This page describes experiments conducted mainly with dlvhex version 2.x. It contains information how to obtain and build dlvhex 2.x, as well as measurements for
dlvhex 2.x is not yet released, but you can get it from sourceforge using subversion:
$ svn co https://dlvhex.svn.sf.net/svnroot/dlvhex/dlvhex/branches/dlvhex-refactoring $ cd dlvhex-refactoring $ ./bootstrap.sh <ignore all warnings> $ ./configure <insert your parameters here> $ make $ make check <optional> $ make install <optional> $ sudo ldconfig <required on some machines>
These test instances were created using the DMCS benchmark instance generator and converted to the input format of MCS-IE using generate_master_file.py. Please refer to the original DMCS benchmark instance generator page for details of topologies and instance parameters.
All DMCS instances are contained in the following archive: dmcs_instances.tar.bz2.
dlvhex 1.x | dlvhex 2.x | |||||||||||
(dlv backend) | clingo backend | dlv backend | ||||||||||
topology | parameters | instance | #models | exit status | memory used (MB) | time used (s) | #units | #unit- dependencies |
memory used (MB) | time used (s) | memory used (MB) | time used (s) |
diamond | 7-7-3-3 | a | 4 | OK | 11.1 | 1.91 | 17 | 35 | 5.8 | 0.16 | 5.5 | 0.22 |
b | 16 | ERR | 3000 | 600 | 17 | 34 | 9.8 | 0.28 | 9.9 | 0.38 | ||
c | 4 | OK | 70.6 | 4.89 | 16 | 32 | 7.6 | 0.24 | 6.1 | 0.31 | ||
d | 24 | OK | 21.5 | 1.88 | 17 | 34 | 5.9 | 0.14 | 4.5 | 0.17 | ||
e | 12 | OK | 81 | 4.73 | 17 | 33 | 7.5 | 0.22 | 7.7 | 0.27 | ||
f | 24 | OK | 118.3 | 5.48 | 16 | 32 | 6.1 | 0.17 | 5.4 | 0.22 | ||
g | 28 | OK | 83.9 | 5.3 | 17 | 35 | 5.9 | 0.19 | 5.9 | 0.22 | ||
h | 8 | OK | 912.9 | 23.15 | 16 | 32 | 7.2 | 0.25 | 9.1 | 0.35 | ||
i | 32 | OK | 566.6 | 22.99 | 17 | 36 | 7.6 | 0.26 | 8 | 0.32 | ||
j | 28 | OK | 1257.3 | 276.8 | 16 | 32 | 8.3 | 0.3 | 8.1 | 0.41 | ||
7-7-4-4 | a | 36 | ERR | 3000 | 600 | 17 | 34 | 12.3 | 0.56 | 11.9 | 0.87 | |
b | 12 | OK | 2017.2 | 80.2 | 17 | 34 | 8 | 0.25 | 6.6 | 0.37 | ||
c | 48 | ERR | 1012.6 | 600 | 17 | 36 | 21 | 1.23 | 26.5 | 1.71 | ||
d | 14 | ERR | 3000 | 600 | 17 | 34 | 11.3 | 0.43 | 9.7 | 0.67 | ||
e | 16 | ERR | 547.8 | 600 | 16 | 32 | 10 | 0.48 | 12.8 | 0.63 | ||
f | 40 | ERR | 466 | 600 | 17 | 35 | 14.4 | 0.68 | 14.4 | 1.23 | ||
g | 16 | ERR | 3000 | 600 | 17 | 35 | 10.8 | 0.47 | 13 | 0.56 | ||
h | 768 | ERR | 882.8 | 600 | 16 | 33 | 34.5 | 1.23 | 32 | 2.21 | ||
i | 122 | OK | 1666.6 | 348.14 | 17 | 36 | 10.2 | 0.39 | 18 | 0.61 | ||
j | 32 | OK | 198.9 | 6.96 | 16 | 32 | 7.4 | 0.22 | 6 | 0.26 | ||
7-7-5-5 | a | 48 | ERR | 3000 | 600 | 17 | 34 | 54.9 | 4.01 | 90.1 | 11.08 | |
b | 16 | ERR | 3000 | 600 | 17 | 35 | 36.7 | 3.08 | 70.4 | 5.45 | ||
c | 336 | ERR | 449.6 | 600 | 16 | 32 | 18.7 | 0.77 | 22.8 | 1.14 | ||
d | 108 | ERR | 3000 | 600 | 17 | 34 | 36.9 | 2.13 | 64.2 | 4.89 | ||
