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Abstract. In previous work, towards the integration of rules and ontologies in the
Semantic Web, we have proposed a combination of logic programming under the
answer set semantics with the description logics SHIF(D) and SHOIN (D),
which underly the Web ontology languages OWL Lite and OWL DL, respectively.
More precisely, we have introduced description logic programs (or dl-programs),
which consist of a description logic knowledge base L and a finite set of description
logic rules P , and we have defined their answer set semantics. In this paper, we
continue this line of research. Here, as a central contribution, we present the
well-founded semantics for dl-programs, and we analyze its semantic properties.
In particular, we show that it generalizes the well-founded semantics for ordinary
normal programs. Furthermore, we show that in the general case, the well-founded
semantics of dl-programs is a partial model that approximates the answer set
semantics, whereas in the positive and the stratified case, it is a total model that
coincides with the answer set semantics. Finally, we also provide complexity
results for dl-programs under the well-founded semantics.

1 Introduction

The Semantic Web [6,7,14] aims at extending the current World Wide Web by standards
and techniques that enable the automated processing of Web content. Among other
issues, the main ideas to achieve this goal is to add a machine-readable meaning to Web
pages, to use ontologies for a precise definition of shared information terms, and to make
use of KR technology for automated reasoning from Web resources.

The Semantic Web is conceived in hierarchical layers, where the Ontology layer,
in form of the OWL Web Ontology Language [35,21] (recommended by the W3C),
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is currently the highest layer of sufficient maturity. OWL consists of three increasingly
expressive sublanguages, namely OWL Lite, OWL DL, and OWL Full. OWL Lite and
OWL DL are essentially very expressive description logics with an RDF syntax [21]. As
shown in [19], ontology entailment in OWL Lite (resp., OWL DL) reduces to knowledge
base (un)satisfiability in the description logic SHIF(D) (resp., SHOIN (D)).

On top of the Ontology layer, the Rules, Logic, and Proof layers of the Semantic Web
will be developed next, which should offer sophisticated representation and reasoning
capabilities. As a first effort in this direction, RuleML (Rule Markup Language) [8] is an
XML-based markup language for rules and rule-based systems, while the OWL Rules
Language [20] is a first proposal for extending OWL by Horn clause rules.

A key requirement of the layered architecture of the Semantic Web is to integrate the
Rules and the Ontology layer. In particular, it is crucial to allow for building rules on top of
ontologies, that is, for rule-based systems that use vocabulary from ontology knowledge
bases. Another type of combination is to build ontologies on top of rules, which means
that ontological definitions are supplemented by rules or imported from rules.

Towards this goal, in [13], we have proposed a combination of logic programs under
the answer set semantics with description logics, introducing description logic programs
(or dl-programs), which are of the form KB = (L, P ), where L is a knowledge base in
a description logic and P is a finite set of description logic rules (or dl-rules).

Such dl-rules are similar to usual rules in logic programs with negation as failure,
but may also contain queries to L in their bodies which are given by special atoms (on
which possibly default negation may apply). For example, a rule

cand(X, P )← paperArea(P, A), DL[Referee](X), DL[expert ](X, A)

may express that X is a candidate reviewer for a paper P , if the paper is in area A,
and X is known to be a referee and an expert for area A. Here, the latter two are queries
to the description logic knowledge base L, which has a concept Referee and role expert
in its signature. For the evaluation, the precise definition of Referee and expert within L
is fully transparent, and only the logical contents at the level of inference counts. Thus,
dl-programs fully support encapsulation and privacy of L—this is needed if parts of L
should not be accessible (for example, if L contains an ontology about risk assessment
in credit assignment), and only extensional reasoning services are available.

Another important feature of dl-rules is that queries to L also allow for specifying
an input from P , and thus for a flow of information from P to L, besides the flow of
information from L to P , given by any query to L. Hence, description logic programs
allow for building rules on top of ontologies, but also (to some extent) building ontolo-
gies on top of rules. This is achieved by dynamic update operators through which the
extensional part of L can be modified for subjunctive querying. For example, the rule

paperArea(P, A)← DL[keyword � kw ; inArea](P, A)

intuitively says that paper P is in area A, if P is in A according to the description logic
knowledge base L, where the extensional part of the keyword role in L (which is known
to influence inArea) is augmented by the facts of a binary predicate kw from the program.
In this way, additional knowledge (gained in the program) can be supplied to L before
querying. Using this mechanism, also more involved relationships between concepts
and/or roles in L can be defined and exploited.
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The semantics of dl-programs was defined in [13] as an extension of the answer set
semantics [15] for ordinary normal programs, which is one of the most widely used
semantics for nonmonotonic logic programs. More precisely, in [13], we defined the
notions of weak and strong answer sets of dl-programs, which coincide with usual
answer sets in the case of ordinary normal programs. The description logic knowledge
bases in dl-programs are specified in the well-known description logics SHIF(D)
and SHOIN (D).

In this paper, we continue our work on description logic programs and extend the
well-founded semantics to this class of programs. Introduced by Van Gelder, Ross, and
Schlipf [34], the well-founded semantics is another most widely used semantics for or-
dinary nonmonotonic logic programs. It is a skeptical approximation of the answer set
semantics in the sense that every well-founded consequence of a given ordinary normal
program P is contained in every answer set of P . While the answer set semantics re-
solves conflicts by virtue of permitting multiple intended models as alternative scenarios,
the well-founded semantics remains agnostic in the presence of conflicting information,
assigning the truth value false to a maximal set of atoms that cannot become true during
the evaluation of a given program. Furthermore, well-founded semantics assigns a co-
herent meaning to all programs, while some programs are not consistent under answer
set semantics, i.e., lack an answer set.

