<u>Harald Beck</u> Minh Dao-Tran Thomas Eiter

Institute of Information Systems, TU Vienna

IJCAI, July 13, 2016

Logic-oriented processing of continuously streaming data

- Logic-oriented processing of continuously streaming data
- "What is true *now*?"

- Logic-oriented processing of continuously streaming data
- "What is true now?"
- Various aspects are emphasized, e.g., incremental reasoning (Stream Reasoning Workshop)

- Logic-oriented processing of continuously streaming data
- "What is true now?"
- Various aspects are emphasized, e.g., incremental reasoning (Stream Reasoning Workshop)
- Streaming data
 - Data comes and goes only recent data matters
 - Need to cope with data volume

- Logic-oriented processing of continuously streaming data
- "What is true now?"
- Various aspects are emphasized, e.g., incremental reasoning (Stream Reasoning Workshop)
- Streaming data
 - Data comes and goes only recent data matters
 - Need to cope with data volume
- ⇒ Limit reasoning to small windows
 - Time-based windows
 - Tuple-based windows . . .

- Logic-oriented processing of continuously streaming data
- "What is true now?"
- Various aspects are emphasized, e.g., incremental reasoning (Stream Reasoning Workshop)
- Streaming data
 - Data comes and goes only recent data matters
 - Need to cope with data volume
- ⇒ Limit reasoning to small windows
 - Time-based windows
 - Tuple-based windows . . .
- Stream S = (T, v)
 - Timeline T closed interval in \mathbb{N} , $t \in T$ time point
 - **Evaluation** function $v: T \to 2^{\mathcal{A}}$ (sets of atoms)

- Logic-oriented processing of continuously streaming data
- "What is true now?"
- Various aspects are emphasized, e.g., incremental reasoning (Stream Reasoning Workshop)
- Streaming data
 - Data comes and goes only recent data matters
 - Need to cope with data volume
- ⇒ Limit reasoning to small windows
 - Time-based windows
 - Tuple-based windows . . .
- Stream S = (T, v)
 - Timeline T closed interval in \mathbb{N} , $t \in T$ time point
 - **Evaluation** function $v: T \to 2^{\mathcal{A}}$ (sets of atoms)
- Window function w yields window $w(S,t) \subseteq S$

"If you are in a hurry,

hurry,

"If you are in a hurry, take a cab,

 $takeCab \leftarrow hurry,$

"If you are in a hurry, take a cab, unless there was a traffic jam in the last 10 minutes."

 $takeCab \leftarrow hurry$, not trafficJamLast10Min

"If you are in a hurry, take a cab, unless,

 $takeCab \leftarrow hurry$, not

"If you are in a hurry, take a cab, unless, within a window (\boxplus) of the last 10 minutes,

$$takeCab \leftarrow hurry$$
, not \Box^{10}

"If you are in a hurry, take a cab, unless, within a window (\boxplus) of the last 10 minutes, there is a time point (\diamondsuit)

$$takeCab \leftarrow hurry$$
, not $\boxminus^{10} \diamondsuit$

"If you are in a hurry, take a cab, unless, within a window (\boxplus) of the last 10 minutes, there is a time point (\diamondsuit) where a traffic jam was reported."

 $takeCab \leftarrow hurry$, not $\boxminus^{10} \diamondsuit trafficJam$

"If you are in a hurry, take a cab, unless, within a window (\boxplus) of the last 10 minutes, there is a time point (\diamondsuit) where a traffic jam was reported."

$$takeCab \leftarrow hurry$$
, not $\boxminus^{10} \diamondsuit trafficJam$

"If no train arrived in the last 20 minutes, do not take the subway."

"If you are in a hurry, take a cab, unless, within a window (\boxplus) of the last 10 minutes, there is a time point (\diamondsuit) where a traffic jam was reported."

$$takeCab \leftarrow hurry$$
, not $\boxminus^{10} \diamondsuit trafficJam$

"If no train arrived in the last 20 minutes, do not take the subway."

$$@_{T}someTrain \leftarrow \boxplus^{20}@_{T}arrivalOfTrain(Id)$$

"If you are in a hurry, take a cab, unless, within a window (\boxplus) of the last 10 minutes, there is a time point (\diamondsuit) where a traffic jam was reported."

$$takeCab \leftarrow hurry$$
, not $\boxminus^{10} \diamondsuit trafficJam$

"If no train arrived in the last 20 minutes, do not take the subway."

$$@_{T}someTrain \leftarrow \boxplus^{20} @_{T}arrivalOfTrain(Id)$$
 \boxplus^{20}

