for an overview. In this section, for illustrative purposes,
we recall only the simple probabilistic logic described in [85].

We first define probabilistic formulas and probabilistic knowledge bases. We assume a set ofbasic
eventsΦ= {p1, . . . , pn} with n> 1. We use⊥ and⊤ to denotefalseand true, respectively. We define
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eventsby induction as follows. Every element ofΦ∪{⊥,⊤} is an event. Ifφ andψ are events, then also
¬φ, (φ ∧ ψ), (φ ∨ ψ), and(φ→ ψ) are events. We adopt the usual conventions to eliminate parentheses. A
probabilistic formulais an expression of the form(φ> l), whereφ is an event, andl is a real number from
the unit interval[0, 1]. Informally, (φ> l) says thatφ is true with a probability of at leastl. For example,
(rain tomorrow > 0.7) may express that it will rain tomorrow with a probability of at least0.7. Notice also
that(¬φ> 1 − u) encodes thatφ is true with a probability of at mostu. A probabilistic knowledge baseK
is a finite set of probabilistic formulas.

We next define worlds and probabilistic interpretations. Aworld I associates with every basic event
in Φ a binary truth value. We extendI by induction to all events as usual. We denote byIΦ the (finite) set
of all worlds forΦ. A world I satisfiesan eventφ, or I is a modelof φ, denotedI |=φ, iff I(φ)= true.
A probabilistic interpretationPr is a probability function onIΦ (that is, a mappingPr : IΦ → [0, 1] such
that all Pr(I) with I ∈IΦ sum up to 1). Intuitively,Pr(I) is the degree to which the worldI ∈IΦ is
probable, i.e., the probability functionPr encodes our “uncertainty” about which world is the right one.
The probability of an eventφ in Pr , denotedPr(φ), is the sum of allPr(I) such thatI ∈IΦ andI |=φ.
The following theorem is an immediate consequence of the above definitions.

Theorem 2.1 For all probabilistic interpretationsPr and eventsφ andψ:

Pr(φ ∧ ψ) = Pr(φ) + Pr(ψ) − Pr(φ ∨ ψ)
Pr(φ ∧ ψ) 6 min(Pr(φ),Pr(ψ))
Pr(φ ∧ ψ) > max(0,Pr(φ) + Pr(ψ) − 1)
Pr(φ ∨ ψ) = Pr(φ) + Pr(ψ) − Pr(φ ∧ ψ)
Pr(φ ∨ ψ) 6 min(1,Pr(φ) + Pr(ψ))
Pr(φ ∨ ψ) > max(Pr(φ),Pr(ψ))
Pr(¬φ) = 1 − Pr(φ)
Pr(⊥) = 0
Pr(⊤) = 1

(1)

A probabilistic interpretationPr satisfiesa probabilistic formula(φ> l), or Pr is a modelof (φ> l),
denotedPr |= (φ> l), iff Pr(φ)> l. We sayPr satisfiesa probabilistic knowledge baseK, orPr is a model
of K, iff Pr satisfies allF ∈K. We sayK is satisfiableiff a model ofK exists. A probabilistic formulaF
is a logical consequenceof K, denotedK |=F , iff every model ofK satisfiesF . We say(φ> l) is a tight
logical consequenceof K iff l is the infimum ofPr(φ) subject to all modelsPr of K. Notice that the latter
is equivalent tol= sup{r | K |= (φ> r)}.

The main decision and optimization problems in probabilistic logic are deciding the satisfiability of
probabilistic knowledge bases and logical consequences from probabilistic knowledge bases, as well as
computing tight logical consequences from probabilistic knowledge bases, which can be done by deciding
the solvability of a system of linear inequalities and by solving a linear optimization problem, respectively.
In particular, column generation techniques from operations research have been successfully used to solve
large problem instances in probabilistic logic (see especially the work by Jaumard et al. [53] and Hansen et
al. [37]).

2.2 Possibilistic Logic

We next recall possibilistic logic; see especially [15]. We first define possibilistic formulas and possibilistic
knowledge bases.Possibilistic formulashave the form(φ,P l) or (φ,N l), whereφ is an event, andl is
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a real number from[0, 1]. Informally, such formulas encode to what extentφ is possiblyresp.necessarily
true. For example,(rain tomorrow ,P 0.7) encodes that it will rain tomorrow is possible to degree0.7,
while (father →man,N 1) says that a father is necessarily a man. Apossibilistic knowledge baseK is a
finite set of possibilistic formulas.

A possibilistic interpretationis a mappingπ : IΦ → [0, 1]. Intuitively, π(I) is the degree to which the
world I is possible. In particular, every worldI such thatπ(I)= 0 is impossible, while every worldI such
that π(I)= 1 is totally possible. We sayπ is normalizediff π(I)= 1 for someI ∈IΦ. Intuitively, this
guarantees that there exists at least one world, which could be considered as the real one.

The possibilityof an eventφ in a possibilistic interpretationπ, denotedPoss(φ), is then defined by
Poss(φ) = max {π(I) | I ∈IΦ, I |=φ} (wheremax ∅ = 0). Intuitively, the possibility ofφ is evaluated in
the most possible world whereφ is true. The dual notion to the possibility of an eventφ is thenecessityof φ,
denotedNec(φ), which is defined byNec(φ)= 1−Poss(¬φ). It reflects the lack of possibility of¬φ, i.e.,
Nec(φ) evaluates to what extentφ is certainly true. The following theorem follows immediately from the
above definitions.

Theorem 2.2 For all possibilistic interpretationsπ and eventsφ andψ:

Poss(φ ∧ ψ) 6 min(Poss(φ), Poss(ψ))
Poss(φ ∨ ψ) = max(Poss(φ), Poss(ψ))
Poss(¬φ) = 1 −Nec(φ)
Poss(⊥) = 0
Poss(⊤) = 1 (in the normalized case)

Nec(φ ∧ ψ) = min(Nec(φ), Nec(ψ))
Nec(φ ∨ ψ) > max(Nec(φ), Nec(ψ))
Nec(¬φ) = 1 − Poss(φ)
Nec(⊥) = 0 (in the normalized case)
Nec(⊤) = 1

(2)

A possibilistic interpretationπ satisfiesa possibilistic formula(φ,P l) (resp.,(φ, N l)), or π is amodel
of (φ,P l) (resp.,(φ, N l)), denotedπ |= (φ,P l) (resp.,π |= (φ,N l)) iff Poss(φ)> l (resp.,Nec(φ)> l).
The notions of satisfiability, logical consequence, and tight logical consequence for possibilistic knowledge
bases are then defined in the standard way (in the same way as in the probabilistic case). We refer the reader
to [15, 45] for algorithms around possibilistic knowledge bases.

2.3 Many-Valued Logics

In the setting of many-valued logics, the convention prescribing that a proposition is either true or false is
changed. A more refined range is used for the function that representsthe meaning of a proposition. This
is usual in natural language when words are modeled by fuzzy sets. Forinstance, the compatibility of “tall”
in the phrase “a tall man” with some individual of a given height is often graded: The man can be judged
not quite tall, somewhat tall, rather tall, very tall, etc. Changing the usual true/false convention leads to a
new concept of proposition whose compatibility with a given state of facts is a matter of degree, and can
be measured on an ordered scaleS that is no longer{0, 1}, but e.g. the unit interval[0, 1]. This leads to
identifying a “fuzzy proposition”φ with a fuzzy set of possible states of affairs; the degree of membership
of a state of affairs to this fuzzy set evaluates the degree of fit between the proposition and the state of facts



INFSYS RR 1843-06-07 5

Table 1: Properties of t-norms, s-norms, implication functions, and negationfunctions.

properties of t-norms “∧”
a ∧ 1 = a

b 6 c impliesa ∧ b 6 a ∧ c
a ∧ b = b ∧ a

a ∧ (b ∧ c) = (a ∧ b) ∧ c

properties of s-norms “∨”
a ∨ 0 = a

b 6 c impliesa ∨ b 6 a ∨ c
a ∨ b = b ∨ a

a ∨ (b ∨ c) = (a ∨ b) ∨ c

properties of implication functions “→”
a 6 b impliesa→ c > b→ c
b 6 c impliesa→ b 6 a→ c

0 → b = 1
a→ 1 = 1

properties of negation functions “¬”
¬0 = 1

a 6 b implies¬b 6 ¬a

it refers to. This degree of fit is calleddegree of truthof the propositionφ in the interpretationI (state of
affairs). Many-valued logics provide compositional calculi of degreesof truth, including degrees between
“true” and “false”. A sentence is now not true or false only, but may have a truth degree taken from atruth
spaceS, usually[0, 1] or { 0

n ,
1
n , . . . ,

n
n} for an integern> 1. In the sequel, we assumeS = [0, 1].

In the many-valued logic that we consider here,many-valued formulashave the form(φ> l), where
l ∈ [0, 1] [32, 34] (informally, the degree of truth ofφ is at leastl). For instance,(ripe tomato > 0.9) says
that we have a rather ripe tomato (the degree of truth ofripe tomato is at least0.9).