Another important aspect of the well-founded semantics is that it is geared towards
efficient query answering and also plays a prominent role in deductive databases (see,
e.g., [26] for a proposal for object-oriented deductive databases, which is applied to the
Florid system implementing F-logic). As an important computational property, a query
to an ordinary normal program is evaluable under well-founded semantics in polynomial
time (under data complexity), while query answering under the answer set semantics is
intractable in general. Finally, efficient implementations of the well-founded semantics
exist, such as the XSB system [28] and Smodels [27].

The main contributions of this paper can be summarized as follows:

(1)We define the well-founded semantics for dl-programs by generalizingVan Gelder
et al.’s [34] fixpoint characterization of the well-founded semantics for ordinary normal
programs based on greatest unfounded sets. We then prove some appealing semantic
properties of the well-founded semantics for dl-programs. In particular, it generalizes
the well-founded semantics for ordinary normal programs. Furthermore, for general
dl-programs, the well-founded semantics is a partial model, and for positive (resp.,
stratified) dl-programs, it is a total model and the canonical least (resp., iterative least)
model. Finally, the well-founded semantics also tolerates abbreviations for dl-atoms.

(2) Generalizing a result by Baral and Subrahmanian [5], we then show that the
well-founded semantics for dl-programs can be characterized in terms of the least and
the greatest fixpoint of an operator γ2

KB , which is defined using a generalized Gelfond-
Lifschitz transform of dl-programs relative to an interpretation.

(3) We also show that, similarly as for ordinary normal programs, the well-founded
semantics for dl-programs approximates the strong answer set semantics for dl-pro-
grams. That is, every well-founded ground atom is true in every answer set, and every
unfounded ground atom is false in every answer set. Hence, every well-founded ground
atom and no unfounded ground atom is a cautious (resp., brave) consequence of a dl-
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program under the strong answer set semantics. Furthermore, we prove that when the
well-founded semantics of a dl-program is total, then it is the only strong answer set.

(4) Finally, we give a precise characterization of the complexity of the well-founded
semantics for dl-programs, over both SHIF(D) and SHOIN (D). Like for ordinary
normal programs, literal inference under the well-founded semantics has a lower com-
plexity than under the answer set semantics. More precisely, relative to program com-
plexity [11], literal inference under the well-founded semantics for dl-programs over
SHIF(D) (resp., SHOIN (D)) is complete for EXP (resp., PNEXP), while cautious
literal inference under the strong answer set semantics for dl-programs over SHIF(D)
(resp., SHOIN (D)) is complete for co-NEXP (resp., co-NPNEXP) [13].

2 Preliminaries

In this section, we recall normal programs under the answer set semantics and the well-
founded semantics, as well as the description logics SHIF(D) and SHOIN (D).

Normal Programs. We assume a function-free first-order vocabulary Φ with nonempty
finite sets of constant and predicate symbols, and a setX of variables. A classical literal
(or literal) l is an atom a or a negated atom ¬a. A negation-as-failure (NAF) literal is
an atom a or a default-negated atom not a. A normal rule (or rule) r is of the form

a← b1, . . . , bk,not bk+1, . . . ,not bm , m≥ k≥ 0 , (1)

where a, b1, . . . , bm are atoms. We refer to a as the head of r, denoted H(r), while
the conjunction b1, . . . , bk,not bk+1, . . . ,not bm is the body of r; its positive (resp.,
negative) part is b1, . . . , bk (resp., not bk+1, . . . ,not bm). We define B(r) = B+(r) ∪
B−(r), where B+(r) = {b1, . . . , bk} and B−(r) = {bk+1, . . . , bm}.A normal program
(or program) P is a finite set of rules. We say P is positive iff no rule in P contains
default-negated atoms.

The well-founded semantics has many different equivalent definitions [34,5]. We
recall here the one based on unfounded sets.

Let P be a program. Ground terms, atoms, literals, etc., are defined as usual. We
denote by HBP the Herbrand base of P , i.e., the set of all ground atoms with predicate
and constant symbols from P (if P contains no constant, then choose an arbitrary one
from Φ), and by ground(P ) the set of all ground instances of rules in P (w.r.t. HBP ).

For literals l = a (resp., l =¬a), we use ¬.l to denote ¬a (resp., a), and for sets
of literals S, we define ¬.S = {¬.l | l∈S} and S+ = {a∈S | a is an atom}. We use
LitP =HBP ∪¬.HBP to denote the set of all ground literals with predicate and con-
stant symbols from P . A set S⊆LitP is consistent iff S ∩ ¬.S = ∅. A three-valued
interpretation relative to P is any consistent I ⊆LitP .

A set U ⊆HBP is an unfounded set of P relative to I , if for every a∈U and every
r∈ ground(P ) with H(r) = a, either (i) ¬b∈ I ∪¬.U for some atom b∈B+(r), or
(ii) b∈ I for some atom b∈B−(r). There exists the greatest unfounded set of P relative
to I , denoted UP (I). Intuitively, if I is compatible with P , then all atoms in UP (I) can
be safely switched to false and the resulting interpretation is still compatible with P .