e | 32 | ERR | 800.2 | 600 | 17 | 35 | 15.3 | 0.9 | 15.7 | 1.12 | ||
f | 32 | ERR | 752.3 | 600 | 16 | 32 | 15.9 | 0.8 | 33 | 1.11 | ||
g | 112 | ERR | 2267.9 | 600 | 16 | 32 | 45.9 | 1.44 | 23.3 | 2.37 | ||
h | 64 | ERR | 3000 | 600 | 17 | 36 | 24.2 | 1.32 | 66.1 | 2.24 | ||
i | 24 | ERR | 457.5 | 600 | 17 | 35 | 14.9 | 0.75 | 15 | 1.02 | ||
j | 12 | ERR | 413.4 | 600 | 16 | 31 | 18 | 0.56 | 11.3 | 0.89 | ||
house | 9-9-3-3 | a | 812 | ERR | 3000 | 600 | 19 | 38 | 23.3 | 0.86 | 59.6 | 0.97 |
b | 68 | ERR | 956.5 | 600 | 20 | 41 | 15 | 0.51 | 16 | 0.71 | ||
c | 384 | ERR | 491.7 | 600 | 20 | 40 | 12.9 | 0.47 | 11.6 | 0.55 | ||
d | 48 | ERR | 398.5 | 600 | 20 | 41 | 8 | 0.24 | 7 | 0.38 | ||
e | 84 | ERR | 482.8 | 600 | 19 | 37 | 10.2 | 0.34 | 9.2 | 0.39 | ||
f | 200 | ERR | 1588.2 | 600 | 19 | 38 | 12.7 | 0.46 | 17.6 | 0.68 | ||
g | 384 | ERR | 812.9 | 600 | 20 | 42 | 13.4 | 0.46 | 15 | 0.61 | ||
h | 384 | ERR | 3000 | 600 | 20 | 41 | 39.3 | 1.33 | 39.7 | 1.99 | ||
i | 1344 | ERR | 3000 | 600 | 19 | 39 | 54.1 | 1.21 | 32.9 | 1.32 | ||
j | 84 | ERR | 3000 | 600 | 20 | 42 | 12.8 | 0.67 | 13.5 | 1.07 | ||
9-9-4-4 | a | 512 | ERR | 3000 | 600 | 19 | 39 | 44.5 | 2.91 | 77.5 | 4.78 | |
b | 1920 | ERR | 3000 | 600 | 20 | 43 | 87.9 | 3.77 | 259.3 | 13.78 | ||
c | 20 | ERR | 3000 | 600 | 20 | 42 | 67.7 | 3.01 | 109.5 | 6.89 | ||
d | 40 | ERR | 3000 | 600 | 20 | 42 | 11.8 | 0.58 | 11.6 | 0.87 | ||
e | 846 | ERR | 3000 | 600 | 20 | 41 | 24.6 | 0.72 | 23.1 | 0.89 | ||
f | 60 | ERR | 3000 | 600 | 20 | 41 | 35.1 | 2.03 | 71.2 | 3.88 | ||
g | 144 | ERR | 3000 | 600 | 20 | 41 | 30.3 | 0.99 | 19.8 | 1.5 | ||
h | 368 | ERR | 3000 | 600 | 20 | 41 | 31.3 | 1.56 | 50.3 | 2.41 | ||
i | 200 | ERR | 3000 | 600 | 20 | 41 | 87.9 | 3.37 | 250.2 | 10.13 | ||
j | 19152 | ERR | 3000 | 600 | 20 | 42 | 514.9 | 142.21 | 332.4 | 132.02 | ||
ring | 7-7-4-4 | a | 288 | ERR | 854.5 | 600 | 15 | 28 | 16.4 | 0.55 | 10.8 | 0.6 |
b | 12 | ERR | 933.8 | 600 | 15 | 28 | 13 | 0.43 | 8.2 | 0.46 | ||
c | 288 | ERR | 3000 | 600 | 15 | 28 | 16 | 0.62 | 18.4 | 0.99 | ||
d | 456 | ERR | 3000 | 600 | 15 | 28 | 28.7 | 0.77 | 22.3 | 1.12 | ||
e | 80 | ERR | 3000 | 600 | 15 | 28 | 12.7 | 0.76 | 15.4 | 0.8 | ||
f | 324 | ERR | 3000 | 600 | 15 | 28 | 22.5 | 1.2 | 30.2 | 1.23 | ||
g | 24 | ERR | 905.7 | 600 | 15 | 28 | 8.5 | 0.41 | 7.5 | 0.39 | ||
h | 376 | ERR | 893.8 | 600 | 15 | 28 | 17.7 | 0.49 | 11.8 | 0.59 | ||
i | 288 | ERR | 3000 | 600 | 15 | 28 | 25 | 1.26 | 42.6 | 2.37 | ||
j | 128 | ERR | 494 | 600 | 15 | 28 | 9 | 0.38 | 7.1 | 0.41 | ||
7-7-5-5 | a | 24 | ERR | 3000 | 600 | 15 | 28 | 21.6 | 0.93 | 16.6 | 0.88 | |
b | 16 | ERR | 3000 | 600 | 15 | 28 | 16.5 | 0.98 | 27.5 | 1.33 | ||
c | 172 | ERR | 3000 | 600 | 15 | 28 | 42.8 | 1.7 | 20.3 | 1.89 | ||
d | 40 | ERR | 3000 | 600 | 15 | 28 | 25.2 | 1.61 | 55 | 2.22 | ||
e | 156 | ERR | 3000 | 600 | 15 | 28 | 18.9 | 1.49 | 48.6 | 1.53 | ||