From the semantical point of view, amany-valued interpretationI maps each basic propositionpi into
[0, 1] and is then extended inductively to all propositions by:

I(φ ∧ ψ) = t(I(φ), I(ψ))
I(φ ∨ ψ) = s(I(φ), I(ψ))
I(φ→ ψ) = i(I(φ), I(ψ))
I(¬φ) = n(I(φ)) ,

(3)

wheret, s, i, andn are so-calledt-norms, s-norms, implication functions, andnegation functions, respec-
tively, which extend classical Boolean conjunction, disjunction, implication, and negation, respectively, to
the many-valued case.

Several t-norms, s-norms, implication functions, and negation functions have been given in the literature
to interpret conjunction (∧), disjunction (∨), negation (¬) and implication (→), respectively. An important
aspect of such functions is that they satisfy some properties that one expects to hold for the connectives; see
Table 1. Usually,→ is defined asr-implication, that is,a→ b = sup {c | a ∧ c 6 b}.

Some t-norms, s-norms, implication functions, and negation functions of various fuzzy logics are shown
in Table 2. In fuzzy logic, one usually distinguishes three different logics, namely, Łukasiewicz, G̈odel, and
Product logic; the popular Zadeh logic is a sublogic of Łukasiewicz logic. Some salient properties of these
logics are shown in Table 3. For more properties, see especially [34, 87].

The implicationx→ y = max(1−x, y) is called Kleene-Dienes implication in the fuzzy logic literature.
Note that we have the following inferences: Leta > n anda → b > m. Then, under Kleene-Dienes
implication, we infer that ifn > 1 −m thenb > m. Under r-implication relative to a t-norm∧, we infer
thatb > n ∧m.
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Table 2: T-norms, s-norms, implication functions, and negation functions ofvarious fuzzy logics.

Łukasiewicz logic Gödel logic Product logic Zadeh logic

x ∧ y max(x+ y − 1, 0) min(x, y) x · y min(x, y)

x ∨ y min(x+ y, 1) max(x, y) x+ y − x · y max(x, y)

x→ y

{

1 if x 6 y

1 − x+ y otherwise

{

1 if x 6 y

y otherwise

{

1 if x 6 y

y/x otherwise
max(1 − x, y)

¬x 1 − x

{

1 if x = 0

0 otherwise

{

1 if x = 0

0 otherwise
1 − x

Table 3: Some additional properties of t-norms, s-norms, implication functions, and negation functions of
various fuzzy logics.

Łukasiewicz logic Gödel logic Product logic Zadeh logic

x ∧ ¬x = 0 ∃x. x ∧ ¬x 6= 0 ∃x. x ∧ ¬x 6= 0 ∃x. x ∧ ¬x 6= 0
x ∨ ¬x = 1 ∃x. x ∨ ¬x 6= 1 ∃x. x ∨ ¬x 6= 1 ∃x. x ∨ ¬x 6= 1

∃x. x ∧ x 6= x x ∧ x = x ∃x. x ∧ x 6= x x ∧ x = x
∃x. x ∨ x 6= x x ∨ x = x ∃x. x ∨ x 6= x x ∨ x = x

¬¬x = x ∃x. ¬¬x 6= x ∃x. ¬¬x 6= x ¬¬x = x
x→ y = ¬x ∨ y ∃x. x→ y 6= ¬x ∨ y ∃x. x→ y 6= ¬x ∨ y x→ y = ¬x ∨ y

¬(x→ y) = x ∧ ¬y ∃x. ¬(x→y) 6= x∧¬y ∃x. ¬(x→y) 6= x∧¬y ¬(x→y) = x∧¬y
¬(x ∧ y) = ¬x ∨ ¬y ¬(x ∧ y) = ¬x ∨ ¬y ¬(x ∧ y) = ¬x ∨ ¬y ¬(x∧y) = ¬x∨¬y
¬(x ∨ y) = ¬x ∧ ¬y ¬(x ∨ y) = ¬x ∧ ¬y ¬(x ∨ y) = ¬x ∧ ¬y ¬(x∨y) = ¬x∧¬y
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Thedegree of subsumptionbetween two fuzzy setsA andB, denotedA→ B, is defined asinfx∈X A(x)
→B(x), where→ is an implication function. Note that ifA(x) 6 B(x), for all x∈ [0, 1], thenA→B
evaluates to1. Of course,A→B may evaluate to a valuev ∈ (0, 1) as well. A (binary)fuzzy relation
R over two countable crisp setsX andY is a functionR : X × Y → [0, 1]. The inverseof R is the
functionR−1 : Y × X → [0, 1] with membership functionR−1(y, x) = R(x, y), for everyx ∈ X and
y ∈ Y . Thecompositionof two fuzzy relationsR1 : X × Y → [0, 1] andR2 : Y × Z → [0, 1] is defined as
(R1 ◦R2)(x, z) = supy∈Y R1(x, y)∧R2(y, z). A fuzzy relationR is transitiveiff R(x, z) = (R◦R)(x, z).

A many-valued interpretationI satisfiesa many-valued formula(φ> l) or I is a modelof (φ> l),
denotedI |= (φ> l), iff I(φ)> l. Note that(¬φ>¬u) says that the degree of truth ofφ is at mostu (when
¬¬x=x). The notions of satisfiability, logical consequence, and tight logical consequence for many-valued
knowledge bases are then defined in the standard way (as in the probabilistic case). We refer the reader
to [31, 32, 34] for algorithms deciding logical consequence.

3 Classical Description Logics

In this section, we recall the expressive description logicSHOIN (D), which stands behind the web ontol-
ogy languages OWL DL [49]. Although several XML and RDF syntaxes for OWL-DL exist, in this paper,
we use the traditional description logic notation. For explicating the relationshipbetween OWL DL syn-
tax and description logic syntax, see especially [47, 49]. The purpose of this section is to make the paper
self-contained. More importantly, it helps in understanding the differences between classical, probabilistic,
possibilistic, and fuzzySHOIN (D). The reader confident with theSHOIN (D) terminology may skip
this section.

3.1 Syntax

The description logicSHOIN (D) is a generalization ofSHOIN by concrete datatypes, such as strings
and integers, usingconcrete domains[2, 73, 72, 74].

The elementary ingredients are as follows. We assume a set ofdata values, a set ofelementary datatypes,
and a set ofdatatype predicates, each with a predefined arityn> 1. A datatypeis an elementary datatype
or a finite set of data values. Adatatype theoryD=(∆D, ·D) consists of a datatype domain∆D and a
mapping ·D that assigns to each data value an element of∆D, to each elementary datatype a subset of
∆D, and to each datatype predicate of arityn a relation over∆D of arity n. We extend·D to all datatypes
by {v1, . . .}D = {vD1 , . . .}. For example, over the integers,>20 may be a unary predicate denoting the set of
integers greater or equal to20, and thusPerson ⊓ ∃age. >20 may denote a person whose age is at least20.
Let A, RA, RC , andI be pairwise disjoint nonempty finite sets ofatomic concepts, abstract roles, concrete
roles, andindividuals, respectively.

A role is either an abstract roleR∈RA, the inverseR− of an abstract roleR∈RA, or a concrete role
U ∈RC (note that concrete roles do not have inverses). AnRBoxR consists of a finite set of transitivity
axiomstrans(R) and role inclusion axioms of the formR ⊑ S, where eitherR,S ∈RA or R,S ∈RC .
The reflexive and transitive closure of the role inclusion relationships inRBoxis denoted by⊑∗. A role not
having transitive subroles is asimple role.

Conceptsare defined by induction, using the following syntactic rules, whereA is an atomic concept,
a1, . . . , an are individuals,C, C1, andC2 are concepts,R is an abstract role,S is a simple abstract role,
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T, T1, . . . , Tn are concrete roles,D is ann-ary datatype predicate, andn> 0:

C −→ ⊤ | ⊥ | A | {a1, . . . , an} | C1 ⊓ C2 | C1 ⊔ C2 | ¬C |
∀R.C | ∃R.C | (> n S) | (6 n S) |
∀T1, . . . , Tn.D | ∃T1, . . . , Tn.D | (> n T ) | (6 n T )

For example, we may write the concept

Flower ⊓ ∃hasPetalWidth.(>20mm ⊓ 640mm) ⊓ ∃hasColor .Red

to informally denote the set of flowers having petal’s dimension within20mm and40mm, whose color is
red. Here,>20mm and640mm are datatype predicates. We use(= 1 S) to abbreviate(> 1 S) ⊓ (6 1 S).

A TBoxT is a finite set of concept inclusion axiomsC ⊑ D, whereC andD are concepts. We often use
C =D∈T in place of{C ⊑ D,D ⊑ C} ⊆ T . A simple abstract roleS is functionalif the interpretation
of the roleS (see below) is always functional. A functional roleS can always be obtained from an abstract
role by means of the axiom⊤ ⊑ (6 1 S). Therefore, whenever we say that a role is functional, we assume
that⊤ ⊑ (6 1 S) is in the TBox.

An ABoxA is a finite set ofconcept assertion axiomsa : C, role assertion axioms(a, b) : R, andindi-
vidual equality(resp.,inequality) axiomsa ≈ b (resp.,a 6≈ b). A knowledge baseK= (T ,R,A) consists
of a TBoxT , an RBoxR, and an ABoxA.

