
Equivalent Stream Reasoning Programs

Harald Beck Minh Dao-Tran Thomas Eiter

Institute of Information Systems, TU Vienna

IJCAI, July 13, 2016

Austrian Science Fund (FWF) grants P26471, W1255-N23



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning Programs

Logic-oriented processing of continuously streaming data

“What is true now?”

Various aspects are emphasized, e.g., incremental reasoning
(Stream Reasoning Workshop)
Streaming data

• Data comes and goes - only recent data matters
• Need to cope with data volume

⇒ Limit reasoning to small windows
• Time-based windows
• Tuple-based windows . . .

Stream S = (T, υ)
• Timeline T closed interval in N, t ∈ T time point
• Evaluation function υ : T → 2A (sets of atoms)

Window function w yields window w(S, t) ⊆ S

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 1



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning Programs

Logic-oriented processing of continuously streaming data

“What is true now?”

Various aspects are emphasized, e.g., incremental reasoning
(Stream Reasoning Workshop)
Streaming data

• Data comes and goes - only recent data matters
• Need to cope with data volume

⇒ Limit reasoning to small windows
• Time-based windows
• Tuple-based windows . . .

Stream S = (T, υ)
• Timeline T closed interval in N, t ∈ T time point
• Evaluation function υ : T → 2A (sets of atoms)

Window function w yields window w(S, t) ⊆ S

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 1



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning Programs

Logic-oriented processing of continuously streaming data

“What is true now?”

Various aspects are emphasized, e.g., incremental reasoning
(Stream Reasoning Workshop)
Streaming data

• Data comes and goes - only recent data matters
• Need to cope with data volume

⇒ Limit reasoning to small windows
• Time-based windows
• Tuple-based windows . . .

Stream S = (T, υ)
• Timeline T closed interval in N, t ∈ T time point
• Evaluation function υ : T → 2A (sets of atoms)

Window function w yields window w(S, t) ⊆ S

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 1



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning Programs

Logic-oriented processing of continuously streaming data

“What is true now?”

Various aspects are emphasized, e.g., incremental reasoning
(Stream Reasoning Workshop)

Streaming data
• Data comes and goes - only recent data matters
• Need to cope with data volume

⇒ Limit reasoning to small windows
• Time-based windows
• Tuple-based windows . . .

Stream S = (T, υ)
• Timeline T closed interval in N, t ∈ T time point
• Evaluation function υ : T → 2A (sets of atoms)

Window function w yields window w(S, t) ⊆ S

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 1



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning Programs

Logic-oriented processing of continuously streaming data

“What is true now?”

Various aspects are emphasized, e.g., incremental reasoning
(Stream Reasoning Workshop)
Streaming data

• Data comes and goes - only recent data matters
• Need to cope with data volume

⇒ Limit reasoning to small windows
• Time-based windows
• Tuple-based windows . . .

Stream S = (T, υ)
• Timeline T closed interval in N, t ∈ T time point
• Evaluation function υ : T → 2A (sets of atoms)

Window function w yields window w(S, t) ⊆ S

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 1



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning Programs

Logic-oriented processing of continuously streaming data

“What is true now?”

Various aspects are emphasized, e.g., incremental reasoning
(Stream Reasoning Workshop)
Streaming data

• Data comes and goes - only recent data matters
• Need to cope with data volume

⇒ Limit reasoning to small windows
• Time-based windows
• Tuple-based windows . . .

Stream S = (T, υ)
• Timeline T closed interval in N, t ∈ T time point
• Evaluation function υ : T → 2A (sets of atoms)

Window function w yields window w(S, t) ⊆ S

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 1



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning Programs

Logic-oriented processing of continuously streaming data

“What is true now?”

Various aspects are emphasized, e.g., incremental reasoning
(Stream Reasoning Workshop)
Streaming data

• Data comes and goes - only recent data matters
• Need to cope with data volume

⇒ Limit reasoning to small windows
• Time-based windows
• Tuple-based windows . . .