The operators TP and WP on consistent I ⊆LitP are then defined by:
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• TP (I) = {H(r) | r∈ ground(P ), B+(r)∪¬.B−(r)⊆ I};
• WP (I) = TP (I)∪¬.UP (I).

The operator WP is monotonic, and thus has a least fixpoint, denoted lfp(WP ), which is
the well-founded semantics of P , denoted WFS (P ). An atom a∈HBP is well-founded
(resp., unfounded) w.r.t. P , if a (resp., ¬a) is in lfp(WP ). Intuitively, starting with I = ∅,
rules are applied to obtain new positive and negated facts (via TP (I) and ¬.UP (I),
respectively). This process is repeated until no longer possible.

Example 2.1 Consider the propositional program P = {p←not q; q← p; p←not r}.
For I = ∅, we have TP (I) = ∅ and UP (∅) = {r}: p cannot be unfounded because of the
first rule and Condition (ii), and hence q cannot be unfounded because of the second rule
and Condition (i). Thus, WP (∅) = {¬r}. Since TP ({¬r}) = {p} and UP ({¬r}) = {r},
it follows WP ({¬r}) = {p,¬r}. Since TP ({p,¬r}) = {p, q} and UP ({p,¬r}) = {r},
it then follows WP ({p,¬r}) = {p, q,¬r}. Thus, lfp(WP ) = {p, q,¬r}. That is, r is
unfounded relative to P , and the other atoms are well-founded.

SHIF(D) and SHOIN (D). We first describe SHOIN (D). We assume a set
D of elementary datatypes. Every d∈D has a set of data values, called the domain of
d, denoted dom(d). We use dom(D) to denote

⋃
d∈D dom(d). A datatype is either an

element of D or a subset of dom(D) (called datatype oneOf). Let A, RA, RD, and I be
nonempty finite and pairwise disjoint sets of atomic concepts, abstract roles, datatype
roles, and individuals, respectively. We use R−

A to denote the set of all inverses R− of
abstract roles R∈RA.

A role is an element of RA ∪R−
A ∪RD. Concepts are inductively defined as follows.

Every C ∈A is a concept, and if o1, o2, . . . ∈ I, then {o1, o2, . . . } is a concept (called
oneOf). If C and D are concepts and if R∈RA ∪R−

A, then (C	D), (C
D), and¬C are
concepts (called conjunction, disjunction, and negation, respectively), as well as ∃R.C,
∀R.C,≥nR, and≤nR (called exists, value, atleast, and atmost restriction, respectively)
for an integer n≥ 0. If d∈D and U ∈RD, then∃U.d,∀U.d,≥nU , and≤nU are concepts
(called datatype exists, value, atleast, and atmost restriction, respectively) for an integer
n≥ 0. We write � and ⊥ to abbreviate C 
 ¬C and C 	 ¬C, respectively, and we
eliminate parentheses as usual.

An axiom is of one of the following forms: (1) C �D, where C and D are concepts
(concept inclusion); (2) R�S, where either R, S ∈RA or R, S ∈RD (role inclusion);
(3) Trans(R), where R∈RA (transitivity); (4) C(a), where C is a concept and a∈ I
(concept membership); (5) R(a, b) (resp., U(a, v)), where R∈RA (resp., U ∈RD) and
a, b∈ I (resp., a∈ I and v ∈dom(D)) (role membership); and (6) a = b (resp., a �= b),
where a, b∈ I (equality (resp., inequality)). A knowledge base L is a finite set of ax-
ioms. (For decidability, number restrictions in L are restricted to simple R∈RA [22]).

The syntax of SHIF(D) is as the above syntax of SHOIN (D), but without the
oneOf constructor and with the atleast and atmost constructors limited to 0 and 1.

For the semantics of SHIF(D) and SHOIN (D), we refer the reader to [19].

Example 2.2 A small computer store obtains its hardware from several vendors. It uses
the following description logic knowledge base L1, which contains information about
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the product range that is provided by each vendor and about possible rebate conditions
(we assume here that choosing two or more parts from the same seller causes a discount).
For some parts, a shop may already be contracted as supplier.

≥ 1 supplier � Shop; � � ∀supplier .Part ; ≥ 2 supplier � Discount ;
Part(harddisk); Part(cpu); Part(case);
Shop(s1); Shop(s2); Shop(s3);
provides(s1, case); provides(s2, cpu); provides(s3, case);
provides(s1, cpu); provides(s2, harddisk); provides(s3, harddisk);
supplier(s3, case).

Here, the first two axioms determine Shop and Part as domain and range of the property
supplier , respectively, while the third axiom constitutes the concept Discount by putting
a cardinality constraint on supplier .

3 Description Logic Programs

In this section, we recall description logic programs (or simply dl-programs) from [13],
which combine description logics and normal programs. They consist of a knowledge
base L in a description logic and a finite set of description logic rules P . Such rules are
similar to usual rules in logic programs with negation as failure, but may also contain
queries to L, possibly default negated. In [13], we considered dl-programs that may also
contain classical negation and not necessarily monotonic queries to L. Here, we consider
only the case where classical negation is absent and all queries to L are monotonic. The
former is only for ease of presentation, since every dl-program with classical negation
can be translated into one without, like in the ordinary case. The latter, however, is
a technical necessity for the well-founded semantics of dl-programs, but not a severe
restriction, since most queries to L are in fact monotonic (naturally, a dl-program may
still contain NAF-literals).