3.2 Semantics

An interpretationI = (∆I , ·I) relative to a datatype theoryD= (∆D, ·D) consists of a nonemptyabstract
domain∆I , disjoint from∆D, and aninterpretation function·I that assigns to eacha∈ I an element in∆I ,
to eachC ∈A a subset of∆I , to eachR∈RA a subset of∆I ×∆I , to eachT ∈RC a subset of∆I ×∆D,
and to every data value, datatype, and datatype predicate the same value as·D. The mapping·I is extended
to all roles and concepts as usual:

(S−)
I

= {(y, x) | (x, y) ∈ SI}
⊤I = ∆I

⊥I = ∅
{a1, . . . , an}I = {a1

I , . . . , an
I}

(C1 ⊓ C2)
I = C1

I ∩ C2
I

(C1 ⊔ C2)
I = C1

I ∪ C2
I

(¬C)I = ∆I \ CI

(∀R.C)I = {x ∈ ∆I : RI(x) ⊆ CI}
(∃R.C)I = {x ∈ ∆I : RI(x) ∩ CI 6= ∅}
(> n S)I = {x ∈ ∆I : #SI(x) > n}
(6 n S)I = {x ∈ ∆I : #SI(x) 6 n}

and similarly for the other constructs, whereRI(x) = {y | (x, y) ∈ RI} and#X denotes the cardinality
of the setX. In particular,

(∃T1, . . . , Tn.d)
I = {x ∈ ∆I : [T1

I(x) × . . .× Tn
I(x)] ∩ dI 6= ∅} .

Thesatisfactionof an axiomE in an interpretationI = (∆I , ·I), denotedI |= E, is defined as follows:
I |= C ⊑ D iff CI ⊆ DI , I |= R ⊑ S iff RI ⊆ SI , I |= T ⊑ U iff T I ⊆ UI , I |= trans(R) iff RI
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is transitive,I |= a : C iff aI ∈ CI , I |= (a, b) : R iff (aI , bI) ∈ RI , I |= (a, c) : T iff (aI , cI) ∈ T I ,
I |= a ≈ b iff aI = bI , I |= a 6≈ b iff aI 6= bI . We say a conceptC is satisfiableiff there is an interpretation
I such thatCI 6= ∅. For a set of axiomsE , we sayI satisfiesE iff I satisfies each element inE . We say
I is a modelof E (resp.,E) iff I |= E (resp.,I |= E). I satisfies(is a modelof) a knowledge base
K = (T ,R,A), denotedI |= K, iff I is a model of each componentT , R, andA.

An axiomE is a logical consequenceof a knowledge baseK, denotedK |= E, iff every model of
K satisfiesE. According to [47], the entailment, subsumption and the concept satisfiability problem can
be reduced to knowledge base satisfiability problem (e.g.,(T ,R,A) |= a : C iff (T ,R,A ∪ {a : ¬C})
unsatisfiable, also,C is satisfiable iff{a : C} is satisfiable), for which decision procedures and reasoning
tools exists (e.g., RACER [30], FACT [46], and Pellet [89]).

Example 3.1 (Car Example)Let us consider the following excerpt of a simple ontology about cars. Let
R = ∅ and let the TBoxT contain the following axioms:

Car ⊑ (= 1 maker) ⊓ (= 1 passenger) ⊓ (= 1 speed)

(= 1 maker) ⊑ Car ⊤ ⊑ ∀maker .Maker

(= 1 passenger) ⊑ Car ⊤ ⊑ ∀passenger .N
(= 1 speed) ⊑ Car ⊤ ⊑ ∀speed .Km/h

Roadster ⊑ Cabriolet ⊓ ∃passenger .{2}
Cabriolet ⊑ Car ⊓ ∃topType.SoftTop

SportsCar = Car ⊓ ∃speed .>245km/h .

Here, the value forspeed ranges over the datatype of kilometers per hourKm/h, while the value for
passengers ranges over the concrete domain of natural numbersN. The concrete predicate>245km/h is
true if the value is at least245km/h.

The ABoxA contains the following assertions:

mgb : Roadster ⊓ ∃maker .{mg} ⊓ ∃speed .6170km/h

enzo : Car ⊓ ∃maker .{ferrari} ⊓ ∃speed .>350km/h

tt : Car ⊓ ∃maker .{audi} ⊓ ∃speed .=243km/h .

Consider the knowledge baseK = (T ,R,A). It is then easily verified that, e.g.,

K |= Roadster ⊑ Car K |= mg : Maker

K |= enzo : SportsCar K |= tt : ¬SportsCar .

4 Probabilistic Uncertainty and Description Logics

In this section, we recall an important probabilistic generalization ofSHOIN (D) towards sophisticated
formalisms for reasoning under probabilistic uncertainty in the Semantic Web, called P-SHOIN (D),
which has recently been introduced in [71] (note that [71] and [28] alsointroduce closely related proba-
bilistic generalizations of the description logicsSHIF(D) andSHOQ(D), which stand behind the web
ontology languages OWL Lite and DAML+OIL, respectively). The syntaxof P-SHOIN (D) uses the
notion of a conditional constraint from [66] to express probabilistic knowledge in addition to the axioms
of SHOIN (D). Its semantics is based on the notion of lexicographic entailment in probabilistic default
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reasoning [67, 69], which is a probabilistic generalization of the sophisticated notion of lexicographic en-
tailment by Lehmann [57] in default reasoning from conditional knowledgebases. This semantics allows
for expressing both terminological probabilistic knowledge about concepts and roles, and also assertional
probabilistic knowledge about instances of concepts and roles. It naturally interprets terminological and as-
sertional probabilistic knowledge as statistical knowledge about conceptsand roles and as degrees of belief
about instances of concepts and roles, respectively, and allows for deriving both statistical knowledge and
degrees of belief. As an important additional feature, it also allows for expressing default knowledge about
concepts (as a special case of terminological probabilistic knowledge), which is semantically interpreted as
in Lehmann’s lexicographic default entailment [57].

The notion of probabilistic lexicographic entailment [67, 69] is a formalism forreasoning from sta-
tistical knowledge and degrees of belief, which has very nice features.In particular, it shows a similar
behavior as reference-class reasoning in a number of uncontroversial examples. But it also avoids many
drawbacks of reference-class reasoning: It can handle complex scenarios and even purely probabilistic sub-
jective knowledge as input, and conclusions are drawn in a global way from all the available knowledge as
a whole. Furthermore, it also has very nice nonmonotonic properties, which are essentially inherited from
Lehmann’s lexicographic entailment. In particular, it realizes an inheritanceof properties along subclass
relationships, where more specific properties override less specific properties, without showing the problem
of inheritance blocking (where properties are not inherited to subclasses that are exceptional relative to some
other properties). As for general nonmonotonic properties, probabilistic lexicographic entailment satisfies
(probabilistic versions of) the rationality postulates by Kraus, Lehmann, and Magidor [56], the property of
rational monotonicity, and some irrelevance, conditioning, and inclusion properties. All these quite appeal-
ing features carry over to the probabilistic description logic P-SHOIN (D). See especially [69] for further
details and background on the notion of probabilistic lexicographic entailment.

4.1 Syntax

We now introduce the notion of a probabilistic knowledge base. It is based on the language of conditional
constraints [66], which encode interval restrictions for conditional probabilities over concepts. Every proba-
bilistic knowledge base consists of (i) a PTBox, which is a classical (description logic) knowledge base along
with probabilistic terminological knowledge, and (ii) a collection of PABoxes, which encode probabilistic
assertional knowledge about a certain set of individuals. To this end, we partition the set of individualsI into
the set ofclassical individualsIC and the set ofprobabilistic individualsIP , and we associate with every
probabilistic individual a PABox. That is, probabilistic individuals are those individuals inI for which we
explicitly store some probabilistic assertional knowledge in a PABox.

We first define conditional constraints as follows. We assume a finite nonempty setC of basic classifica-
tion concepts(or basic c-conceptsfor short), which are (not necessarily atomic) concepts inSHOIN (D)
that are free of individuals fromIP . Informally, they are the relevant description logic concepts for defining
probabilistic relationships. The set ofclassification concepts(or c-concepts) is inductively defined as fol-
lows. Every basic c-conceptφ∈C is a c-concept. Ifφ andψ are c-concepts, then¬φ and(φ ⊓ ψ) are also
c-concepts. We often write(φ⊔ψ) to abbreviate¬(¬φ⊓¬ψ), as usual. Aconditional constraintis an ex-
pression of the form(ψ|φ)[l, u], whereφ andψ are c-concepts, andl andu are reals from[0, 1]. Informally,
(ψ|φ)[l, u] encodes that the probability ofψ givenφ lies betweenl andu.