f | 14 | ERR | 3000 | 600 | 15 | 28 | 20.7 | 1.43 | 48.1 | 2.27 | ||
g | 102 | ERR | 3000 | 600 | 15 | 28 | 32.5 | 1.4 | 68.8 | 1.91 | ||
h | 224 | ERR | 3000 | 600 | 15 | 28 | 67.4 | 2.07 | 47.5 | 2.57 | ||
i | 840 | ERR | 3000 | 600 | 15 | 28 | 34.8 | 1.78 | 74.9 | 2.65 | ||
j | 3 | ERR | 3000 | 600 | 15 | 28 | 17 | 0.5 | 10.2 | 0.55 | ||
7-8-5-5 | a | 256 | ERR | 3000 | 600 | 15 | 28 | 34.3 | 1.1 | 24.3 | 1.05 | |
b | 40 | ERR | 3000 | 600 | 15 | 28 | 57 | 1.43 | 24.5 | 1.73 | ||
c | 264 | ERR | 3000 | 600 | 15 | 28 | 24.1 | 0.73 | 14.1 | 0.8 | ||
d | 184 | ERR | 3000 | 600 | 15 | 28 | 33.9 | 1.33 | 39.2 | 2.09 | ||
e | 24 | OK | 2947.3 | 295.19 | 15 | 28 | 10.7 | 0.38 | 6.9 | 0.32 | ||
f | 864 | ERR | 3000 | 600 | 15 | 28 | 53.1 | 1.6 | 31.1 | 2.13 | ||
g | 120 | ERR | 1910.9 | 600 | 15 | 28 | 16.2 | 0.72 | 11.8 | 0.98 | ||
h | 1344 | ERR | 3000 | 600 | 15 | 28 | 38.8 | 1.95 | 62.9 | 3.53 | ||
i | 3276 | ERR | 3000 | 600 | 15 | 28 | 139.7 | 2.95 | 120.8 | 4.36 | ||
j | 168 | ERR | 3000 | 600 | 15 | 28 | 15.9 | 1.33 | 14.2 | 0.97 | ||
7-9-5-5 | a | 54 | ERR | 3000 | 600 | 15 | 28 | 45.5 | 3.31 | 39.2 | 4.87 | |
b | 116 | ERR | 3000 | 600 | 15 | 28 | 38.7 | 1.49 | 18.4 | 1.93 | ||
c | 400 | ERR | 3000 | 600 | 15 | 28 | 61.6 | 1.4 | 67 | 1.88 | ||
d | 608 | ERR | 3000 | 600 | 15 | 28 | 23.7 | 0.93 | 23.2 | 1.24 | ||
e | 32 | ERR | 3000 | 600 | 15 | 28 | 28.2 | 2.1 | 46.2 | 3.92 | ||
f | 40 | ERR | 3000 | 600 | 15 | 28 | 12.3 | 0.8 | 15.7 | 1.03 | ||
g | 576 | ERR | 3000 | 600 | 15 | 28 | 25.7 | 1.65 | 74.2 | 2.19 | ||
h | 336 | ERR | 3000 | 600 | 15 | 28 | 32.5 | 1.62 | 24.9 | 1.93 | ||
i | 234 | ERR | 3000 | 600 | 15 | 28 | 60.5 | 2.73 | 42.5 | 4.12 | ||
j | 272 | ERR | 3000 | 600 | 15 | 28 | 20.8 | 1.42 | 29.1 | 1.57 | ||
8-7-5-5 | a | 54 | ERR | 2219.2 | 600 | 17 | 32 | 8.7 | 0.33 | 7.2 | 0.5 | |
b | 138 | ERR | 3000 | 600 | 17 | 32 | 53.1 | 3.67 | 85.1 | 4.65 | ||
c | 36 | ERR | 3000 | 600 | 17 | 32 | 11.4 | 0.5 | 10.1 | 0.65 | ||
d | 672 | ERR | 3000 | 600 | 17 | 32 | 108.7 | 4.16 | 58.5 | 6.88 | ||
e | 428 | ERR | 3000 | 600 | 17 | 32 | 39.1 | 2.29 | 46.6 | 3.39 | ||
f | 1440 | ERR | 3000 | 600 | 17 | 32 | 50.7 | 1.86 | 37.7 | 2.35 | ||
g | 168 | ERR | 3000 | 600 | 17 | 32 | 61.3 | 2.21 | 79.4 | 2.97 | ||
h | 168 | ERR | 3000 | 600 | 17 | 32 | 18 | 1.39 | 25.3 | 2.16 | ||
i | 240 | ERR | 3000 | 600 | 17 | 32 | 41.8 | 1.39 | 26.6 | 1.74 | ||
j | 64 | ERR | 3000 | 600 | 17 | 32 | 10.7 | 0.56 | 13.1 | 0.75 | ||
8-8-5-5 | a | 760 | ERR | 3000 | 600 | 17 | 32 | 28.7 | 1.64 | 56 | 1.81 | |
b | 312 | ERR | 3000 | 600 | 17 | 32 | 25 | 1.55 | 25.6 | 2.05 | ||
c | 72 | ERR | 3000 | 600 | 17 | 32 | 22.6 | 1.3 | 23.7 | 1.96 | ||
d | 520 | ERR | 3000 | 600 | 17 | 32 | 39.1 | 3.02 | 55.1 | 4.72 | ||
e | 364 | ERR | 3000 | 600 | 17 | 32 | 19.1 | 1.18 | 42.7 | 1.39 | ||
f | 2400 | ERR | 3000 | 600 | 17 | 32 | 116.2 | 2.36 | 80.7 | 3.87 | ||