A dl-program consists of a description logic knowledge base L and a generalized
normal program P , which may contain queries to L. Roughly, in such a query, it is asked
whether a certain description logic axiom or its negation logically follows from L or
not. Formally, a dl-query Q(t) is either

(a) a concept inclusion axiom F or its negation ¬F ; or
(b) of the forms C(t) or ¬C(t), where C is a concept and t is a term; or
(c) of the forms R(t1, t2) or ¬R(t1, t2),1 where R is a role and t1, t2 are terms.

A dl-atom has the form

DL[S1op1p1, . . . , Smopm pm; Q](t) , m≥ 0, (2)

where each Si is a concept or role, opi ∈{�, −∪}, pi is a unary resp. binary predicate sym-
bol, and Q(t) is a dl-query. We call p1, . . . , pm its input predicate symbols. Intuitively,

1 Note that SHOIN (D) does not provide terminological role negation; we use the expression
¬(∃R.{b})(a) in order to add and query ¬R(a, b) for a specific pair of individuals.
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opi =� (resp., opi = −∪) increases Si (resp.,¬Si) by the extension of pi. A dl-rule r is of
form (1), where any b∈B(r) may be a dl-atom. A dl-program KB = (L, P ) consists of
a description logic knowledge base L and a finite set of dl-rules P . We say KB = (L, P )
is positive iff P is positive.

Example 3.1 Consider the dl-program KB1 = (L1, P1), with L1 as in Example 2.2
and P1 given as follows, choosing vendors for needed parts w.r.t. possible rebates:

(1) vendor(s2); vendor(s1); vendor(s3);
(2) needed(cpu); needed(harddisk); needed(case);
(3) avoid(V )← vendor(V ),not rebate(V );
(4) rebate(V )← vendor(V ), DL[supplier � buy cand ;Discount ](V );
(5) buy cand(V, P )← vendor(V ),not avoid(V ), DL[provides](V, P ), needed(P ),

not exclude(P )
(6) exclude(P )← buy cand(V1, P ), buy cand(V2, P ), V1 �= V2;
(7) exclude(P )← DL[supplier ](V, P ),needed(P );
(8) supplied(V, P )← DL[supplier � buy cand ; supplier ](V, P ),needed(P ).

Rules (3)–(5) choose a possible vendor (buy cand ) for each needed part, taking into
account that the selection might affect the rebate condition (by feeding the possible
vendor back to L1, where the discount is determined). Rules (6) and (7) assure that each
hardware part is bought only once, considering that for some parts a supplier might
already be chosen. Rule (8) eventually summarizes all purchasing results.

Answer Set Semantics. In the sequel, let KB=(L, P ) be a dl-program. The Herbrand
base of P , denoted HBP , is the set of all ground atoms with a standard predicate symbol
that occurs in P and constant symbols in Φ.An interpretation I relative to P is any subset
of HBP . We say that I is a model of a∈HBP under L, denoted I |=L a, iff a∈ I . We say
that I is a model of a ground dl-atom a =DL[S1op1 p1, . . . , Smopmpm; Q](c) under L,
denoted I |=L a, iff L∪ ⋃m

i=1 Ai(I) |= Q(c), where

– Ai(I) = {Si(e) | pi(e)∈ I}, for opi =�; and
– Ai(I) = {¬Si(e) | pi(e)∈ I}, for opi = −∪.

We say I is a model of a ground dl-rule r iff I |=L H(r) whenever I |=L B(r), that is,
I |=L a for all a∈B+(r) and I �|=L a for all a∈B−(r). We say I is a model of a dl-
program KB = (L, P ), denoted I |=KB , iff I |=L r for all r∈ ground(P ). We say KB
is satisfiable (resp., unsatisfiable) iff it has some (resp., no) model.

A ground dl-atom a is monotonic relative to KB = (L, P ) iff I ⊆ I ′⊆HBP implies
that if I |=L a then I ′ |=L a. In this paper, we consider only ground dl-atoms which
are monotonic relative to a dl-program, but one can also define dl-atoms that are not
monotonic; see [13].

Like ordinary positive programs, every positive dl-program KB is satisfiable and
has a unique least model, denoted MKB , which naturally characterizes its semantics.

The strong answer set semantics of general dl-programs is then defined by a re-
duction to the least model semantics of positive ones as follows, using a generalized
transformation that removes all default-negated atoms in dl-rules.
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For dl-programs KB = (L, P ), the strong dl-transform of P w.r.t. L and an interpre-
tation I ⊆HBP , denoted sP I

L, is the set of all dl-rules obtained from ground(P ) by (i)
deleting every dl-rule r such that I |=L a for some a∈B−(r), and (ii) deleting from each
remaining dl-rule r the negative body. Notice that sP I

L generalizes the Gelfond-Lifschitz
reduct P I [15].

Let KBI denote the dl-program (L, sP I
L). Since KBI is positive, it has the least

model MKBI . A strong answer set (or simply answer set) of KB is an interpreta-
tion I ⊆HBP such that I = MKBI .

Example 3.2 The dl-program KB1 = (L1, P1) of Example 3.1 has the following three
strong answer sets (only relevant atoms are shown):

{supplied(s3 , case); supplied(s2 , cpu); supplied(s2 , harddisk); rebate(s2 ); . . . };
{supplied(s3 , case); supplied(s3 , harddisk); rebate(s3 ); . . . };
{supplied(s3 , case); . . . }.

Since the supplier s3 was already fixed for the part case , two possibilities for a discount
remain (rebate(s2 ) or rebate(s3 ); s1 is not offering the needed part harddisk , and the
shop will not give a discount only for the part cpu).