We next define the notion of a probabilistic knowledge base. APTBoxPT = (T, P ) consists of a
classical (description logic) knowledge baseT and a finite set of conditional constraintsP . Informally, every
conditional constraint(ψ|φ)[l, u] in P encodes that “generally, if an object belongs toφ, then it belongs toψ
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with a probability betweenl andu”. In particular,(∃R.{o}|φ)[l, u] in P , whereo∈ IC andR∈RA, encodes
that “generally, if an object belongs toφ, then it is related too by R with a probability betweenl andu”.
A PABoxP is a finite set of conditional constraints. Aprobabilistic knowledge baseK=(T, P, (Po)o∈IP

)
relative toIP consists of a PTBoxPT = (T, P ) and one PABoxPo for every probabilistic individualo∈ IP .
Informally, every(ψ|φ)[l, u] in Po, whereo∈ IP , encodes that “ifo belongs toφ, theno belongs toψ with
a probability betweenl andu”. In particular,(∃R.{o′}|φ)[l, u] in Po, whereo∈ IP , o′ ∈ IC , andR∈RA,
expresses that “ifo belongs toφ, theno is related too′ byR with a probability betweenl andu”. Informally,
a probabilistic knowledge baseK= (T, P, (Po)o∈IP

) extends a classical knowledge baseT by probabilistic
terminological knowledgeP and probabilistic assertional knowledgePo about everyo∈ IP . That is,P
represents ourstatistical knowledge about concepts, while everyPo represents ourdegrees of belief about
the individualo. Observe that the axioms inT and the conditional constraints in everyPo with o∈ IP are
strict (that is, they must always hold), while the conditional constraints inP aredefeasible(that is, they may
have exceptions and thus do not always have to hold), sinceT ∪P may not always be satisfiable as a whole
in combination with our degrees of belief (and then we ignore some elements ofP ).

Example 4.1 (Car Example cont’d)We now extend the classical description logic knowledge baseT given
in Example 3.1 by terminological default, terminological probabilistic, and assertional probabilistic knowl-
edge to a probabilistic knowledge baseK= (T, P, (Po)o∈IP

). We assume an additional atomic concept
HasFourWheelsand an additional datatype roleHasColorbetween cars and the elementary datatypecolors,
which has a finite set of color names as data values.

The terminological default knowledge (1) “generally, cars do not havea red color” and (2) “generally,
sports cars have a red color”, and the terminological probabilistic knowledge (3) “cars have four wheels with
a probability of at least0.9”, can be expressed by the following conditional constraints inP :

(1) (¬∃HasColor.{red} |Car)[1, 1],
(2) (∃HasColor.{red} |SportsCar)[1, 1],
(3) (HasFourWheels|Car)[0.9, 1] .

Suppose we want to encode some probabilistic information about John’s car (which we have not seen so
far). Then, the set of probabilistic individualsIP contains the individualJohn’s car, and the assertional
probabilistic knowledge (4) “John’s car is a sports car with a probability ofat least0.8” (we know that John
likes sports cars) can be expressed by the following conditional constraint in PJohn’s car:

(4) (SportsCar| ⊤)[0.8, 1] .

4.2 Semantics

In this section, we define the semantics of P-SHOIN (D). After some preliminaries, we introduce the
notions of consistency and lexicographic entailment for probabilistic knowledge bases, which are based on
the notions of consistency resp. lexicographic entailment in probabilistic default reasoning [67, 69].

4.2.1 Preliminaries

We now define (possible) objects and probabilistic interpretations, which are certain sets of basic c-concepts
resp. probability functions on the set of all (possible) objects. We also define the satisfaction of classical
knowledge bases and conditional constraints in probabilistic interpretations.
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A (possible) objecto is a set of basic c-conceptsφ∈C such that{φ(i) |φ∈ o} ∪ {¬φ(i) |φ ∈ C \ o}
is satisfiable, wherei is a new individual. Informally, every objecto represents an individuali that is fully
specified onC in the sense thato belongs (resp., does not belong) to every c-conceptφ∈ o (resp.,φ∈C \ o).
We denote byOC the set of all objects relative toC. An objecto satisfiesa classical knowledge baseT ,
or o is amodelof T , denotedo |=T , iff T ∪{φ(i) |φ∈ o} ∪ {¬φ(i) |φ∈C \ o} is satisfiable, wherei is a
new individual. An objecto satisfiesa basic c-conceptφ∈C, or o is amodelof φ, denotedo |=φ, iff φ∈ o.
The satisfaction of c-concepts by objects is inductively extended to all c-concepts, as usual, by (i)o |=¬φ
iff o |=φ does not hold, and (ii)o |=φ⊓ψ iff o |=φ ando |=ψ. It is not difficult to verify that a classical
knowledge baseT is satisfiable iff an objecto∈OC exists that satisfiesT .

A probabilistic interpretationPr is a probability function onOC (that is, a mappingPr : OC → [0, 1]
such that allPr(o) with o∈OC sum up to1). We sayPr satisfiesa classical knowledge baseT , or Pr

is a modelof T , denotedPr |=T , iff o |=T for everyo∈OC such thatPr(o)> 0. We define the prob-
ability of a c-concept and the satisfaction of conditional constraints in probabilistic interpretations as fol-
lows. Theprobability of a c-conceptφ in a probabilistic interpretationPr denotedPr(φ), is the sum of
all Pr(o) such thato |=φ. For c-conceptsφ andψ such thatPr(φ)> 0, we writePr(ψ|φ) to abbreviate
Pr(φ⊓ψ) /Pr(φ). We sayPr satisfiesa conditional constraint(φ|ψ)[l, u], orPr is amodelof (ψ|φ)[l, u],
denotedPr |=(ψ|φ)[l, u], iff Pr(φ)= 0 or Pr(ψ|φ)∈ [l, u]. We sayPr satisfiesa set of conditional con-
straintsF , orPr is amodelof F , denotedPr |=F , iff Pr |=F for all F ∈F . It is not difficult to verify that
a classical knowledge baseT is satisfiable iff there exists a probabilistic interpretation that satisfiesT .

4.2.2 Consistency

The notion of consistency for PTBoxes and probabilistic knowledge bases is based on the notion of consis-
tency in probabilistic default reasoning [67, 69].

We first give some preparative definitions. A probabilistic interpretationPr verifiesa conditional con-
straint (ψ|φ)[l, u] iff Pr(φ)= 1 andPr(ψ)∈ [l, u], that is, iff Pr(φ)= 1 andPr |= (ψ|φ)[l, u]. We say
Pr falsifies(ψ|φ)[l, u] iff Pr(φ)= 1 andPr 6|= (ψ|φ)[l, u]. A set of conditional constraintsF toleratesa
conditional constraintF under a classical knowledge baseT iff T ∪F has a model that verifiesF .

A PTBox PT =(T, P ) is consistentiff (i) T is satisfiable and (ii) there exists an ordered partition
(P0, . . . , Pk) of P such that eachPi with i∈{0, . . . , k} is the set of allF ∈Pi ∪ · · · ∪ Pk that are toler-
ated underT by Pi ∪ · · · ∪ Pk. Informally, the condition (ii) means thatP has a natural ordered partition
into collections of conditional constraints of increasing specificities such that every collection is locally
consistent. That is, any inconsistencies can be naturally resolved by preferring more specific pieces of
knowledge to less specific ones. For example, the inconsistency between(¬∃HasColor.{red} |Car)[1, 1]
and(∃HasColor.{red} |SportsCar)[1, 1] when reasoning about sports cars is naturally resolved by prefer-
ring the latter to the former. We call the above ordered partition(P0, . . . , Pk) of P thez-partitionof PT . A
probabilistic knowledge baseK = (T, P, (Po)o∈IP

) is consistentiff PT = (T, P ) is consistent andT ∪Po

is satisfiable for all probabilistic individualso∈ IP . Informally, the latter says that the strict knowledge in
T must be compatible with the strict degrees of belief inPo, for every probabilistic individualo.

Example 4.2 (Car Example cont’d) The probabilistic knowledge baseK= (T, P, (Po)o∈IP
) of Exam-

ple 4.1 is consistent, sincePT =(T, P ) is consistent, andT ∪Po is satisfiable for every probabilistic
individual o ∈ IP = {John’s car}. Observe that the z-partition of(T, P ) is given by(P0, P1), where
P0 = {(ψ|φ)[l, u] ∈ P | φ= Car} andP1 = {(ψ|φ)[l, u]∈P |φ= SportsCar}.



INFSYS RR 1843-06-07 13

There is an algorithm for deciding whether a PTBox (resp., probabilistic knowledge base) in P-SHO-
IN (D) is consistent, which is based on a reduction to deciding whether a classical knowledge base in
SHOIN (D) is satisfiable and to deciding whether a system of linear constraints is solvable[71]. This
shows that the two consistency problems in P-SHOIN (D) are both decidable.

4.2.3 Lexicographic Entailment

The notion of lexicographic entailment for probabilistic knowledge bases is based on lexicographic entail-
ment in probabilistic default reasoning [67, 69]. In the sequel, letK= (T, P, (Po)o∈IP

) be a consistent prob-
abilistic knowledge base. We first define a lexicographic preference relation on probabilistic interpretations,
which is then used to define the notion of lexicographic entailment for sets of conditional constraints under
PTBoxes. We finally define the notion of lexicographic entailment for deriving statistical knowledge and
degrees of belief about probabilistic objects from PTBoxes and probabilistic knowledge bases, respectively.

We use the z-partition(P0, . . . , Pk) of (T, P ) to define a lexicographic preference relation on probabilis-
tic interpretationsPr andPr ′: We sayPr is lexicographically preferable(or lex-preferable) to Pr ′ iff some
i∈{0, . . . , k} exists such that|{F ∈Pi |Pr |=F}| > |{F ∈Pi |Pr ′ |=F}| and |{F ∈Pj |Pr |=F}| =
|{F ∈Pj | Pr ′ |=F}| for all i< j6 k. Roughly speaking, this preference relation implements the idea of
preferring more specific pieces of knowledge to less specific ones in the case of local inconsistencies. It can
thus be used for ignoring the latter when drawing conclusions in the case oflocal inconsistencies. A model
Pr of a classical knowledge baseT and a set of conditional constraintsF is alexicographically minimal(or
lex-minimal) modelof T ∪F iff no model ofT ∪F is lex-preferable toPr .