g | 528 | ERR | 3000 | 600 | 17 | 32 | 91.2 | 2.96 | 44.1 | 4.09 | ||
h | 1812 | ERR | 3000 | 600 | 17 | 32 | 75.2 | 2.56 | 67.3 | 2.52 | ||
i | 192 | ERR | 3000 | 600 | 17 | 32 | 15 | 0.93 | 16 | 1.33 | ||
j | 180 | ERR | 3000 | 600 | 17 | 32 | 14.4 | 0.65 | 14.3 | 1.12 | ||
zigzag | 7-7-3-3 | a | 8 | OK | 61 | 11.63 | 16 | 34 | 9.9 | 0.35 | 14.1 | 0.42 |
b | 28 | ERR | 3000 | 600 | 17 | 36 | 13.8 | 0.44 | 9.6 | 0.77 | ||
c | 128 | OK | 258.3 | 6.61 | 17 | 36 | 9.2 | 0.21 | 6.9 | 0.24 | ||
d | 184 | ERR | 3000 | 600 | 17 | 34 | 17.1 | 0.55 | 14.2 | 1.13 | ||
e | 64 | OK | 1255.2 | 362.68 | 16 | 35 | 9.5 | 0.38 | 10 | 0.56 | ||
f | 42 | OK | 351.8 | 73.76 | 17 | 35 | 13.1 | 0.4 | 9.2 | 0.64 | ||
g | 6 | OK | 246.3 | 12.09 | 17 | 36 | 7.5 | 0.27 | 6.8 | 0.38 | ||
h | 10 | OK | 465.1 | 74.19 | 17 | 35 | 9.1 | 0.31 | 10.1 | 0.45 | ||
i | 8 | OK | 42.9 | 4.13 | 17 | 33 | 5.8 | 0.18 | 9.3 | 0.24 | ||
j | 14 | OK | 574.9 | 19.7 | 16 | 33 | 10.9 | 0.34 | 9.8 | 0.38 | ||
7-7-4-4 | a | 80 | ERR | 3000 | 600 | 16 | 34 | 69 | 2.38 | 260.5 | 6.81 | |
b | 36 | ERR | 1640.2 | 600 | 17 | 38 | 15.6 | 0.75 | 14.3 | 1.08 | ||
c | 24 | ERR | 855.5 | 600 | 16 | 33 | 19.4 | 1.07 | 54.8 | 1.99 | ||
d | 56 | OK | 674.2 | 265.04 | 17 | 35 | 11.5 | 0.43 | 16.5 | 0.53 | ||
e | 36 | ERR | 894.7 | 600 | 17 | 38 | 21.6 | 1.26 | 32.8 | 1.83 | ||
f | 192 | ERR | 3000 | 600 | 16 | 33 | 52.9 | 1.84 | 89.8 | 3.1 | ||
g | 134 | ERR | 377 | 600 | 16 | 35 | 23.8 | 0.71 | 16.8 | 0.89 | ||
h | 22 | ERR | 251.3 | 600 | 15 | 31 | 12.1 | 0.55 | 12.8 | 0.84 | ||
i | 18 | OK | 451 | 69.89 | 17 | 37 | 9 | 0.37 | 8.5 | 0.48 | ||
j | 4 | ERR | 473.6 | 600 | 16 | 34 | 17.9 | 0.66 | 20.5 | 1.07 | ||
7-7-5-5 | a | 112 | ERR | 2813.4 | 600 | 16 | 33 | 29.5 | 1.59 | 51.1 | 3.1 | |
b | 32 | ERR | 3000 | 600 | 16 | 33 | 101.4 | 9.77 | 291.8 | 44.59 | ||
c | 56 | ERR | 1763.9 | 600 | 16 | 35 | 64.8 | 1.83 | 117.1 | 4.36 | ||
d | 64 | ERR | 495.3 | 600 | 16 | 33 | 18.7 | 1 | 29.4 | 1.76 | ||
e | 80 | ERR | 3000 | 600 | 16 | 34 | 27.9 | 1.89 | 46.5 | 3.1 | ||
f | 42 | ERR | 3000 | 600 | 17 | 36 | 45.1 | 2.74 | 75.9 | 6.34 | ||
g | 32 | ERR | 3000 | 600 | 17 | 38 | 29.5 | 1.77 | 38.8 | 4.18 | ||
h | 8 | ERR | 872 | 600 | 17 | 38 | 18.9 | 1.2 | 52.7 | 2.35 | ||
i | 32 | ERR | 1824.4 | 600 | 16 | 34 | 43.6 | 2.21 | 55.1 | 5.78 | ||
j | 12 | ERR | 3000 | 600 | 17 | 39 | 35 | 2.84 | 42.4 | 4.48 | ||
minimum | 3 | - | 11.1 | 1.88 | 15 | 28 | 5.8 | 0.14 | 4.5 | 0.17 | ||
maximum | 19152 | - | 3000 | 600 | 20 | 43 | 514.9 | 142.21 | 332.4 | 132.02 | ||
average | 387.84 | - | 2118.48 | 515.55 | 16.63 | 33.09 | 32.1 | 2.29 | 40.18 | 3.24 | ||
standard deviation | 1656.14 | - | 1152.95 | 196.75 | 1.52 | 4.25 | 47.51 | 11.93 | 52.77 | 11.69 |
These test instances were created using
revsel2.cpp
with varied parameter -t
(the number of conference track per instance).