The strong answer set semantics of dl-programs KB = (L, P ) without dl-atoms
coincides with the ordinary answer set semantics of P [15]. Furthermore, strong answer
sets of a general dl-program KB are also minimal models of KB . Finally, positive and
stratified dl-programs have exactly one strong answer set, which coincides with their
canonical minimal model. Note that stratified dl-programs are composed of hierarchic
layers of positive dl-programs that are linked via default negation [13].

4 Well-Founded Semantics

In this section, we define the well-founded semantics for dl-programs. We do this by gen-
eralizing the well-founded semantics for ordinary normal programs. More specifically,
we generalize the definition based on unfounded sets as given in Section 2.

In the sequel, let KB = (L, P ) be a dl-program. We first define the notion of an un-
founded set for dl-programs. Let I ⊆LitP be consistent.A set U ⊆HBP is an unfounded
set of KB relative to I iff the following holds:

(∗) for every a∈U and every r∈ground(P ) with H(r) = a, either (i) ¬b∈ I ∪¬.U for
some ordinary atom b∈B+(r), or (ii) b∈ I for some ordinary atom b∈B−(r), or
(iii) for some dl-atom b∈B+(r), it holds that S+ �|=Lb for every consistent S ⊆ LitP
with I ∪¬.U ⊆S, or (iv) I+|=Lb for some dl-atom b∈B−(r).

What is new here are Conditions (iii) and (iv). Intuitively, (iv) says that not b is for
sure false, regardless of how I is further expanded, while (iii) says that b will never
become true, if we expand I in a way such that all unfounded atoms are false. The
following examples illustrate the concept of an unfounded set for dl-programs.
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Example 4.1 Consider KB2 = (L2, P2), where L2 = {S�C} and P2 is as follows:

p(a)← DL[S � q; C](a); q(a)← p(a); r(a)← not q(a), not s(a).

Here, S1 = {p(a), q(a)} is an unfounded set of KB2 relative to I = ∅, since p(a) is
unfounded due to (iii), while q(a) is unfounded due to (i). The set S2 = {s(a)} is trivially
an unfounded set of KB2 relative to I , since no rule defining s(a) exists.

Relative to J = {q(a)}, S1 is not an unfounded set of KB2 (for p(a), the condition
fails) but S2 is. The set S3 = {r(a)} is another unfounded set of KB2 relative to J .

Example 4.2 Consider the dl-program KB3 = (L2, P3) where P3 results by negating
the dl-literal in P2. Then S1 = {p(a), q(a)} is not an unfounded set of KB3 relative to
I = ∅ (Condition (iv) fails for p(a)), but S2 = {s(a)} is. Relative to J = {q(a)}, however,
both S1 and S2 as well as S3 = {r(a)} are unfounded sets of KB3.

Example 4.3 The unfounded set of KB1 = (L1, P1) in Example 3.1 relative to I0 = ∅
contains buy cand(s1, harddisk), buy cand(s2, case), and buy cand(s3, cpu) due to
(iii), since the dl-atom in Rule (5) of P1 will never evaluate to true for these pairs. It
reflects the intuition that the concept provides narrows the choice for buying candidates.

The following lemma implies that KB has a greatest unfounded set relative to I .

Lemma 4.4 Let KB = (L, P ) be a dl-program, and let I ⊆LitP be consistent. Then,
the set of unfounded sets of KB relative to I is closed under union.

We now generalize the operators TP , UP , and WP to dl-programs as follows. We
define the operators TKB , UKB , and WKB on all consistent I⊆LitP by:

– a∈TKB (I) iff a∈HBP and some r∈ ground(P ) exists such that (a) H(r) = a,
(b) I+ |=L b for all b∈B+(r), (c) ¬b∈ I for all ordinary atoms b∈B−(r), and
(d) S+ �|=L b for each consistent S⊆LitP with I ⊆S, for all dl-atoms b∈B−(r);

– UKB (I) is the greatest unfounded set of KB relative to I; and
– WKB (I) = TKB (I)∪¬.UKB (I).

The following result shows that the three operators are all monotonic.

Lemma 4.5 Let KB be a dl-program. Then, TKB , UKB , and WKB are monotonic.

Thus, in particular, WKB has a least fixpoint, denoted lfp(WKB ). The well-founded
semantics of dl-programs can thus be defined as follows.

Definition 4.6 Let KB = (L, P ) be a dl-program. The well-founded semantics of KB ,
denoted WFS (KB), is defined as lfp(WKB ). An atom a∈HBP is well-founded (resp.,
unfounded) relative to KB iff a (resp., ¬a) belongs to WFS (KB).

The following examples illustrate the well-founded semantics of dl-programs.
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Example 4.7 Consider KB2 of Example 4.1. For I0 = ∅, we have TKB2(I0) = ∅ and
UKB2(I0) = {p(a), q(a), s(a)}. Hence, WKB2(I0) = {¬p(a),¬q(a),¬s(a)} (=I1). In
the next iteration, TKB2(I1) = {r(a)} and UKB2 = {p(a), q(a), s(a)}. Thus, WKB2(I1)
={¬p(a),¬q(a), r(a),¬s(a)} (=I2). Since I2 is total and WKB2 is monotonic, it follows
WKB2(I2) = I2 and hence WFS (KB2) = {¬p(a),¬q(a), r(a),¬s(a)}. Accordingly,
r(a) is well-founded and all other atoms are unfounded relative to KB2. Note that KB2
has the unique answer set I = {r(a)}.