We define the notion of lexicographic entailment of conditional constraints from sets of conditional con-
straints under PTBoxes as follows. A conditional constraint(ψ|φ)[l, u] is a lexicographic consequence(or
lex-consequence) of a set of conditional constraintsF under a PTBoxPT , denotedF ‖∼ lex (ψ|φ)[l, u] un-
derPT , iff Pr(ψ)∈ [l, u] for every lex-minimal modelPr of T ∪ F ∪ {(φ|⊤)[1, 1]}. We say(ψ|φ)[l, u] is
a tight lexicographic consequence(or tight lex-consequence) of F underPT , denotedF ‖∼ lex

tight (ψ|φ)[l, u]
underPT , iff l (resp.,u) is the infimum (resp., supremum) ofPr(ψ) subject to all lex-minimal models
Pr of T ∪ F ∪ {(φ|⊤)[1, 1]}. Note that[l, u] = [1, 0] (where[1, 0] represents the empty interval) when
no such modelPr exists. Furthermore, for inconsistent PTBoxesPT , we defineF ‖∼ lex (ψ|φ)[l, u] and
F ‖∼ lex

tight (ψ|φ)[1, 0] underPT for all sets of conditional constraintsF and all conditional constraints
(ψ|φ)[l, u].

We now define which statistical knowledge and degrees of belief follow under lexicographic entail-
ment from PTBoxesPT and probabilistic knowledge basesK= (T, P, (Po)o∈IP

), respectively. A condi-
tional constraintF is a lex-consequenceof PT , denotedPT ‖∼ lexF , iff ∅ ‖∼ lexF underPT . We sayF
is a tight lex-consequenceof PT , denotedPT ‖∼ lex

tight F , iff ∅ ‖∼ lex
tight F underPT . A conditional con-

straintF for a probabilistic individualo∈ IP is a lex-consequenceof K, denotedK‖∼ lexF , iff Po ‖∼ lexF
underPT = (T, P ). We sayF is a tight lex-consequenceof K, denotedK‖∼ lex

tight F , iff Po ‖∼ lex
tight F un-

derPT = (T, P ).

Example 4.3 (Car Example cont’d)Consider again the probabilistic knowledge baseK = (T, P, (Po)o∈IP
)

of Example 4.1. The following are some (terminological default and terminological probabilistic) tight lex-
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consequences ofPT = (T, P ):

(¬∃HasColor.{red} |Car)[1, 1],
(∃HasColor.{red} |SportsCar)[1, 1],
(HasFourWheels|Car)[0.9, 1],
(¬∃HasColor.{red} |Roadster)[1, 1],
(HasFourWheels|SportsCar)[0.9, 1],
(HasFourWheels|Roadster)[0.9, 1] .

Hence, in addition to the sentences (1) to (3) directly encoded inP , we also conclude “generally, roadsters
do not have a red color”, “sports cars have four wheels with a probability of at least0.9”, and “roadsters
have four wheels with a probability of at least0.9”. Observe here that the default property of not having a
red color and the probabilistic property of having four wheels with a probability of at least0.9 are inherited
from cars down to roadsters. Roughly, the tight lex-consequences ofPT = (T, P ) are given by all those
conditional constraints that (a) are either inP , or (b) can be constructed by inheritance along subconcept
relationships from the ones inP and are not overridden by more specific pieces of knowledge inP .

The following conditional constraints for the probabilistic individualJohn’s carare some (assertional
probabilistic) tight lex-consequences ofK= (T, P, (Po)o∈IP

), which informally say that John’s car is a
sports car, has a red color, and has four wheels with probabilities of at least0.8, 0.8, and0.72, respectively:

(SportsCar| ⊤)[0.8, 1],
(∃HasColor.{red} |⊤)[0.8, 1],
(HasFourWheels| ⊤)[0.72, 1] .

There is an algorithm for computing tight intervals under lexicographic entailment in P-SHOIN (D),
which is based on a reduction to deciding classical knowledge base satisfiability in SHOIN (D) and to
solving linear optimization problems [71]. Hence, lexicographic entailment in P-SHOIN (D) is com-
putable.

4.3 Related Work

To our knowledge, there are no other approaches to probabilistic description logics for the Semantic Web in
the literature. However, there are several previous approaches to probabilistic description logics without Se-
mantic Web background. Furthermore, there are several probabilistic extensions of web ontology languages
in the literature. Finally, there are important applications of probabilistic description logics and probabilistic
web ontology languages in the field of information retrieval. In this section, wegive an overview of these
approaches.

4.3.1 Probabilistic Description Logics

Other approaches to probabilistic description logics can be classified according to the generalized descrip-
tion logics, the supported forms of probabilistic knowledge, and the underlying probabilistic reasoning
formalism. Heinsohn [38] presents a probabilistic extension of the description logicALC, which allows to
represent terminological probabilistic knowledge about concepts and roles, and which is essentially based
on probabilistic reasoning in probabilistic logics, similar to [85, 1, 26, 66]. Heinsohn [38], however, does
not allow for assertional knowledge about concept and role instances. Jaeger’s work [51] proposes an-
other probabilistic extension of the description logicALC, which allows for terminological and assertional
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probabilistic knowledge about concepts / roles and about concept instances, respectively, but does not sup-
port assertional probabilistic knowledge about role instances (but he mentions a possible extension in this
direction). The uncertain reasoning formalism in [51] is essentially based on probabilistic reasoning in
probabilistic logics, as the one in [38], but coupled with cross-entropy minimization to combine terminolog-
ical probabilistic knowledge with assertional probabilistic knowledge. The work by Dürig and Studer [22]
presents a further probabilistic extension ofALC, which is based on probabilistic reasoning in probabilistic
logics, but which only allows for assertional probabilistic knowledge about concept and role instances, and
not for terminological probabilistic knowledge. Jaeger’s recent work [52] focuses on interpreting proba-
bilistic concept subsumption and probabilistic role quantification through statistical sampling distributions,
and develops a probabilistic version of the guarded fragment of first-order logic. Koller et al.’s work [55]
presents a probabilistic generalization of the CLASSIC description logic. Like Heinsohn’s work [38], it al-
lows for terminological probabilistic knowledge about concepts and roles,but does not support assertional
knowledge about instances of concepts and roles. But, in contrast to [38], it is based on inference in Bayesian
networks as underlying probabilistic reasoning formalism. Closely related work by Yelland [123] combines
a restricted description logic close toFL with Bayesian networks, and applies this approach to market anal-
ysis. It allows for terminological probabilistic knowledge about concepts and roles, but does not support
assertional knowledge about instances of concepts and roles.

4.3.2 Probabilistic Web Ontology Languages

The literature contains several probabilistic generalizations of web ontology languages. Many of these
approaches focus especially on combining the web ontology language OWLwith probabilistic formalisms
based on Bayesian networks. In particular, da Costa [9], da Costa andLaskey [10], and da Costa et al. [11]
suggest a probabilistic generalization of OWL, called PR-OWL, which is based on multi-entity Bayesian
networks. The latter are a Bayesian logic that combines first-order logic withBayesian probabilities. Ding
et al. [13, 14] propose a probabilistic generalization of OWL, called BayesOWL, which is based on standard
Bayesian networks. BayesOWL provides a set of rules and procedures for the direct translation of an OWL
ontology into a Bayesian network that supports ontology reasoning, both within and across ontologies, as
Bayesian inferences. Ding et al. [88, 14] also describe an application of this approach in ontology mapping.
In closely related work, Mitra et al. [84] introduce a technique to enhancing existing ontology mappings by
using a Bayesian network to represent the influences between potential concept mappings across ontologies.
Yang and Calmet [122] present an integration of the web ontology language OWL with Bayesian networks.
The approach makes use of probability and dependency-annotated OWLto represent uncertain information
in Bayesian networks. Pool and Aikin [90] also provide a method for representing uncertainty in OWL
ontologies, while Fukushige [27] proposes a basic framework for representing probabilistic relationships in
RDF. Finally, Nottelmann and Fuhr [86] present two probabilistic extensionsof variants of OWL Lite, along
with a mapping to locally stratified probabilistic Datalog.

4.3.3 Applications in Information Retrieval

An important research direction deals with the application of probabilistic description logics and probabilis-
tic web ontology languages in enhanced information retrieval techniques. In particular, Mantay et al. [75]
propose a probabilistic least common subsumer operation, which is based ona probabilistic extension of
the description logic languageALN . They show that applying this approach in information retrieval allows
for reducing the amount of retrieved data and thus for avoiding informationflood. Closely related work by
Holi and Hyv̈onen [39, 40] shows how degrees of overlap between concepts can be modeled and computed
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efficiently using Bayesian networks based on RDF(S) ontologies. Such degrees of overlap indicate how well
an individual data item matches the query concept, and can thus be used for measuring the relevance in in-
formation retrieval tasks. In another closely related work, Udrea et al. [119] explore the use of probabilistic
ontologies in relational databases. They propose to extend relations by associating with every attribute a
constrained probabilistic ontology, which describes relationships betweenterms occurring in the domain of
that attribute. An extension of the relational algebra then allows for an increased recall in information re-
trieval. Finally, Weikum et al. [121] and Thomas and Sheth [117] describethe use of probabilistic ontologies
in information retrieval from a more general perspective.