All instances are contained in the following archive: revsel1_instances.tar.bz2.
dlvhex 1.x (old heuristics H1 + dlv backend) | dlvhex 2.x + former heuristics H1 + dlv backend | dlvhex 2.x + simple heuristics H2 + dlv backend | ||||||||
# tracks | # papers | exit status | memory used (MB) | time used (s) | exit status | memory used (MB) | time used (s) | exit status | memory used (MB) | time used (s) |
1 | 20 | OK | 43.9 | 1.49 | OK | 31.7 | 1.45 | OK | 31.5 | 1.36 |
2 | 20 | OK | 73.1 | 3.31 | OK | 72.7 | 2.65 | OK | 56.2 | 2.11 |
3 | 20 | OK | 120.8 | 5.89 | OK | 112.1 | 4.17 | OK | 82 | 3.15 |
4 | 20 | OK | 152.8 | 11.64 | OK | 142.4 | 5.82 | OK | 106.3 | 4.02 |
5 | 20 | OK | 197.5 | 28.47 | OK | 180.2 | 8.21 | OK | 131.3 | 5.25 |
6 | 20 | OK | 239.7 | 71.64 | OK | 239.6 | 11.92 | OK | 165.2 | 6.17 |
7 | 20 | OK | 325.8 | 109.14 | OK | 258.5 | 16.31 | OK | 164.5 | 7.17 |
8 | 20 | OK | 777.3 | 477.51 | OK | 309.4 | 28.08 | OK | 213.7 | 7.92 |
9 | 20 | ERR | 1716.3 | 600 | OK | 422.4 | 51.74 | OK | 250.1 | 9.58 |
10 | 20 | ERR | 2533.7 | 600 | OK | 588.3 | 100.26 | OK | 242.2 | 10.87 |
11 | 20 | ERR | 3000 | 600 | OK | 1413.7 | 206.24 | OK | 262.4 | 12.01 |
12 | 20 | ERR | 3000 | 600 | OK | 3000 | 458.02 | OK | 294.3 | 12.65 |
13 | 20 | ERR | 3000 | 600 | OK | 3000 | 600 | OK | 337.9 | 13.95 |
14 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 295.7 | 15.03 |
15 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 397.8 | 16.73 |
16 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 380.5 | 17.32 |
17 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 461.4 | 18.85 |
18 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 481.2 | 19.9 |
19 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 520.3 | 21 |
20 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 444.4 | 21.94 |
21 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 561.5 | 23.11 |
22 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 605.1 | 24.48 |
23 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 628.5 | 25.54 |
24 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 643.3 | 27.07 |
25 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 683.8 | 28.29 |
26 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 694.6 | 29.74 |
27 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 726 | 31.09 |
28 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 756.9 | 31.94 |
29 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 745 | 33.45 |
30 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 761.2 | 34.26 |
31 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 848.4 | 36.66 |
32 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 894.2 | 37.29 |
33 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 841.8 | 39.43 |
34 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 914.3 | 39.57 |
35 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 889.9 | 42.45 |
36 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 946.1 | 43.3 |
37 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 1019 | 44.7 |
38 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 998.6 | 45.95 |
39 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 1015 | 46.23 |
40 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 1118.2 | 47.89 |
41 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 1051.6 | 49.73 |
42 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 1113.6 | 52.66 |
43 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 1213.4 | 53.47 |
44 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 1291 | 54.54 |
45 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 1358.2 | 56.84 |
46 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 1287.4 | 58.74 |
47 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 1347.6 | 60.08 |
48 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 1286.4 | 61.41 |
49 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 1403.1 | 62.61 |
50 | 20 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 1408.2 | 65 |
These test instances were created using
revsel1.cpp
with varied parameter -p
(the number of papers per conference track).