Stream S = (T, υ)
• Timeline T closed interval in N, t ∈ T time point
• Evaluation function υ : T → 2A (sets of atoms)

Window function w yields window w(S, t) ⊆ S

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 1



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning Programs

Logic-oriented processing of continuously streaming data

“What is true now?”

Various aspects are emphasized, e.g., incremental reasoning
(Stream Reasoning Workshop)
Streaming data

• Data comes and goes - only recent data matters
• Need to cope with data volume

⇒ Limit reasoning to small windows
• Time-based windows
• Tuple-based windows . . .

Stream S = (T, υ)
• Timeline T closed interval in N, t ∈ T time point
• Evaluation function υ : T → 2A (sets of atoms)

Window function w yields window w(S, t) ⊆ S
Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 1



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning Programs

“If you are in a hurry,

take a cab,

unless, within a window (�) of the
last 10 minutes, there is a time point (3) where a traffic jam was
reported.”

takeCab ← hurry,

not �103trafficJam

“If no train arrived in the last 20 minutes, do not take the subway.”

@TsomeTrain ← �20@TarrivalOfTrain(Id)

¬takeSub ←

�20

2¬someTrain

⇓
¬takeSub ← not �203someTrain

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 2



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning Programs

“If you are in a hurry,

take a cab,

unless, within a window (�) of the
last 10 minutes, there is a time point (3) where a traffic jam was
reported.”

takeCab ←

hurry,

not �103trafficJam

“If no train arrived in the last 20 minutes, do not take the subway.”

@TsomeTrain ← �20@TarrivalOfTrain(Id)

¬takeSub ←

�20

2¬someTrain

⇓
¬takeSub ← not �203someTrain

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 2



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning Programs

“If you are in a hurry, take a cab,

unless, within a window (�) of the
last 10 minutes, there is a time point (3) where a traffic jam was
reported.”

takeCab ← hurry,

not �103trafficJam

“If no train arrived in the last 20 minutes, do not take the subway.”

@TsomeTrain ← �20@TarrivalOfTrain(Id)

¬takeSub ←

�20

2¬someTrain

⇓
¬takeSub ← not �203someTrain

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 2



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning Programs

“If you are in a hurry, take a cab, unless there was a traffic jam in the
last 10 minutes.”

takeCab ← hurry, not trafficJamLast10Min

“If no train arrived in the last 20 minutes, do not take the subway.”

@TsomeTrain ← �20@TarrivalOfTrain(Id)

¬takeSub ←

�20

2¬someTrain

⇓
¬takeSub ← not �203someTrain

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 2



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning LARS Programs

“If you are in a hurry, take a cab, unless,

within a window (�) of the
last 10 minutes, there is a time point (3) where a traffic jam was
reported.”

takeCab ← hurry, not

�103trafficJam

“If no train arrived in the last 20 minutes, do not take the subway.”

@TsomeTrain ← �20@TarrivalOfTrain(Id)

¬takeSub ←

�20

2¬someTrain

⇓
¬takeSub ← not �203someTrain

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 2



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning LARS Programs

“If you are in a hurry, take a cab, unless, within a window (�) of the
last 10 minutes,

there is a time point (3) where a traffic jam was
reported.”

takeCab ← hurry, not �10

3trafficJam

“If no train arrived in the last 20 minutes, do not take the subway.”

@TsomeTrain ← �20@TarrivalOfTrain(Id)

¬takeSub ←

�20

2¬someTrain

⇓
¬takeSub ← not �203someTrain

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 2



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning LARS Programs

“If you are in a hurry, take a cab, unless, within a window (�) of the
last 10 minutes, there is a time point (3)

where a traffic jam was
reported.”

takeCab ← hurry, not �103

trafficJam

“If no train arrived in the last 20 minutes, do not take the subway.”

@TsomeTrain ← �20@TarrivalOfTrain(Id)

¬takeSub ←

�20

2¬someTrain

⇓
¬takeSub ← not �203someTrain

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 2



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning LARS Programs

“If you are in a hurry, take a cab, unless, within a window (�) of the
last 10 minutes, there is a time point (3) where a traffic jam was
reported.”

takeCab ← hurry, not �103trafficJam

“If no train arrived in the last 20 minutes, do not take the subway.”