"If you are in a hurry, take a cab, unless, within a window (\boxplus) of the last 10 minutes, there is a time point (\diamondsuit) where a traffic jam was reported."

$$takeCab \leftarrow hurry$$
, not $\boxminus^{10} \diamondsuit trafficJam$

"If no train arrived in the last 20 minutes, do not take the subway."

$$@_{T}someTrain \leftarrow \boxplus^{20} @_{T}arrivalOfTrain(Id)$$

 $\boxplus^{20} \square$

"If you are in a hurry, take a cab, unless, within a window (\boxplus) of the last 10 minutes, there is a time point (\diamondsuit) where a traffic jam was reported."

$$takeCab \leftarrow hurry$$
, not $\boxminus^{10} \diamondsuit trafficJam$

"If no train arrived in the last 20 minutes, do not take the subway."

$$@_{T}someTrain \leftarrow \boxplus^{20} @_{T}arrivalOfTrain(Id)$$
 $\boxplus^{20} \Box \neg$

"If you are in a hurry, take a cab, unless, within a window (\boxplus) of the last 10 minutes, there is a time point (\diamondsuit) where a traffic jam was reported."

$$takeCab \leftarrow hurry$$
, not $\boxminus^{10} \diamondsuit trafficJam$

"If no train arrived in the last 20 minutes, do not take the subway."

$$@_{T}someTrain \leftarrow \boxplus^{20} @_{T}arrivalOfTrain(Id)$$

 $\boxplus^{20} \Box \neg someTrain$

"If you are in a hurry, take a cab, unless, within a window (\boxplus) of the last 10 minutes, there is a time point (\diamondsuit) where a traffic jam was reported."

$$takeCab \leftarrow hurry$$
, not $\boxminus^{10} \diamondsuit trafficJam$

"If no train arrived in the last 20 minutes, do not take the subway."

$$@_{T}someTrain \leftarrow ext{$\exists^{20}@_{T}arrivalOfTrain}(Id)$ $\neg takeSub \leftarrow ext{$\exists^{20}\Box \neg someTrain}$$$

"If you are in a hurry, take a cab, unless, within a window (\boxplus) of the last 10 minutes, there is a time point (\diamondsuit) where a traffic jam was reported."

$$takeCab \leftarrow hurry$$
, not $\boxminus^{10} \diamondsuit trafficJam$

"If no train arrived in the last 20 minutes, do not take the subway."

Goal

■ Towards optimization:

When are two LARS programs equivalent?

Goal

■ Towards optimization:

When are two LARS programs equivalent?

■ Semantic characterizations for suitable notions of equivalence

Goal

Towards optimization:

When are two LARS programs equivalent?

- Semantic characterizations for suitable notions of equivalence
- ⇒ Do techniques from ASP carry over to LARS?

■ $\mathcal{AS}(P)$: set of answer sets for program P

- \blacksquare $\mathcal{AS}(P)$: set of answer sets for program P
- Ordinary equivalence of P and Q: $\mathcal{AS}(P) = \mathcal{AS}(Q)$

- \blacksquare $\mathcal{AS}(P)$: set of answer sets for program P
- Ordinary equivalence of P and Q: $\mathcal{AS}(P) = \mathcal{AS}(Q)$
- Strong Equivalence:

$$P \equiv_s Q$$
 iff for all programs R , $\mathcal{AS}(P \cup R) = \mathcal{AS}(Q \cup R)$

- \blacksquare $\mathcal{AS}(P)$: set of answer sets for program P
- Ordinary equivalence of P and Q: $\mathcal{AS}(P) = \mathcal{AS}(Q)$
- Strong Equivalence:

$$P \equiv_s Q$$
 iff for all programs R , $\mathcal{AS}(P \cup R) = \mathcal{AS}(Q \cup R)$

Characterization with logic of Here-and-There models HT:

$$P \equiv_s Q$$
 iff $HT(P) = HT(Q)$

- \blacksquare $\mathcal{AS}(P)$: set of answer sets for program P
- Ordinary equivalence of P and Q: $\mathcal{AS}(P) = \mathcal{AS}(Q)$
- Strong Equivalence:

$$P \equiv_s Q$$
 iff for all programs R , $\mathcal{AS}(P \cup R) = \mathcal{AS}(Q \cup R)$