Example 4.8 Now consider KB3 of Example 4.2. For I0 = ∅, we have TKB3(I0) = ∅
and UKB3(I0) = {s(a)}. Hence, WKB3(I0) = {¬s(a)} (=I1). In the next iteration, we
have TKB3(I1) = ∅ and UKB3(I1) = {s(a)}. Then, WKB3(I1) = I1 and WFS (KB3) =
{¬s(a)}; atom s(a) is unfounded relative to KB3. Note that KB3 has no answer set.

Example 4.9 Consider again UKB1(I0 = ∅) of Example 4.3. WKB1(I0) consists of
¬UKB1(I0) and all facts of P1. This input to the first iteration along with (iii) applied
to Rule (8) adds those supplied atoms to UKB1(I1) that correspond to the (negated)
buy cand atoms of UKB1(I0). Then, TKB1(I1) contains exclude(case) which forces
additional buy cand atoms into UKB1(I2), regarding (i) and Rule (5). The same un-
founded set thereby includes rebate(s1 ), stemming from Rule (4). As a consequence,
avoid(s1 ) is in TKB1(I3). Eventually, the final WFS (KB1) is not able to make any
positive assumption about choosing a new vendor (buy cand ), but it is clear about s1
being definitely not able to contribute to a discount situation, since a supplier for case
is already chosen in L1, and s1 offers only a single further part.

5 Semantic Properties

In this section, we describe some semantic properties of the well-founded semantics
for dl-programs. An immediate result is that it conservatively extends the well-founded
semantics for ordinary normal programs.

Theorem 5.1 Let KB = (L, P ) be a dl-program without dl-atoms. Then, the well-foun-
ded semantics of KB coincides with the well-founded semantics of P .

The next result shows that the well-founded semantics of a dl-program KB = (L, P )
is a partial model of KB . Here, a consistent I ⊆LitP is a partial model of KB iff some
consistent J ⊆LitP exists such that (i) I ⊆J , (ii) J+ is a model of KB , and (iii) J
is total, i.e., J+ ∪ (¬.J)+ =HBP . Intuitively, the three-valued I can be extended to a
(two-valued) model I ′⊆HBP of KB .

Theorem 5.2 Let KB be a dl-program. Then, WFS (KB) is a partial model of KB .

Like in the case of ordinary normal programs, the well-founded semantics for positive
and stratified dl-programs is total and coincides with their least model semantics and
iterative least model semantics, respectively. This result can be elegantly proved using
a characterization of the well-founded semantics given in the next section.
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Theorem 5.3 LetKB = (L, P ) be a dl-program. IfKB is positive (resp., stratified), then
(a) every ground atom a∈HBP is either well-founded or unfounded relative to KB ,
and (b) WFS (KB)∩HBP is the least model (resp., the iterative least model) of KB ,
which coincides with the unique strong answer set of KB .

Example 5.4 The dl-program KB2 in Example 4.1 is stratified (intuitively, the recursion
through negation is acyclic) while KB3 in Example 4.2 is not. The result computed in
Example 4.7 verifies the conditions of Theorem 5.3.

The following result shows that we can limit ourselves to dl-programs in dl-
query form, where dl-atoms equate designated predicates. Formally, a dl-program
KB = (L, P ) is in dl-query form, if each r∈P involving a dl-atom is of the form
a← b, where b is a dl-atom. Any dl-program KB = (L, P ) can be transformed into a dl-
program KBdl = (L, P dl) in dl-query form. Here, P dl is obtained from P by replacing
every dl-atom a(t) = DL[S1op1p1, . . . , Smopm pm; Q](t) by pa(t), and by adding
the dl-rule pa(X)← a(X) to P , where pa is a new predicate symbol and X is a list
of variables corresponding to t. Informally, pa is an abbreviation for a. The following
result now shows that KBdl and KB are equivalent under the well-founded semantics.
Intuitively, the well-founded semantics tolerates abbreviations in the sense that they do
not change the semantics of a dl-program.

Theorem 5.5 Let KB = (L, P ) be a dl-program. Then, WFS (KB) =WFS (KBdl) ∩
LitP .

6 Relationship to Strong Answer Set Semantics

In this section, we show that the well-founded semantics for dl-programs can be char-
acterized in terms of the least and greatest fixpoint of a monotone operator γ2

KB similar
as the well-founded semantics for ordinary normal programs [5]. We then use this char-
acterization to derive further properties of the well-founded semantics for dl-programs.

For a dl-program KB=(L, P ), define the operator γKB on interpretations I⊆HBP

by
γKB (I) = MKBI ,

i.e., as the least model of the positive dl-program KBI = (L, sP I
L). The next result shows

that γKB is anti-monotonic, like its counterpart for ordinary normal programs [5]. Note
that this result holds only if all dl-atoms in P are monotonic.

Proposition 6.1 Let KB = (L, P ) be a dl-program. Then, γKB is anti-monotonic.

Hence, the operator γ2
KB (I) = γKB (γKB (I)), for all I ⊆HBP , is monotonic and

thus has a least and a greatest fixpoint, denoted lfp(γ2
KB ) and gfp(γ2

KB ), respectively.
We can use these fixpoints to characterize the well-founded semantics of KB .