All instances are contained in the following archive: revsel2_instances.tar.bz2.
dlv | clingo (clasp+gringo) | dlvhex 2.x + simple heuristics H2 + dlv backend | dlvhex 2.x + simple heuristics H2 + clingo backend | |||||||||||
#tracks | #papers | #models | exit status |
memory used (MB) |
time used (s) |
exit status |
memory used (MB) |
time used (s) |
exit status | memory used (MB) |
time used (s) |
exit status |
memory used (MB) |
time used (s) |
5 | 1 | 0 | OK | 0 | 0 | OK | 0 | 0 | OK | 0 | 0.01 | OK | 0 | 0.01 |
5 | 2 | 9 | OK | 0 | 0 | OK | 0 | 0 | OK | 0 | 0.04 | OK | 0 | 0.03 |
5 | 3 | 9 | OK | 0 | 0 | OK | 0 | 0.01 | OK | 0 | 0.05 | OK | 0 | 0.03 |
5 | 4 | 9 | OK | 0 | 0.01 | OK | 0 | 0.01 | OK | 0 | 0.06 | OK | 0 | 0.06 |
5 | 5 | 9 | OK | 0 | 0.03 | OK | 0 | 0.02 | OK | 0 | 0.07 | OK | 0 | 0.06 |
5 | 6 | 9 | OK | 0 | 0.06 | OK | 0 | 0.04 | OK | 4.2 | 0.13 | OK | 4.5 | 0.12 |
5 | 7 | 9 | OK | 0 | 0.11 | OK | 0 | 0.04 | OK | 5.1 | 0.16 | OK | 4.7 | 0.13 |
5 | 8 | 9 | OK | 4.4 | 0.18 | OK | 5.4 | 0.1 | OK | 6.1 | 0.22 | OK | 4.9 | 0.17 |
5 | 9 | 9 | OK | 7.2 | 0.29 | OK | 6.4 | 0.19 | OK | 8.1 | 0.33 | OK | 5 | 0.26 |
5 | 10 | 9 | OK | 9.8 | 0.45 | OK | 6.4 | 0.2 | OK | 8.8 | 0.47 | OK | 5.3 | 0.28 |
5 | 11 | 9 | OK | 14.6 | 0.66 | OK | 9.6 | 0.3 | OK | 14.9 | 0.73 | OK | 5.8 | 0.35 |
5 | 12 | 9 | OK | 27.5 | 1.02 | OK | 14.3 | 0.42 | OK | 22.7 | 0.88 | OK | 6.5 | 0.63 |
5 | 13 | 9 | OK | 33.5 | 1.29 | OK | 18.3 | 0.61 | OK | 26.6 | 1.1 | OK | 7.4 | 0.63 |
5 | 14 | 9 | OK | 42.8 | 1.82 | OK | 22.6 | 0.81 | OK | 29.2 | 1.45 | OK | 8.1 | 0.67 |
5 | 15 | 9 | OK | 57.8 | 2.28 | OK | 28.8 | 1.1 | OK | 38.8 | 1.78 | OK | 9.3 | 1.79 |
5 | 16 | 9 | OK | 69.3 | 2.97 | OK | 36.4 | 1.47 | OK | 51.2 | 2.44 | OK | 10.8 | 1.62 |
5 | 17 | 9 | OK | 116.8 | 3.88 | OK | 44.2 | 1.91 | OK | 58.6 | 2.87 | OK | 12.6 | 1.54 |
5 | 18 | 9 | OK | 125.1 | 5.14 | OK | 54.5 | 2.49 | OK | 79.7 | 3.47 | OK | 14.2 | 1.77 |
5 | 19 | 9 | OK | 151.1 | 6.93 | OK | 66.2 | 3.21 | OK | 97.3 | 4.16 | OK | 16.7 | 2.39 |
5 | 20 | 9 | OK | 230.8 | 8.57 | OK | 80.6 | 3.92 | OK | 112.8 | 5.48 | OK | 18.7 | 2.99 |
5 | 21 | 9 | OK | 231.7 | 10.18 | OK | 95.1 | 5.04 | OK | 155.6 | 6.41 | OK | 22.2 | 3.76 |
5 | 22 | 9 | OK | 256.3 | 10.59 | OK | 114.4 | 6.02 | OK | 180.1 | 7.63 | OK | 25.1 | 4.73 |
5 | 23 | 9 | OK | 330.8 | 13.45 | OK | 133.6 | 7.43 | OK | 201.9 | 9.99 | OK | 30.2 | 6.99 |
5 | 24 | 9 | OK | 458.6 | 15.71 | OK | 162.1 | 8.96 | OK | 220 | 10.9 | OK | 33.2 | 6.43 |
5 | 25 | 10 | OK | 459.8 | 17.77 | OK | 186.5 | 10.52 | OK | 243.1 | 12.8 | OK | 38.8 | 10.09 |
5 | 26 | 11 | OK | 520.6 | 21.97 | OK | 214.2 | 13.1 | OK | 341.5 | 14.71 | OK | 44.5 | 8.89 |
5 | 27 | 12 | OK | 600.1 | 25.41 | OK | 251.1 | 15.06 | OK | 385.5 | 17.68 | OK | 49.1 | 12.53 |
5 | 28 | 13 | OK | 911.8 | 28.1 | OK | 290.7 | 17.63 | OK | 527.2 | 19.97 | OK | 55.9 | 13.59 |
5 | 29 | 14 | OK | 913.3 | 35.46 | OK | 331.7 | 20.5 | OK | 432.7 | 23.43 | OK | 64.5 | 13.22 |
5 | 30 | 15 | OK | 914.9 | 36.62 | OK | 380.8 | 23.93 | OK | 398 | 26.79 | OK | 70.6 | 14.61 |