Characterization with logic of Here-and-There models HT:

$$P \equiv_s Q$$
 iff $HT(P) = HT(Q)$

Abstraction: Pair (X, Y) of atoms is an SE-model for program P, if

(i)
$$X \subseteq Y$$
 (ii) $Y \models P$ (iii) $X \models P^Y$

- \blacksquare $\mathcal{AS}(P)$: set of answer sets for program P
- Ordinary equivalence of P and Q: $\mathcal{AS}(P) = \mathcal{AS}(Q)$
- Strong Equivalence:

$$P \equiv_s Q$$
 iff for all programs R , $\mathcal{AS}(P \cup R) = \mathcal{AS}(Q \cup R)$

Characterization with logic of Here-and-There models HT:

$$P \equiv_s Q$$
 iff $HT(P) = HT(Q)$

Abstraction: Pair (X, Y) of atoms is an SE-model for program P, if

(i)
$$X \subseteq Y$$
 (ii) $Y \models P$ (iii) $X \models P^Y$

 \blacksquare \Rightarrow Alternative characterization with SE-models SE:

$$P \equiv_{s} Q$$
 iff $SE(P) = SE(Q)$

- \blacksquare $\mathcal{AS}(P)$: set of answer sets for program P
- Ordinary equivalence of P and Q: $\mathcal{AS}(P) = \mathcal{AS}(Q)$
- Strong Equivalence:

$$P \equiv_s Q$$
 iff for all programs R , $\mathcal{AS}(P \cup R) = \mathcal{AS}(Q \cup R)$

Characterization with logic of Here-and-There models HT:

$$P \equiv_{s} Q \quad \text{iff} \quad HT(P) = HT(Q)$$

Abstraction: Pair (X, Y) of atoms is an SE-model for program P, if

(i)
$$X \subseteq Y$$
 (ii) $Y \models P$ (iii) $X \models P^Y$

■ ⇒ Alternative characterization with SE-models SE:

$$P \equiv_s Q$$
 iff $SE(P) = SE(Q)$

■ Answer sets characterized by equilibrium models (X,X), where no smaller (X',X) is an SE-model

ASP

■ Pair (X, Y) of atoms is an SE-model for program P, if

(i)
$$X \subseteq Y$$
 (ii) $Y \models P$ (iii) $X \models P^Y$

Characterization:

$$P \equiv_{s} Q$$
 iff $SE(P) = SE(Q)$

ASP

■ Pair (X, Y) of atoms is an SE-model for program P, if

(i)
$$X \subseteq Y$$
 (ii) $Y \models P$ (iii) $X \models P^Y$

Characterization:

$$P \equiv_s Q$$
 iff $SE(P) = SE(Q)$

Can we find similar characterizations for LARS?

ASP

■ Pair (X, Y) of atoms is an SE-model for program P, if

(i)
$$X \subseteq Y$$
 (ii) $Y \models P$ (iii) $X \models P^Y$

Characterization:

$$P \equiv_{s} Q$$
 iff $SE(P) = SE(Q)$

Can we find similar characterizations for LARS?

LARS (Informally)

 \blacksquare Model of a program P is (essentially) a stream S at a time point t

$$S, t \models P$$

ASP

■ Pair (X, Y) of atoms is an SE-model for program P, if

(i)
$$X \subseteq Y$$
 (ii) $Y \models P$ (iii) $X \models P^Y$

Characterization:

$$P \equiv_{s} Q$$
 iff $SE(P) = SE(Q)$

Can we find similar characterizations for LARS?

LARS (Informally)

■ Model of a program P is (essentially) a stream S at a time point t

$$S, t \models P$$

■ Answer sets ~ answer streams

ASP

■ Pair (X, Y) of atoms is an SE-model for program P, if

(i)
$$X \subseteq Y$$
 (ii) $Y \models P$ (iii) $X \models P^Y$

Characterization:

$$P \equiv_s Q$$
 iff $SE(P) = SE(Q)$

Can we find similar characterizations for LARS?

LARS (Informally)

■ Model of a program P is (essentially) a stream S at a time point t

$$S, t \models P$$

- Answer sets ~ answer streams
- Bi-LARS: Evaluate pair of left/right stream (L, R) s.t.