5 Possibilistic Uncertainty and Description Logics

Similar to probabilistic extensions of description logics, possibilistic extensions of description logics have
been developed by Hollunder [45] and Dubois et al. [16] and especiallyapplied in information retrieval by
Liau and Fan [63]. In the sequel, we implicitly assume the description logicSHOIN (D) as underlying
description logic, but any other (decidable) description logic can be usedas well.

5.1 Syntax

A possibilistic axiomis of the form(α,P l) or (α,N l), whereα is a classical description logic axiom,
and l is a real number from[0, 1]. A possibilistic RBox(resp.,TBox, ABox) is a finite set of possibilistic
axioms(α,P l) or (α,N l), whereα is an RBox (resp., TBox, ABox) axiom. Apossibilistic knowledge base
K= (R, T ,A) consists of a possibilistic RBoxR, a possibilistic TBoxT , and a possibilistic ABoxA. The
following example from [45] illustrates possibilistic knowledge bases.

Example 5.1 (Car Example cont’d)The following possibilistic knowledge baseK= (R, T ,A) encodes
some possibilistic knowledge about cars and rich people. LetR= ∅. The TBoxT represents the possibilistic
terminological knowledge that “every person owning a Porsche is either rich or a car fanatic with a necessity
of at least0.8” and “every rich person is a golfer with a possibility of at least0.7”:

T = {(∃owns .Porsche ⊑ richPerson ⊔ carFanatic, N 0.8),
(richPerson ⊑ golfer , P 0.7)} .

Furthermore, the ABoxA expresses the possibilistic assertional knowledge that “Tom owns a911 with
necessity1”, “a 911 is a Porsche with necessity1”, and “Tom is not a car fanatic with a necessity of at
least0.7”:

A = {((Tom, 911) : owns , N 1),
(911: Porsche, N 1),
(Tom : ¬carFanatic, N 0.7)} .

5.2 Semantics

Let I denote the set of all classical description logic interpretations. Apossibilistic interpretationis a
mappingπ : I → [0, 1]. In the sequel, we assume thatπ is normalized, that is, thatπ(I)= 1 for some
I ∈I. Thepossibilityof a description logic axiomα in a possibilistic interpretationπ, denotedPoss(α), is
then defined byPoss(α)= max {π(I) | I ∈I, I |=α} (wheremax ∅ = 0), and thenecessityof α, denoted
Nec(α), is defined byNec(α)= 1 − Poss(¬α).
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A possibilistic interpretationπ satisfiesa possibilistic axiom(α,P l) (resp.,(α, N l)), or π is amodel
of (α,P l) (resp.,(α,N l)), denotedπ |= (α,P l) (resp.,π |=(α,N l)) iff Poss(α)> l (resp.,Nec(α)> l).
The notions of satisfiability, logical entailment, and tight logical entailment for possibilistic knowledge bases
are then defined in the standard way. As shown by Hollunder [45], deciding logical consequences and thus
also deciding satisfiability and computing tight logical consequences can be reduced to deciding logical
consequences in description logics.

Example 5.2 (Car Example cont’d)Consider again the possibilistic knowledge baseK of Example 5.2. It
is not difficult to verify thatK is satisfiable and logically implies that “Tom is a golfer with a possibility of
at least0.7”, that is,

K |= (Tom : golfer , P 0.7) .

6 Vagueness and Description Logics

In this section, we define fuzzySHOIN (D), using the fuzzy operators of Section 2.3. We recall here the
semantics given in [109, 112] (see also [95]).

6.1 Syntax

We have seen thatSHOIN (D) allows to reason with concrete datatypes, such as strings and integers, using
so-called concrete domains. In our fuzzy approach, concrete domainsmay be based on fuzzy sets as well.

6.1.1 Fuzzy Datatype Theories

A fuzzy datatype theoryD= (∆D, ·D) is defined in the same way as a classical datatype theory except that
·D now assigns to everyn-ary datatype predicate ann-ary fuzzy relation over∆D. For instance, as for
SHOIN (D), the predicate618 may be a unary crisp predicate over the natural numbers denoting the set
of integers smaller or equal to18, i.e.,618 : Natural → [0, 1] and

618 (x) =

{

1 if x 6 18
0 otherwise.

So,

Minor = Person ⊓ ∃age. 618 (4)

defines a person, whose age is less or equal to18, i.e., it defines a minor.
On the other hand, concerning non crisp fuzzy domain predicates, we recall that in fuzzy set theory and

practice, there are many functions for specifying fuzzy set membership degrees. However, the triangular,
the trapezoidal, theL-function (left-shoulder function), and theR-function (right-shoulder function) are
simple, but most frequently used to specify membership degrees. The functions are defined over the set of
non-negative rationalsQ+ ∪ {0} (see Fig. 1).

Using these functions, we may then define, for instance,Young : Natural → [0, 1] to be a fuzzy con-
crete predicate over the natural numbers denoting the degree of youngness of a person’s age. The concrete
fuzzy predicateYoung may be defined asYoung(x) = L(x; 10, 30). So,

YoungPerson = Person ⊓ ∃age.Young (5)

denotes a young person.
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(a) (b)

(c) (d)

Figure 1: (a) Trapezoidal function; (b) Triangular function; (c)L-function; (d)R-function

6.1.2 Fuzzy Modifiers

We allow modifiers in fuzzySHOIN (D). Fuzzy modifiers, likevery , more or less andslightly , apply to
fuzzy sets to change their membership function. Formally, amodifieris a functionfm : [0, 1] → [0, 1]. For
instance, we may definevery(x) = x2 andslightly(x) =

√
x. Modifiers have been considered, for instance,

in [44, 118]. From a syntactical point of view, ifM is a new alphabet for modifier symbols,m ∈ M is a
modifier, andC is aSHOIN (D) concept, thenm(C) is fuzzy concept as well. For instance, by referring
to Example 3.1, we may define the concept of sports car as the concept

SportsCar = Car ⊓ ∃speed .very(High) , (6)

wherevery is a concept modifier, with membership functionvery(x) = x2, andHigh is a fuzzy concrete
predicate over the domain of speed expressed in kilometers per hour and may be defined asHigh(x) =
R(x; 80, 250).

6.1.3 Fuzzy Knowledge Bases

The syntax of fuzzySHOIN (D) concepts is as follows:

C −→ ⊤ | ⊥ | A | {a1, . . . , an} | C1 ⊓ C2 | C1 ⊔ C2 | ¬C |m(C)
∀R.C | ∃R.C | (> n S) | (6 n S) |
∀T1, . . . , Tn.D | ∃T1, . . . , Tn.D | (> n T ) | (6 n T ) .

Concerning axioms and assertions, similarly to [103], we define fuzzy axioms as follows: Let ben ∈ (0, 1].
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A fuzzy RBoxR is a finite set ofSHOIN (D) transitivity axiomstrans(R) and fuzzy role inclusion
axiomsof the form〈α > n〉, 〈α 6 n〉, 〈α > n〉, and〈α > n〉, whereα is aSHOIN (D) role inclusion
axiom.

A fuzzy TBoxT is a finite set offuzzy concept inclusion axioms〈α > n〉, 〈α 6 n〉, 〈α > n〉, and
〈α < n〉, whereα is aSHOIN (D) concept inclusion axiom.

A fuzzy ABoxA consists of a finite set offuzzy conceptand fuzzy role assertion axiomsof the form
〈α > n〉, 〈α 6 n〉, 〈α > n〉, or 〈α < n〉, whereα is aSHOIN (D) concept or role assertion. As for the
crisp case,A may also contain a finite set of individual (in)equality axiomsa ≈ b anda 6≈ b, respectively.

For instance,〈a : C > 0.1〉, 〈(a, b) : R 6 0.3〉, 〈R ⊑ S > 0.4〉, or 〈C ⊑ D 6 0.6〉 are fuzzy axioms.
Informally, from a semantical point of view, a fuzzy axiom〈α 6 n〉 constrains the membership degree ofα
to be at mostn (similarly for>, >,<). Hence,〈jim : YoungPerson > 0.2〉 says thatjim is aYoungPerson

with degree at least0.2. On the other hand, a fuzzy concept inclusion axiom of the form〈C ⊑ D > n〉 says
that the subsumption degree betweenC andD is at leastn.

A SHOIN (D) fuzzy knowledge baseK = (T ,R,A) consists of a fuzzy TBoxT , a fuzzy RBoxR,
and a fuzzy ABoxA.

6.2 Semantics

The semantics extends [103]. The main idea is that concepts and roles are interpreted as fuzzy subsets of an
interpretation’s domain. Therefore,SHOIN (D) axioms, rather being satisfied (true) or unsatisfied (false)
in an interpretation, become a degree of truth in[0, 1]. In the following, we use∧,∨,¬ and→ in infix
notation, in place of a t-normt, s-norms, negation functionn, and implication functioni.