5 | 31 | 16 | OK | 1013.5 | 44.53 | OK | 427.4 | 27.78 | OK | 519.4 | 28.94 | OK | 80.1 | 20.39 |
5 | 32 | 17 | OK | 1227.8 | 48.05 | OK | 492.9 | 32.12 | OK | 295.6 | 33.01 | OK | 92.7 | 23.68 |
5 | 33 | 18 | OK | 1816.3 | 60.42 | OK | 549.8 | 37.41 | OK | 947.6 | 39.03 | OK | 101.4 | 24.63 |
5 | 34 | 19 | OK | 1818.4 | 63.68 | OK | 623.1 | 44.07 | OK | 821.5 | 43.31 | OK | 117.1 | 32.27 |
5 | 35 | 20 | OK | 1820.5 | 72.94 | OK | 691.1 | 48.91 | OK | 822 | 49.35 | OK | 132.3 | 31.37 |
5 | 36 | 21 | OK | 1958.9 | 78.54 | OK | 779.3 | 55.41 | OK | 683.3 | 52.84 | OK | 141.8 | 36.52 |
5 | 37 | 22 | OK | 2107.6 | 92.86 | OK | 865.3 | 63.04 | OK | 685.3 | 61.2 | OK | 157.6 | 39.54 |
5 | 38 | 23 | OK | 2329.9 | 99.25 | OK | 951.3 | 75.02 | OK | 939.4 | 68.49 | OK | 172.6 | 45.87 |
5 | 39 | 24 | OK | 2794.8 | 117.66 | OK | 1045.2 | 80.86 | OK | 1211.5 | 76.46 | OK | 194.9 | 49.82 |
5 | 40 | 25 | ERR | 3000 | 600 | OK | 1134.8 | 90.33 | OK | 855.4 | 83.5 | OK | 210.1 | 65.25 |
5 | 41 | 26 | ERR | 3000 | 600 | OK | 1296.2 | 105.07 | OK | 488.3 | 93.92 | OK | 233.4 | 67.82 |
5 | 42 | 27 | ERR | 3000 | 600 | OK | 1383.3 | 113.2 | OK | 788.1 | 97.51 | OK | 251 | 73.18 |
5 | 43 | 28 | ERR | 3000 | 600 | OK | 1520.5 | 127.61 | OK | 1234.9 | 116.37 | OK | 280.6 | 81.97 |
5 | 44 | 29 | ERR | 3000 | 600 | OK | 1644.1 | 143.91 | OK | 1723.9 | 121.46 | OK | 308.9 | 89.94 |
5 | 45 | 30 | ERR | 3000 | 600 | OK | 1783.1 | 159.53 | OK | 1372.8 | 133.25 | OK | 328.6 | 100.56 |
5 | 46 | 31 | ERR | 3000 | 600 | OK | 1952.1 | 172.73 | OK | 1809.8 | 149.21 | OK | 354.1 | 118.54 |
5 | 47 | 32 | ERR | 3000 | 600 | OK | 2094.7 | 202.25 | OK | 2091.4 | 167.52 | OK | 386.1 | 121.87 |
5 | 48 | 33 | ERR | 3000 | 600 | OK | 2261.4 | 215.39 | OK | 1431.8 | 175.74 | OK | 423.5 | 142.17 |
5 | 49 | 34 | ERR | 3000 | 600 | OK | 2503.8 | 242.77 | OK | 1991.7 | 194.42 | OK | 460.9 | 155.78 |
5 | 50 | 35 | ERR | 3000 | 600 | OK | 2890.7 | 262.91 | OK | 2061.6 | 206.17 | OK | 497.9 | 193.36 |
5 | 51 | 36 | ERR | 3000 | 600 | OK | 2943.4 | 300.58 | OK | 1598.3 | 225.69 | OK | 531.6 | 203.94 |
5 | 52 | 37 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 2211.3 | 236.35 | OK | 583.2 | 207.76 |
5 | 53 | 38 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 2340.5 | 261.56 | OK | 641.7 | 214.53 |
5 | 54 | 39 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 2384.7 | 278.85 | OK | 684.4 | 265.44 |
5 | 55 | 40 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 2313.8 | 309.97 | OK | 720.5 | 280.53 |
5 | 56 | 41 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 2598.7 | 324.43 | OK | 764.2 | 288.02 |
5 | 57 | 42 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 2447.8 | 350.54 | OK | 814.7 | 370.84 |
5 | 58 | 43 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 1972.2 | 392.71 | OK | 868.2 | 340.77 |
5 | 59 | 44 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 2197.3 | 425.45 | OK | 951.9 | 425.85 |
5 | 60 | 45 | ERR | 3000 | 600 | ERR | 3000 | 600 | OK | 2074.8 | 437.47 | OK | 1002.4 | 411.15 |
This section compares dlvhex 2.x with and without external behavior learning (EBL).