@TsomeTrain ← �20@TarrivalOfTrain(Id)

¬takeSub ←

�20

2¬someTrain

⇓
¬takeSub ← not �203someTrain

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 2



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning LARS Programs

“If you are in a hurry, take a cab, unless, within a window (�) of the
last 10 minutes, there is a time point (3) where a traffic jam was
reported.”

takeCab ← hurry, not �103trafficJam

“If no train arrived in the last 20 minutes, do not take the subway.”

@TsomeTrain ← �20@TarrivalOfTrain(Id)

¬takeSub ←

�20

2¬someTrain

⇓
¬takeSub ← not �203someTrain

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 2



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning LARS Programs

“If you are in a hurry, take a cab, unless, within a window (�) of the
last 10 minutes, there is a time point (3) where a traffic jam was
reported.”

takeCab ← hurry, not �103trafficJam

“If no train arrived in the last 20 minutes, do not take the subway.”

@TsomeTrain ← �20@TarrivalOfTrain(Id)

¬takeSub ←

�20

2¬someTrain

⇓
¬takeSub ← not �203someTrain

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 2



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning LARS Programs

“If you are in a hurry, take a cab, unless, within a window (�) of the
last 10 minutes, there is a time point (3) where a traffic jam was
reported.”

takeCab ← hurry, not �103trafficJam

“If no train arrived in the last 20 minutes, do not take the subway.”

@TsomeTrain ← �20@TarrivalOfTrain(Id)

¬takeSub ←

�20

2¬someTrain

⇓
¬takeSub ← not �203someTrain

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 2



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning LARS Programs

“If you are in a hurry, take a cab, unless, within a window (�) of the
last 10 minutes, there is a time point (3) where a traffic jam was
reported.”

takeCab ← hurry, not �103trafficJam

“If no train arrived in the last 20 minutes, do not take the subway.”

@TsomeTrain ← �20@TarrivalOfTrain(Id)

¬takeSub ←

�202

¬someTrain

⇓
¬takeSub ← not �203someTrain

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 2



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning LARS Programs

“If you are in a hurry, take a cab, unless, within a window (�) of the
last 10 minutes, there is a time point (3) where a traffic jam was
reported.”

takeCab ← hurry, not �103trafficJam

“If no train arrived in the last 20 minutes, do not take the subway.”

@TsomeTrain ← �20@TarrivalOfTrain(Id)

¬takeSub ←

�202¬

someTrain

⇓
¬takeSub ← not �203someTrain

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 2



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning LARS Programs

“If you are in a hurry, take a cab, unless, within a window (�) of the
last 10 minutes, there is a time point (3) where a traffic jam was
reported.”

takeCab ← hurry, not �103trafficJam

“If no train arrived in the last 20 minutes, do not take the subway.”

@TsomeTrain ← �20@TarrivalOfTrain(Id)

¬takeSub ←

�202¬someTrain

⇓
¬takeSub ← not �203someTrain

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 2



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning LARS Programs

“If you are in a hurry, take a cab, unless, within a window (�) of the
last 10 minutes, there is a time point (3) where a traffic jam was
reported.”

takeCab ← hurry, not �103trafficJam

“If no train arrived in the last 20 minutes, do not take the subway.”

@TsomeTrain ← �20@TarrivalOfTrain(Id)

¬takeSub ← �202¬someTrain

⇓
¬takeSub ← not �203someTrain

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 2



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning LARS Programs

“If you are in a hurry, take a cab, unless, within a window (�) of the
last 10 minutes, there is a time point (3) where a traffic jam was
reported.”

takeCab ← hurry, not �103trafficJam

“If no train arrived in the last 20 minutes, do not take the subway.”

@TsomeTrain ← �20@TarrivalOfTrain(Id)

¬takeSub ← �202¬someTrain

⇓
¬takeSub ← not �203someTrain

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 2



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning Programs

Goal

Towards optimization:

When are two LARS programs equivalent?