(i)
$$L \subseteq R$$
 (ii) $R, t \models P$ (iii) $L, t \models P^{R,t}$

- Bi-LARS: Evaluate pair of left/right stream (L, R) s.t.
 - (i) $\mathbf{L} \subseteq \mathbf{R}$ (ii) $R, t \models P$ (iii) $L, t \models P^{R,t}$

■ Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i)
$$\mathbf{L} \subseteq \mathbf{R}$$
 (ii) $R, t \models P$ (iii) $L, t \models P^{R,t}$

Time-based window functions w are monotone:

$$L \subseteq R$$
 implies $w(L, t) \subseteq w(R, t)$

■ Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i)
$$\mathbf{L} \subseteq \mathbf{R}$$
 (ii) $R, t \models P$ (iii) $L, t \models P^{R,t}$

Time-based window functions w are monotone:

$$L \subseteq R$$
 implies $w(L, t) \subseteq w(R, t)$

■ Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i)
$$\mathbf{L} \subseteq \mathbf{R}$$
 (ii) $R, t \models P$ (iii) $L, t \models P^{R,t}$

■ **Time-based** window functions w are monotone:

$$L \subseteq R$$
 implies $w(L, t) \subseteq w(R, t)$

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13

■ Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i)
$$\mathbf{L} \subseteq \mathbf{R}$$
 (ii) $R, t \models P$ (iii) $L, t \models P^{R,t}$

■ **Time-based** window functions *w* are monotone:

$$L \subseteq R$$
 implies $w(L,t) \subseteq w(R,t)$

$$w_{time}^3(L,4)$$
 $w_{time}^3(R,4)$

■ Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i)
$$\mathbf{L} \subseteq \mathbf{R}$$
 (ii) $R, t \models P$ (iii) $L, t \models P^{R,t}$

Time-based window functions w are monotone:

$$L \subseteq R$$
 implies $w(L, t) \subseteq w(R, t)$

$$w_{time}^3(L,4) \subseteq w_{time}^3(R,4)$$

IJCAI, 2016-07-13

■ Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i)
$$\mathbf{L} \subseteq \mathbf{R}$$
 (ii) $R, t \models P$ (iii) $L, t \models P^{R,t}$

 $L \subseteq R$ implies $w(L,t) \subseteq w(R,t)$

■ **Time-based** window functions w are monotone:

■ Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i)
$$\mathbf{L} \subseteq \mathbf{R}$$
 (ii) $R, t \models P$ (iii) $L, t \models P^{R,t}$

■ **Time-based** window functions w are monotone:

$$L \subseteq R$$
 implies $w(L, t) \subseteq w(R, t)$

$$w_{time}^3(L,4) \subseteq w_{time}^3(R,4)$$

■ Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i)
$$\mathbf{L} \subseteq \mathbf{R}$$
 (ii) $R, t \models P$ (iii) $L, t \models P^{R,t}$

Time-based window functions w are monotone:

$$L \subseteq R$$
 implies $w(L, t) \subseteq w(R, t)$

$$w_{time}^3(L,4) \subseteq w_{time}^3(R,4)$$

$$w_{tuple}^3(L,4)$$

■ Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i)
$$\mathbf{L} \subseteq \mathbf{R}$$
 (ii) $R, t \models P$ (iii) $L, t \models P^{R,t}$

■ **Time-based** window functions w are monotone:

$$L \subseteq R$$
 implies $w(L, t) \subseteq w(R, t)$

$$w_{time}^3(L,4) \subseteq w_{time}^3(R,4)$$

■ Tuple-based windows are not:

$$w_{tuple}^3(L,4)$$
 $w_{tuple}^3(R,4)$

Beck, Dao-Tran, Eiter

■ Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i)
$$\mathbf{L} \subseteq \mathbf{R}$$
 (ii) $R, t \models P$ (iii) $L, t \models P^{R,t}$

■ **Time-based** window functions *w* are monotone:

$$L \subseteq R$$
 implies $w(L, t) \subseteq w(R, t)$

$$w_{time}^3(L,4) \subseteq w_{time}^3(R,4)$$

$$w_{tuple}^3(L,4) \not\subseteq w_{tuple}^3(R,4)$$

Results

- Semantic characterizations of equivalences by means of models in Bi-LARS (left/right stream)
 - Monotone fragment: Generalization of logic of Here-and-There
 - Non-monotone fragement more involved

Results

- Semantic characterizations of equivalences by means of models in Bi-LARS (left/right stream)
 - Monotone fragment: Generalization of logic of Here-and-There
 - · Non-monotone fragement more involved
- Notions of equivalence for stream reasoning
 - Strong / Uniform / Data Equivalence

Results

- Semantic characterizations of equivalences by means of models in Bi-LARS (left/right stream)
 - Monotone fragment: Generalization of logic of Here-and-There
 - · Non-monotone fragement more involved
- Notions of equivalence for stream reasoning
 - Strong / Uniform / Data Equivalence
- Complexity of deciding eq.: similar to ASP (mostly coNP-c.)