All benchmarks were carried out on a machine with 24 Dual-Core AMD Opteron Magny-Cours 6176 SE CPUs and 128 GB RAM, running Linux and using Clasp 2.0.5 as solver backend.
In our first (synthetic) example program we consider a set S
of elements which is partitioned into two subsets
S1
and S2
, such that S1
contains at most two elements.
This is realized with HEX-programs using external atoms of kind &setminus[p,q](X)
, which computes the set difference
of the extensions of p
and q
.
We use the program template
partitioning.hex, specifying two cyclic rules which realize the partitioning, and give the solver a hint on monotonicity in the first input predicate.
For benchmarking we use a benchmark script which automatically iterates through instance sizes and instantiates the program template accordingly.
The script can be downloaded here (and is also contained in the dlvhex repository):
benchmark.sh.
It is called like this:
benchmark.sh [Program] [Min Domain Size] [Max Domain Size] [Timeout/s] [Configuration Strings (optional)]
,
Program
is the Name of a HEX-programMin Domain Size
and Max Domain Size
specify the range of instance sizesTimeout
specifies the maximum runtime per instanceConfiguration String
The benchmark script evaluates Program
for each integer i
between Min Domain Size
and Max Domain Size
,
and adds all facts domain(1), ..., domain(i)
to the program prior to evaluation. dlvhex is then called once per configuration
specified in the last argument.
An example call is:
./benchmark.sh partitioning.hex 1 20 300 "--solver=genuinegc;--solver=genuinegc --extlearn"
partitioning.hex
for each instance size from 1
to 20
, once
with arguments --solver=genuinegc
and once with arguments --solver=genuinegc --extlearn
, i.e.,
it compares the genuine solver (with gringo+clasp backend) with and without external learning.
We summarized the runtimes for the configurations
--solver=genuinegc
(no external learning, all models)--solver=genuinegc --extlearn
(external learning, all models)--solver=genuinegc -n=1
(no external learning, one model)--solver=genuinegc --extlearn -n=1
(external learning, one model)We use DL-programs for realizing default reasoning over a description logic knowledge base, realized as a plugin to dlvhex. Program birdpenguin.hex queries all birds from ontology (template) bird.owl and encodes that bird typically fly (if the contrary cannot be derived). For varying the input size, we use an adopted version of the benchmark script above which produces ontology instances with A-boxes of different sizes. The script can be found in the repository of the DL-plugin
The runtime results of 5 runs are summarized in birdpenguin.ods.
The findings from the bird-penguin example carry over to the larger wine ontology http://www.w3.org/TR/owl-guide/wine.rdf
(and scaled variants available at http://kaon2.semanticweb.org/download/test_ontologies.zip).
We made three experiments which implement three different default rules as follows:
1. "A wine is dry, unless the contrary can be derived"
For this experiment we used three scripts drywine_pi.sh, drywine_omega.sh and drywine_y.sh
to produce HEX programs for classifying different categories of wines, based on different transformations [dek2009].
2. "A wine is dry, unless it is known that it is sweet"
For this experiment we used the Omega-transformation, which turned out to be the most efficient one.
We used the script sweetwine.sh
to produce the HEX programs for classifying different categories of wines.
3. "A wine is white, unless it is known to be red"
For this experiment we used the Omega-transformation, which turned out to be the most efficient one.
We used the script redwine.sh
to produce the HEX programs for classifying different categories of wines.
The runtime results of 3 runs are summarized in benchmarks.ods.
For our multi-context benchmarks we used the instances from mcs.zip and the MCS plugin for dlvhex.
Runtime results are summarized in benchmarks.ods.
Minh Dao-Tran, Thomas Eiter, and Thomas Krennwallner.
Realizing Default Logic over Description Logic Knowledge Bases.
In Claudio Sossai and Gaetano Chemello, editors, Proceedings of the 10th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2009), Verona, Italy, July 1-3, 2009 , volume 5590 of LNAI, pages 602-613. Springer, July 2009.
[ DOI ]
General
dlvhex source code @ github.com
Description-Of-A-Project
Popular Plugins
Action Plugin
DecisionDiagrams Plugin
Description Logics Plugin
Description Logics Lite Plugin
MELD: Belief Merging Plugin
Nested HEX Plugin
MCSIE Plugin
String Plugin
dlvhex-semweb Project
Documentation
User Guide
README
doxygen
Writing Plugins in C++
Writing Plugins in Python