Semantic characterizations for suitable notions of equivalence

⇒ Do techniques from ASP carry over to LARS?

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 3



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning Programs

Goal

Towards optimization:

When are two LARS programs equivalent?

Semantic characterizations for suitable notions of equivalence

⇒ Do techniques from ASP carry over to LARS?

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 3



Equivalent Stream Reasoning Programs

Equivalent Stream Reasoning Programs

Goal

Towards optimization:

When are two LARS programs equivalent?

Semantic characterizations for suitable notions of equivalence

⇒ Do techniques from ASP carry over to LARS?

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 3



Equivalent Stream Reasoning Programs

Strong Equivalence: Recall from ASP

AS(P): set of answer sets for program P
Ordinary equivalence of P and Q: AS(P) = AS(Q)

Strong Equivalence:

P ≡s Q iff for all programs R, AS(P ∪ R) = AS(Q ∪ R)

Characterization with logic of Here-and-There models HT:

P ≡s Q iff HT(P) = HT(Q)

Abstraction: Pair (X,Y) of atoms is an SE-model for program P, if

(i) X ⊆ Y (ii) Y |= P (iii) X |= PY

⇒ Alternative characterization with SE-models SE:

P ≡s Q iff SE(P) = SE(Q)

Answer sets characterized by equilibrium models (X,X), where
no smaller (X′,X) is an SE-model

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 4



Equivalent Stream Reasoning Programs

Strong Equivalence: Recall from ASP

AS(P): set of answer sets for program P

Ordinary equivalence of P and Q: AS(P) = AS(Q)

Strong Equivalence:

P ≡s Q iff for all programs R, AS(P ∪ R) = AS(Q ∪ R)

Characterization with logic of Here-and-There models HT:

P ≡s Q iff HT(P) = HT(Q)

Abstraction: Pair (X,Y) of atoms is an SE-model for program P, if

(i) X ⊆ Y (ii) Y |= P (iii) X |= PY

⇒ Alternative characterization with SE-models SE:

P ≡s Q iff SE(P) = SE(Q)

Answer sets characterized by equilibrium models (X,X), where
no smaller (X′,X) is an SE-model

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 4



Equivalent Stream Reasoning Programs

Strong Equivalence: Recall from ASP

AS(P): set of answer sets for program P
Ordinary equivalence of P and Q: AS(P) = AS(Q)

Strong Equivalence:

P ≡s Q iff for all programs R, AS(P ∪ R) = AS(Q ∪ R)

Characterization with logic of Here-and-There models HT:

P ≡s Q iff HT(P) = HT(Q)

Abstraction: Pair (X,Y) of atoms is an SE-model for program P, if

(i) X ⊆ Y (ii) Y |= P (iii) X |= PY

⇒ Alternative characterization with SE-models SE:

P ≡s Q iff SE(P) = SE(Q)

Answer sets characterized by equilibrium models (X,X), where
no smaller (X′,X) is an SE-model

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 4



Equivalent Stream Reasoning Programs

Strong Equivalence: Recall from ASP

AS(P): set of answer sets for program P
Ordinary equivalence of P and Q: AS(P) = AS(Q)

Strong Equivalence:

P ≡s Q iff for all programs R, AS(P ∪ R) = AS(Q ∪ R)

Characterization with logic of Here-and-There models HT:

P ≡s Q iff HT(P) = HT(Q)

Abstraction: Pair (X,Y) of atoms is an SE-model for program P, if

(i) X ⊆ Y (ii) Y |= P (iii) X |= PY

⇒ Alternative characterization with SE-models SE:

P ≡s Q iff SE(P) = SE(Q)

Answer sets characterized by equilibrium models (X,X), where
no smaller (X′,X) is an SE-model

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 4



Equivalent Stream Reasoning Programs

Strong Equivalence: Recall from ASP

AS(P): set of answer sets for program P
Ordinary equivalence of P and Q: AS(P) = AS(Q)

Strong Equivalence:

P ≡s Q iff for all programs R, AS(P ∪ R) = AS(Q ∪ R)

Characterization with logic of Here-and-There models HT:

P ≡s Q iff HT(P) = HT(Q)

Abstraction: Pair (X,Y) of atoms is an SE-model for program P, if

(i) X ⊆ Y (ii) Y |= P (iii) X |= PY

⇒ Alternative characterization with SE-models SE:

P ≡s Q iff SE(P) = SE(Q)

Answer sets characterized by equilibrium models (X,X), where
no smaller (X′,X) is an SE-model

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 4



Equivalent Stream Reasoning Programs

Strong Equivalence: Recall from ASP

AS(P): set of answer sets for program P
Ordinary equivalence of P and Q: AS(P) = AS(Q)

Strong Equivalence:

P ≡s Q iff for all programs R, AS(P ∪ R) = AS(Q ∪ R)

Characterization with logic of Here-and-There models HT:

P ≡s Q iff HT(P) = HT(Q)

Abstraction: Pair (X,Y) of atoms is an SE-model for program P, if

(i) X ⊆ Y (ii) Y |= P (iii) X |= PY

⇒ Alternative characterization with SE-models SE:

P ≡s Q iff SE(P) = SE(Q)

Answer sets characterized by equilibrium models (X,X), where
no smaller (X′,X) is an SE-model

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 4



Equivalent Stream Reasoning Programs

Strong Equivalence: Recall from ASP

AS(P): set of answer sets for program P
Ordinary equivalence of P and Q: AS(P) = AS(Q)

Strong Equivalence:

P ≡s Q iff for all programs R, AS(P ∪ R) = AS(Q ∪ R)

Characterization with logic of Here-and-There models HT:

P ≡s Q iff HT(P) = HT(Q)

Abstraction: Pair (X,Y) of atoms is an SE-model for program P, if

(i) X ⊆ Y (ii) Y |= P (iii) X |= PY

⇒ Alternative characterization with SE-models SE:

P ≡s Q iff SE(P) = SE(Q)

Answer sets characterized by equilibrium models (X,X), where
no smaller (X′,X) is an SE-model

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 4



Equivalent Stream Reasoning Programs

Strong Equivalence: Recall from ASP

AS(P): set of answer sets for program P
Ordinary equivalence of P and Q: AS(P) = AS(Q)

Strong Equivalence:

P ≡s Q iff for all programs R, AS(P ∪ R) = AS(Q ∪ R)

Characterization with logic of Here-and-There models HT:

P ≡s Q iff HT(P) = HT(Q)

Abstraction: Pair (X,Y) of atoms is an SE-model for program P, if

(i) X ⊆ Y (ii) Y |= P (iii) X |= PY

⇒ Alternative characterization with SE-models SE:

P ≡s Q iff SE(P) = SE(Q)

Answer sets characterized by equilibrium models (X,X), where
no smaller (X′,X) is an SE-model

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 4



Equivalent Stream Reasoning Programs

Cornerstone: Characterizing Answer Sets/Streams

ASP
Pair (X,Y) of atoms is an SE-model for program P, if

(i) X ⊆ Y (ii) Y |= P (iii) X |= PY

Characterization:

P ≡s Q iff SE(P) = SE(Q)

Can we find similar characterizations for LARS?

LARS (Informally)

Model of a program P is (essentially) a stream S at a time point t

S, t |= P

Answer sets ; answer streams

Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i) L ⊆ R (ii) R, t |= P (iii) L, t |= PR,t

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 5



Equivalent Stream Reasoning Programs

Cornerstone: Characterizing Answer Sets/Streams

ASP
Pair (X,Y) of atoms is an SE-model for program P, if

(i) X ⊆ Y (ii) Y |= P (iii) X |= PY

Characterization:

P ≡s Q iff SE(P) = SE(Q)

Can we find similar characterizations for LARS?

LARS (Informally)

Model of a program P is (essentially) a stream S at a time point t

S, t |= P

Answer sets ; answer streams

Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i) L ⊆ R (ii) R, t |= P (iii) L, t |= PR,t

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 5



Equivalent Stream Reasoning Programs

Cornerstone: Characterizing Answer Sets/Streams

ASP
Pair (X,Y) of atoms is an SE-model for program P, if

(i) X ⊆ Y (ii) Y |= P (iii) X |= PY

Characterization:

P ≡s Q iff SE(P) = SE(Q)

Can we find similar characterizations for LARS?