Theorem 6.2 Let KB = (L, P ) be a dl-program. Then, an atom a∈HBP is well-
founded (resp., unfounded) relative to KB iff a∈ lfp(γ2

KB ) (resp., a �∈ gfp(γ2
KB )).
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Example 6.3 Consider the dl-program KB1 from Example 3.1. The set lfp(γ2
KB1

) con-
tains the atoms avoid(s1) and supplied(s3, case), while gfp(γ2

KB1
) does not contain

rebate(s1). Thus, WFS (KB1) contains the literals avoid(s1), supplied(s3, case), and
¬rebate(s1), corresponding to the result of Example 4.9 (and, moreover, to the inter-
section of all answer sets of KB1).

The next theorem shows that the well-founded semantics for dl-programs approxi-
mates their strong answer set semantics. That is, every well-founded ground atom is true
in every answer set, and every unfounded ground atom is false in every answer set.

Theorem 6.4 Let KB = (L, P ) be a dl-program. Then, every strong answer set of KB
includes all atoms a∈HBP that are well-founded relative to KB and no atom a∈HBP

that is unfounded relative to KB .

A ground atom a is a cautious (resp., brave) consequence under the strong answer
set semantics of a dl-program KB iff a is true in every (resp., some) strong answer
set of KB . Hence, under the strong answer set semantics, every well-founded and no
unfounded ground atom is a cautious (resp., brave) consequence of KB .

Corollary 6.5 Let KB = (L, P ) be a dl-program. Then, under the strong answer set
semantics, every well-founded atom a∈HBP relative to KB is a cautious (resp., brave)
consequence of KB , and no unfounded atom a∈HBP relative to KB is a cautious
(resp., brave) consequence of a satisfiable KB .

If the well-founded semantics of a dl-program KB=(L, P ) is total, i.e., contains
either a or ¬a for every a∈HBP , then it specifies the only strong answer set of KB .

Theorem 6.6 Let KB = (L, P ) be a dl-program. If every atom a∈HBP is either well-
founded or unfounded relative to KB , then the set of all well-founded atoms a∈HBP

relative to KB is the only strong answer set of KB .

7 Computation and Complexity

For any positive dl-program KB = (L, P ), its least model MKB is the least fixpoint of
TKB (I) [13]. Thus, γKB (I) = MKBI (with KBI = (L, sP I

L)) can be computed as

lfp(TKBI ) =
⋃

i≥0 T i
KBI (∅) (=

⋃|HBP |
i=0 T i

KBI (∅)).

The least and greatest fixpoint of γ2
KB can be constructed as the limits

U∞ =
⋃

i≥0 Ui, where U0 = ∅, and Ui+1 = γ2
KB (Ui), for i ≥ 0, and

O∞ =
⋂

i≥0 Oi, where O0 = HBP , and Oi+1 = γ2
KB (Oi), for i ≥ 0,

respectively, which are both reached within |HBP | many steps.
We recall that for a given ordinary normal program, computing the well-founded

model needs exponential time in general (measured in the program size [11]), and also
reasoning from the well-founded model has exponential time complexity.
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Furthermore, evaluating a ground dl-atom a for KB = (L, P ) of the form (2) given
an interpretation Ip of its input predicates p = p1, . . . , pm (i.e., deciding I |=L a for
each I that coincides on p with Ip) is complete for EXP (resp., co-NEXP) for L from
SHIF(D) (resp., SHOIN (D)) [13], where EXP (resp., NEXP) denotes exponential
(resp., nondeterministic exponential) time; this is inherited from the complexity of the
satisfiability problem for SHIF(D) (resp., SHOIN (D)) [31,19].

The following result implies that the complexity of the well-founded semantics for
dl-programs over SHIF(D) does not increase over the one of ordinary logic programs.

Theorem 7.1 Given Φ and a dl-program KB=(L, P ) with L in SHIF(D), computing
WFS (KB) is feasible in exponential time. Furthermore, deciding whether for a given
literal l it holds that l ∈WFS (KB) is EXP-complete.

For dl-programs over SHOIN (D), the computation of WFS (KB) and reasoning
from it is expected to be more complex than for SHIF(D) knowledge bases, since
already evaluating a single dl-atom is co-NEXP-hard. Computing WFS can be done, in
a similar manner as in the case of SHIF(D), in exponential time using an oracle for
evaluating dl-atoms; to this end, an NP oracle is sufficient. As for the reasoning problem,
this means that deciding l∈WFS (KB) is in EXPNP.

A more precise account reveals the following strict characterization of the complexity,
which is believed to be lower.

Theorem 7.2 Given Φ, a dl-program KB = (L, P ) with L inSHOIN (D), and a literal
l, deciding l∈WFS (KB) is PNEXP-complete.

The results in Theorems 7.1 and 7.2 also show that, like for ordinary normal programs,
inference under the well-founded semantics is computationally less complex than under
the answer set semantics, since cautious reasoning from the strong answer sets of a dl-
programs using a SHIF(D) (resp., SHOIN (D)) description logic knowledge base
is complete for co-NEXP (resp., co-NPNEXP) [13].

We leave an account of the data complexity of dl-programs KB = (L, P ) (i.e., L
and the rules of P are fixed, while facts in P may vary) for further work. However, we
note that whenever the evaluation of dl-atoms is polynomial (i.e., in description logic
terminology, A-Box reasoning is polynomial), then also the computation of the well-
founded semantics for dl-programs is polynomial. Most recent results in [23] suggest
that for SHIF(D), the problem is solvable in polynomial time with an NP oracle (and,
presumably, complete for that complexity).