6.2.1 Fuzzy Interpretations

A fuzzy interpretationI = (∆I , ·I) relative to a fuzzy datatype theoryD= (∆D, ·D) consists of a
nonempty set∆I (called thedomain), disjoint from ∆D, and of afuzzy interpretation function·I that
coincides with·D on every data value, datatype, and fuzzy datatype predicate, and it assigns

• to each abstract individuala ∈ I an element in∆I ;

• to each abstract conceptC ∈ A a functionCI : ∆I → [0, 1];

• to each abstract roleR ∈ RA a functionRI : ∆I × ∆I → [0, 1];

• to each abstract functional roleR ∈ RA a partial functionRI : ∆I × ∆I → [0, 1] such that for all
x ∈ ∆I there is an uniquey ∈ ∆I on whichRI(x, y) is defined;

• to each concrete roleT ∈ RC a functionRI : ∆I × ∆D → [0, 1];

• to each concrete functional roleT ∈ RC a partial functiontI : ∆I × ∆D → [0, 1] such that for all
x ∈ ∆I there is an uniquev ∈ ∆D on whichT I(x, v) is defined;

• to each modifierm ∈ M the modifier functionfm : [0, 1] → [0, 1].

The mapping·I is extended to roles and concepts as specified in the following table (wherex, y ∈ ∆I

andv ∈ ∆D):

(S−)
I
(x, y) = SI(y, x)
⊤I(x) = 1
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⊥I(x) = 0

{a1, . . . , an}I(x) =
∨n

i=1 ai
I = x

(C1 ⊓ C2)
I(x) = C1

I(x) ∧ C2
I(x)

(C1 ⊔ C2)
I(x) = C1

I(x) ∨ C2
I(x)

(¬C)I(x) = ¬CI(x))

(m(C))I(x) = fm(CI(x))

(∀R.C)I(x) = infy∈∆I RI(x, y) → CI(y)

(∃R.C)I(x) = supy∈∆I RI(x, y) ∧ CI(y)

(> n S)I(x) = sup {y1, . . . , yn} ⊆ ∆I

|{y1, . . . , yn}| = n

∧n
i=1 S

I(x, yi)

(6 n S)I(x) = ¬(> n+ 1 S)I(x)

(∀T1, . . . , Tn.D)I(x) = infy1,...,yn∈∆D
I (

∧n
i=1 Ti

I(x, yi)) → DI(y1, . . . , yn)

(∃T1, . . . , Tn.D)I(x) = supy1,...,yn∈∆D
I (

∧n
i=1 Ti

I(x, yi)) ∧DI(y1, . . . , yn) .

We comment briefly some points. The semantics of∃R.C

(∃R.C)I(d) = supy∈∆I RI(x, y) ∧ CI(y)

is the result of viewing∃R.C as the open first order formula∃y.FR(x, y) ∧ FC(y) (whereF is the obvious
translation of roles and concepts into first-order logic (FOL)) and the existential quantifier∃ is viewed as a
disjunction over the elements of the domain. Similarly,

(∀R.C)I(x) = infy∈∆I RI(x, y) → CI(y)

is related to the open first order formula∀y.FR(x, y) → FC(y), where the universal quantifier∀ is viewed
as a conjunction over the elements of the domain. However, unlike the classical case, in general, we do
not have that(∀R.C)I = (¬∃R.¬C)I . For instance, it holds in Łukasiewicz logic, but not in Gödel logic.
Also interesting is that (see [35]) the axiom⊤ ⊑ ¬(∀R.A) ⊓ (¬∃R.¬A) has no classical model. However,
in [35], it is shown that in G̈odel logic it has no finite model, but has an infinite model.

Another point concerns the semantics of number restrictions. The semanticsof the concept(> n S)

(> n S)I(x) = sup {y1, . . . , yn} ⊆ ∆I

|{y1, . . . , yn}| = n

∧n
i=1 S

I(x, yi)

is the result of viewing(> n S) as the open first order formula

∃y1, . . . , yn.
n
∧

i=1

S(x, yi) ∧
∧

16i<j6n

yi 6= yj .

That is, there are at leastn distinct elements that satisfy to some degreeS(x, yi). This guarantees us that
∃S.⊤ ≡ (> 1 S). The semantics of(6 n S) is defined in such a way to guarantee the classical relationship
(6 n S) ≡ ¬(> n+ 1 S).

An alternative definition for the(> n S) and the(6 n S) constructs may rely on the scalar cardinality of
a fuzzy set. However, we prefer to stick on the formulation, which derives directly from its FOL translation.



INFSYS RR 1843-06-07 21

Finally, the mapping·I is extended to non-fuzzy axioms as specified in the following table (where
a, b ∈ I):

(R ⊑ S)I = infx,y∈∆I RI(x, y) → SI(x, y)

(T ⊑ U)I = infx,y∈∆I T I(x, y) → UI(x, y)

(C ⊑ D)I = infx∈∆I CI(x) → DI(x)

(a : C)I = CI(aI)

((a, b) : R)I = RI(aI , bI) .

Note here that e.g. the semantics of a concept inclusion axiomC ⊑ D is derived directly from its FOL trans-
lation, which is of the form∀x.FC(x) → FD(x). This definition is clearly different from the approaches
in whichC ⊑ D is viewed as∀x.C(x) 6 D(x). This latter approach has the effect that the subsumption
relationship is a classical{0, 1} relationship, while the in former approach subsumption is determined up to
a certain degree in[0, 1].

The notion ofsatisfactionof a fuzzy axiomE by a fuzzy interpretationI, denotedI |= E, is defined as
follows: I |= trans(R), iff ∀x, y ∈ ∆I .RI(x, y) = supz∈∆I RI(x, z) ∧ RI(z, y). I |= 〈α > n〉, where
α is a role inclusion or concept inclusion axiom, iffαI > n. Similarly, for the other relations6, < and>.
I |= 〈α > n〉, whereα is a concept or a role assertion axiom, iffαI > n. Similarly, for the other relations
6, <,>. We say that a conceptC is satisfiableiff there is an interpretationI and an individualx ∈ ∆I

such thatCI(x) > 0. Finally,I |= a ≈ b iff aI = bI andI |= a 6≈ b iff aI 6= bI .
For a set of fuzzy axiomsE , we say thatI satisfiesE iff I satisfies each element inE . We say thatI

is a modelof E (resp. E) iff I |= E (resp. I |= E). I satisfies(is a modelof) a fuzzy knowledge base
K = (T ,R,A), denotedI |= K, iff I is a model of each componentT ,R andA, respectively.

A fuzzy axiomE is a logical consequenceof a knowledge baseK, denotedK |= E iff every model of
K satisfiesE.

The interesting point is that according to our semantics, e.g., a minor is a youngperson to a certain
degree and is obtained without explicitly mentioning it. This inference can not be achieved in classical
SHOIN (D). Similarly, by referring to Example 3.1, we will have that the cartt will be a sports car to a
certain degree. Therefore, unlike Example 3.1,tt is now closely a sport car,as it should be. The following
two examples highlight these points.

Example 6.1 (Car Example cont’d)Example 3.1 illustrates an evident difficulty in defining the class of
sport cars. Indeed, it is highly questionable why a car whose speed is243km/h is not a sport car anymore.
The point is that essentially, the higher the speed the more closely a car is a sports car, which makes the
concept of sports car rather afuzzyconcept, i.e.,vagueconcept, rather than a crisp one. In the next section,
we will see how to represent such concepts more appropriately. Let us now reconsider Example 3.1, where
all axioms of the TBox and ABox are asserted with degree1, i.e., are of the form〈α > 1〉. We replace the
definition ofSportsCar with Definition (6). Then, we have that (under Łukasiewicz logic)

K |= 〈SportsCar ⊑ Car > 1〉 K |= 〈mgb : SportsCar 6 0.63〉
K |= 〈enzo : SportsCar > 1〉 K |= 〈tt : SportsCar > 0.97〉 .

Note how the maximal speed limit of themgb car (6170km/h ) induces an upper limit,0.53, of the member-
ship degree. Neither this inference is possible in classicalSHOIN (D), nor the one involvingtt .
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Example 6.2 Consider the knowledge baseK with definitions (4) and (5). Then under Łukasiewicz logic
we have that (see [108])

K |= 〈Minor ⊑ YoungPerson > 0.6〉
K |= 〈YoungPerson ⊑ Minor > 0.4〉

which are relationships not captured with classicalSHOIN (D).

6.2.2 Best Truth Value Bound

Finally, givenK and an axiomα, whereα is neither a transitivity axiom, nor an individual (in) equality
axiom, it is of interest to computeα’s best lower and upper degree value bounds (Best Truth Value Bound
(BTVB)). Thegreatest lower boundof α w.r.t.K (denotedglb(K, α)) is

glb(K, α) = sup{n | K |= 〈α > n〉} ,
while theleast upper boundof α with respect toK (denotedlub(K, α) is

lub(K, α) = inf{n : K |= 〈α 6 n〉} ,
wheresup ∅ = 0 andinf ∅ = 1. Determining thelub and theglb is called theBest Degree Bound(BDB)
problem. For instance, the consequences in Examples 6.1 and 6.2 are the best possible degree bounds.
Furthermore, note that,

lub(Σ, a : C) = ¬glb(Σ, a : ¬C) , (7)

i.e., thelub can be determined through theglb (and vice-versa).
Similarly, lub(Σ, (a, b) : R) = ¬glb(Σ, a : ¬∃R.{b}) holds. Also, note that,Σ |= 〈α > n〉 iff glb(Σ,

α) > n, and similarlyΣ |= 〈α 6 n〉 iff lub(Σ, α) 6 n hold.
Another similar concept is thebest satisfiability boundof a conceptC and amounts to determine

glb(K, C) = sup
I

sup
x∈∆I

{CI(x) | I |= K} .