LARS (Informally)

Model of a program P is (essentially) a stream S at a time point t

S, t |= P

Answer sets ; answer streams

Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i) L ⊆ R (ii) R, t |= P (iii) L, t |= PR,t

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 5



Equivalent Stream Reasoning Programs

Cornerstone: Characterizing Answer Sets/Streams

ASP
Pair (X,Y) of atoms is an SE-model for program P, if

(i) X ⊆ Y (ii) Y |= P (iii) X |= PY

Characterization:

P ≡s Q iff SE(P) = SE(Q)

Can we find similar characterizations for LARS?

LARS (Informally)

Model of a program P is (essentially) a stream S at a time point t

S, t |= P

Answer sets ; answer streams

Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i) L ⊆ R (ii) R, t |= P (iii) L, t |= PR,t

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 5



Equivalent Stream Reasoning Programs

Cornerstone: Characterizing Answer Sets/Streams

ASP
Pair (X,Y) of atoms is an SE-model for program P, if

(i) X ⊆ Y (ii) Y |= P (iii) X |= PY

Characterization:

P ≡s Q iff SE(P) = SE(Q)

Can we find similar characterizations for LARS?

LARS (Informally)

Model of a program P is (essentially) a stream S at a time point t

S, t |= P

Answer sets ; answer streams

Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i) L ⊆ R (ii) R, t |= P (iii) L, t |= PR,t

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 5



Equivalent Stream Reasoning Programs

Central Challenge: Window behaviour

Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i) L ⊆ R (ii) R, t |= P (iii) L, t |= PR,t

Time-based window functions w are monotone:

L ⊆ R implies w(L, t) ⊆ w(R, t)

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

w3
time(L, 4) ⊆ w3

time(R, 4)

Tuple-based windows are not:

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

w3
tuple(L, 4) 6⊆ w3

tuple(R, 4)

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 6



Equivalent Stream Reasoning Programs

Central Challenge: Window behaviour

Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i) L ⊆ R (ii) R, t |= P (iii) L, t |= PR,t

Time-based window functions w are monotone:

L ⊆ R implies w(L, t) ⊆ w(R, t)

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

w3
time(L, 4) ⊆ w3

time(R, 4)

Tuple-based windows are not:

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

w3
tuple(L, 4) 6⊆ w3

tuple(R, 4)

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 6



Equivalent Stream Reasoning Programs

Central Challenge: Window behaviour

Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i) L ⊆ R (ii) R, t |= P (iii) L, t |= PR,t

Time-based window functions w are monotone:

L ⊆ R implies w(L, t) ⊆ w(R, t)

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

w3
time(L, 4) ⊆ w3

time(R, 4)

Tuple-based windows are not:

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

w3
tuple(L, 4) 6⊆ w3

tuple(R, 4)

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 6



Equivalent Stream Reasoning Programs

Central Challenge: Window behaviour

Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i) L ⊆ R (ii) R, t |= P (iii) L, t |= PR,t

Time-based window functions w are monotone:

L ⊆ R implies w(L, t) ⊆ w(R, t)

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

w3
time(L, 4)

⊆ w3
time(R, 4)

Tuple-based windows are not:

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

w3
tuple(L, 4) 6⊆ w3

tuple(R, 4)

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 6



Equivalent Stream Reasoning Programs

Central Challenge: Window behaviour

Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i) L ⊆ R (ii) R, t |= P (iii) L, t |= PR,t

Time-based window functions w are monotone:

L ⊆ R implies w(L, t) ⊆ w(R, t)

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

w3
time(L, 4)

⊆

w3
time(R, 4)

Tuple-based windows are not:

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

w3
tuple(L, 4) 6⊆ w3

tuple(R, 4)

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 6



Equivalent Stream Reasoning Programs

Central Challenge: Window behaviour

Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i) L ⊆ R (ii) R, t |= P (iii) L, t |= PR,t