8 Related Work

Related work can be divided into (a) hybrid approaches using description logics as in-
put to logic programs, (b) approaches reducing description logics to logic programs,
(c) combinations of description logics with default and defeasible logic, and (d) ap-
proaches to rule-based well-founded reasoning in the Semantic Web. Below we discuss
some representatives for (a)–(d). Further works are discussed in [13].
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The works by Donini et al. [12], Levy and Rousset [24], and Rosati [29] are rep-
resentatives of hybrid approaches using description logics as input. Donini et al. [12]
introduce a combination of (disjunction-, negation-, and function-free) datalog with the
description logicALC. An integrated knowledge base consists of a structural component
inALC and a relational component in datalog, where the integration of both components
lies in using concepts from the structural component as constraints in rule bodies of the
relational component.

The closely related work by Levy and Rousset [24] presents a combination of Horn
rules with the description logic ALCNR. In contrast to Donini et al. [12], Levy and
Rousset also allow for roles as constraints in rule bodies, and do not require the safety
condition that variables in constraints in the body of a rule r must also appear in ordinary
atoms in the body of r. Finally, Rosati [29] presents a combination of disjunctive datalog
(with classical and default negation, but without function symbols) withALC, which is
based on a generalized answer set semantics.

Some approaches reducing description logic reasoning to logic programming are the
works by Van Belleghem et al. [32], Alsaç and Baral [1], Swift [30], Grosof et al. [17],
and Hufstadt et al. [23]. In detail,Van Belleghem et al. [32] analyze the close relationship
between description logics and open logic programs, and present a mapping of descrip-
tion logic knowledge bases in ALCN to open logic programs. Alsaç and Baral [1] and
Swift [30] reduce inference in the description logic ALCQI to query answering from
normal logic programs (with default negation, but without disjunctions and classical
negations) under the answer set semantics. Grosof et al. [17] show how inference in
a subset of the description logic SHOIQ can be reduced to inference in a subset of
function-free Horn programs (where negations and disjunctions are disallowed), and
vice versa. The type of inference follows traditional minimal model semantics, thus not
allowing for nonmonotonic reasoning. In contrast to a mapping between description
logics and logic programs, we presented a full-fledged coupling under the well-founded
semantics. Hufstadt et al. [23] show how SHIQ(D) can be reduced to disjunctive dat-
alog and exploit this for efficient query answering. As a byproduct of their reduction,
they obtain a decidable extension of SHIQ(D) with positive rules in which variables
are bound to objects occurring in the extensional part of the description logic knowledge
base. These rules, however, have classical first-order semantics; this can be easily emu-
lated within the strong answer set semantics of [13]. Handling negation is not addressed
in [23].

Early work on dealing with default information in description logics is the approach
due to Baader and Hollunder [4], where Reiter’s default logic is adapted to terminological
knowledge bases, differing significantly from our approach. Antoniou [2] combines
defeasible reasoning with description logics for the Semantic Web. In [3], Antoniou and
Wagner summarize defeasible and strict reasoning in a single rule formalism, building
on the idea of using rules as a uniform basis for the Ontology, Logic, and Proof layers.
Like in other work above, the considered description logics serve only as an input for
the nonmonotonic reasoning mechanism running on top of it. Note that defeasible logic
is in general different from well-founded semantics, the latter being able to draw more
conclusions in certain situations [9]. Maher and Governatori [25] present a well-founded
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defeasible logic, based on the definition of unfounded sets by Van Gelder et al. [34],
which reconstructs the well-founded semantics.

An important approach to rule-based reasoning under the well-founded semantics
for the Semantic Web is due to Damásio [10]. He aims at developing Prolog tools for
implementing different semantics for RuleML [8]. So far, an XML parser library as
well as a RuleML compiler have been developed, providing routines to convert RuleML
rule bases to Prolog and vice versa. Currently, the compiler supports paraconsistent
well-founded semantics with explicit negation; it is planned to be extended to use XSB.
However, as a crucial difference to our work, the approach of [10] does not address
interfacing to ontologies and ontology reasoning, and thus provides no direct support
for integrating rule-based and ontology reasoning, which we have done in this paper.

9 Summary and Outlook

We have presented the well-founded semantics for dl-programs, which generalizes the
well-founded semantics for ordinary normal programs [34]. We have given a definition
via greatest unfounded sets for dl-programs as well as an equivalent characterization
using a generalized Gelfond-Lifschitz transform. We have then analyzed the semantic
properties of the well-founded semantics for dl-programs. In particular, we have shown
that it generalizes the well-founded semantics for ordinary normal programs. Moreover,
in the general case, the well-founded semantics for dl-programs is a partial model that
approximates the answer set semantics, while in the positive and stratified case, it is a
total model that coincides with the answer set semantics. Finally, we have also provided
detailed complexity results for dl-programs under the well-founded semantics.

An experimental prototype implementation using a datalog engine and RACER [18]
is available at http://www.kr.tuwien.ac.at/staff/roman/dlwfs/. An interest-
ing topic for further work is to extend the presented well-founded semantics to more
general dl-programs, which may, for example, allow for disjunctions, NAF-literals, and
dl-atoms in the heads of dl-rules. Furthermore, employing RuleML as a versatile and
expressive syntax for our formalism could provide a standardized and well-accepted
interface to other applications. Finally, to further enrich description logic programs,
we plan to examine the possibility of resolution mechanisms for conflicting rules, like
priority relations as in courteous logic programs [16] and defeasible logic [3].
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