Essentially, among all modelsI of the knowledge base, we are determining the maximal degree of truth that
the conceptC may have over all individualsx ∈ ∆I .

Example 6.3 Consider the knowledge baseK in Example 3.1. Assume, that a car seller sells an Audi TT
for $31500, as from the catalog price. A buyer is looking for a sports-car, but wants to pay not more than
around $30000. In classical DLs no agreement can be found. The problem relies on the crisp condition
on the seller’s and the buyer’s price. A more fine grained approach would be (and usually happens in
negotiation) to consider prices as concrete fuzzy sets instead. For instance, the seller may consider optimal
to sell above $31500, but can go down to $30500. The buyer prefersto spend less than $30000, but can go
up to $32000. We may represent these statements by means of the following axioms (see Figure 2):

AudiTT = SportsCar ⊓ ∃hasPrice.R(x; 30500, 31500)
Query = SportsCar ⊓ ∃hasPrice.L(x; 30000, 32000)

Then we may find out that the highest degree to which the conceptC = AudiTT ⊓ Query is satisfiable
is 0.75 (the possibility that the Audi TT and the query matches is 0.75). That is,glb(K, C) = 0.75 and
corresponds to the point where both requests intersects (i.e., the car may be sold at $31250).

Problems such as determining theglb can be solved by relying on mixed integer linear programming as done
in [106, 107] and in thefuzzyDLsystem (accessible from Umberto Straccia’s home page).
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Figure 2: The soft price constraints.

6.3 Related Work

Several ways of extending DLs using the theory of fuzzy logic have been proposed in the literature. The
first work is due to Yen [124] who considered a sub-language ofALC, FL− [7, 58]. However, it already
informally talks about the use of modifiers and concrete domains. Though, the unique reasoning facility, the
subsumption test, is a crisp yes/no question. Tresp [118] considered fuzzyALC extended with a special form
of modifiers, which are a combination of two linear functions:min, max and1 − x membership functions
has been considered and a sound and complete reasoning algorithm testingthe subsumption relationship has
been presented. Similarly to Straccia’s work [106, 107], a linear programming oracle is needed.

Assertional reasoning has been considered by Straccia [100, 102, 103], where fuzzy assertion axioms
have been allowed in fuzzyALC (with min, max and1−x functions), concept modifiers and fuzzy concrete
domains are not allowed however ([102] reports a four-valued variant of fuzzyALC). He also introduced
the BTVB problem and provided a sound and complete reasoning algorithm based on completion rules. In
the same spirit, Ḧolldobleret al. [41, 43, 44, 42] extend Straccia’s fuzzyALC with concept modifiers of the
form fm(x) = xβ , whereβ > 0. A sound and complete reasoning algorithm for the graded subsumption
problem, based on completion rules, is presented.

Straccia’s works [105, 111, 116] are essentially as [103], except that now the truth space is a complete
lattice rather than[0, 1].

Sanchez and Tettamanzi [91, 92, 93] start addressing the issue of alternative semantics of quantifiers in
fuzzyALC (without the assertional component). Essentially, fuzzy quantifiers allow tostate sentences such
asFaithfulCustomer ⊓ (Most)buys. LowCalorieFood denoting “the set of individuals that mostly by low
calorie food”.

Hajek [35, 36] considersALC under arbitrary t-norm and reports, among others, a procedure deciding
|= 〈C ⊑ D > 1〉 and deciding whether〈C ⊑ D > 1〉 is satisfiable, by a reduction to the propositional BL
logic, for which a Hilbert style axiomatization exists [34] (but see also [36] for complexity of rational
Pavelka logic and see [5], which reports some complexity results for reasoning in fuzzy DLs).

Straccia [104] provides a translation of fuzzyALC with GCI’s into classicalALC. The translation is
modular and, thus, it is expected that it can be extended to more expressive DLs as well. The idea is to
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translate a fuzzy assertion of the form〈a : C > n〉 into a crisp assertiona : Cn with intended meaning “a is
instance ofC to degree at leastn”. It then uses GCI’s to correctly relate theCn. For instance,C0.7 ⊑ C0.6

is used to say that whenever an individual is instance ofC to degree at least0.7 then it is also instance ofC
to degree at least0.6. The translation is at most quadratic in the size of the knowledge base. The idea has
further been considered by [61, 62], which essentially provide a crisplanguage in which expressions of the
form e.g. a : ∀R0.8.C0.9 are allowed, with intended meaning: “ifa has anR-successor to degree at least0.8
then this successor is also an instance ofC to degree at least0.9”.

Other extension of fuzzy DLs, mainly concern their integration with logic programming, which we
however do not report here (see, e.g. [116, 113, 111]). Also, Kanget al. [54] extends fuzzy DLs by allowing
comparison operators, e.g., allowing to state that “Tom is more tall than Tim”. Another interesting extension
is [16], which combines fuzzy DLs with possibility theory. Essentially, as〈a : C > n〉 is Boolean (either an
interpretation satisfies it or not), we can build on top of it an uncertainty logic,which is based on possibility
theory in [16].

From a reasoning point of view, no calculus exists yet checking satisfiability of fuzzy SHOIN (D)
knowledge bases, though there exist an implementation for fuzzySHIF(D) (thefuzzyDLsystem) support-
ing Zadeh semantics, Łukasiewicz semantics and classical semantics.

Usually, the semantics used for fuzzy DLs follows the so-called Zadeh semantics, but where the concept
inclusion is crisp, i.e.,C ⊑ D is viewed as∀x.C(x) 6 D(x). [44, 118] report a calculus for the case of
ALC [94] with modifiers and simple TBox under Zadeh semantics. No indication for the BTVB problem
is given. [100, 103] reports a calculus forALC and simple TBox under Zadeh semantics and addresses
the BTVB problem. [104] shows how the satisfiability problem and the BTVB problem can be reduced to
classicalALC and, thus, can be resolved by means of a tools like FACT and RACER. [96,97] show results
providing a tableaux calculus for fuzzySHIN without GCIs and under the Zadeh semantics, by adapting
similar techniques developed for the classical counterpart. Fuzzy GCIs under Zadeh semantics can be man-
aged as described in [98]. Ultimately, we expect that the techniques developed for classicalSHOIN (D)
can be extended to the work of [103] as [96, 97] already show. Also interesting is the work [60], which
provides a tableaux for fuzzySHI with GCI’s.

On the other hand side, fuzzy tableaux algorithms under Zadeh semantics, seem not to be suitable to
be adapted to other semantics, such as Łukasiewicz logic. Even more problematic is the fact that they are
unable to deal with fuzzy concrete domains. However, despite these negative results, recently [107, 106]
reports a calculus forALC(D) whenever the connectives, the modifiers and the concrete fuzzy predicates are
representable as a bounded Mixed Integer Linear Program (MILP). For instance, Łukasiewicz logic satisfies
these conditions as well as the membership functions for concrete fuzzy predicates we have presented in
this paper. Additionally, modifiers should be a combination of linear functions.In that case the calculus
consists of a set of constraint propagation rules and an invocation to an oracle for MILP. The method has
been extended to fuzzySHIF(D) (the DL behind OWL-Lite) and a reasoner, calledfuzzyDL, has been
implemented and is available from Straccia’s Web page (though, a paper describing the algorithm has not
yet been published).FuzzyDLsupports more features than we have described in this work, whose description
go beyond the scope of this work. The use of MILP for reasoning in fuzzy DLs is not surprising as their use
for automated deduction in many-valued logics is well- known [31, 32].

A new problem for fuzzy DLs is the top-k retrieval problem. While in classical semantics a tuple
satisfies a query or does not satisfy the query, in fuzzy DLs a tuple may satisfy a query to degree. Hence, for
instance, given a conjunctive query over a fuzzy DLs knowledge base, it is of interest to compute just the
top-k answers. While in relational databases this problem is a current research area (see, e.g. [23, 50, 59]),
almost nothing is known for the case of first-order knowledge bases in general (but see [114]) and DLs in
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particular. The only works we are aware of are [110, 115] dealing with the problem of finding the top-k
result over a DL-Lite [8] knowledge bases.

We conclude by pointing out that fuzzy DLs has first been proposed for logic-based information re-
trieval. [81] summarizes many previous works on the same argument [82, 83, 76,77, 78, 79, 78, 80, 96,
99, 101, 101, 102], which originated from the idea to annotated textual documents with graded DL sen-
tences [82]. Other applications are [64] and [12].

7 Conclusions

Handling uncertainty and vagueness has started to play an important role in ontologies and description logics
for the Semantic Web. In this paper, we have first provided a brief introduction to uncertainty and vague-
ness at the propositional level. We have then given an overview of probabilistic uncertainty, possibilistic
uncertainty, and vagueness in expressive description logics for the Semantic Web.

An interesting topic of future research is the integration of the above forms of uncertainty and vagueness
in a single description logic for the Semantic Web. Another issue for future research is the integration of
probabilistic, possibilistic, and fuzzy description logics with rule-based languages for the Semantic Web.
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