Time-based window functions w are monotone:

L ⊆ R implies w(L, t) ⊆ w(R, t)

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

w3
time(L, 4) ⊆ w3

time(R, 4)

Tuple-based windows are not:

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

w3
tuple(L, 4) 6⊆ w3

tuple(R, 4)

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 6



Equivalent Stream Reasoning Programs

Central Challenge: Window behaviour

Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i) L ⊆ R (ii) R, t |= P (iii) L, t |= PR,t

Time-based window functions w are monotone:

L ⊆ R implies w(L, t) ⊆ w(R, t)

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

w3
time(L, 4) ⊆ w3

time(R, 4)

Tuple-based windows are not:

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

w3
tuple(L, 4) 6⊆ w3

tuple(R, 4)

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 6



Equivalent Stream Reasoning Programs

Central Challenge: Window behaviour

Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i) L ⊆ R (ii) R, t |= P (iii) L, t |= PR,t

Time-based window functions w are monotone:

L ⊆ R implies w(L, t) ⊆ w(R, t)

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

w3
time(L, 4) ⊆ w3

time(R, 4)

Tuple-based windows are not:

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

w3
tuple(L, 4) 6⊆ w3

tuple(R, 4)

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 6



Equivalent Stream Reasoning Programs

Central Challenge: Window behaviour

Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i) L ⊆ R (ii) R, t |= P (iii) L, t |= PR,t

Time-based window functions w are monotone:

L ⊆ R implies w(L, t) ⊆ w(R, t)

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

w3
time(L, 4) ⊆ w3

time(R, 4)

Tuple-based windows are not:

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

w3
tuple(L, 4)

6⊆ w3
tuple(R, 4)

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 6



Equivalent Stream Reasoning Programs

Central Challenge: Window behaviour

Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i) L ⊆ R (ii) R, t |= P (iii) L, t |= PR,t

Time-based window functions w are monotone:

L ⊆ R implies w(L, t) ⊆ w(R, t)

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

w3
time(L, 4) ⊆ w3

time(R, 4)

Tuple-based windows are not:

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

w3
tuple(L, 4)

6⊆

w3
tuple(R, 4)

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 6



Equivalent Stream Reasoning Programs

Central Challenge: Window behaviour

Bi-LARS: Evaluate pair of left/right stream (L,R) s.t.

(i) L ⊆ R (ii) R, t |= P (iii) L, t |= PR,t

Time-based window functions w are monotone:

L ⊆ R implies w(L, t) ⊆ w(R, t)

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

w3
time(L, 4) ⊆ w3

time(R, 4)

Tuple-based windows are not:

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

0 01 12 23 34 4

a
•

a
•

a
•

a
•

b
•

b
•

a
•

a, c
•

w3
tuple(L, 4) 6⊆ w3

tuple(R, 4)
Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 6



Equivalent Stream Reasoning Programs

Results

Semantic characterizations of equivalences by means of models
in Bi-LARS (left/right stream)

• Monotone fragment: Generalization of logic of Here-and-There

• Non-monotone fragement more involved

Notions of equivalence for stream reasoning

• Strong / Uniform / Data Equivalence

Complexity of deciding eq.: similar to ASP (mostly coNP-c.)

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 7



Equivalent Stream Reasoning Programs

Results

Semantic characterizations of equivalences by means of models
in Bi-LARS (left/right stream)

• Monotone fragment: Generalization of logic of Here-and-There

• Non-monotone fragement more involved

Notions of equivalence for stream reasoning

• Strong / Uniform / Data Equivalence

Complexity of deciding eq.: similar to ASP (mostly coNP-c.)

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 7



Equivalent Stream Reasoning Programs

Results

Semantic characterizations of equivalences by means of models
in Bi-LARS (left/right stream)

• Monotone fragment: Generalization of logic of Here-and-There

• Non-monotone fragement more involved

Notions of equivalence for stream reasoning

• Strong / Uniform / Data Equivalence

Complexity of deciding eq.: similar to ASP (mostly coNP-c.)

Beck, Dao-Tran, Eiter IJCAI, 2016-07-13 7


