What & Why

“Towards Ideal Semantics for Analyzing Stream Reasoning”

Stream Reasoning
What & Why

“Towards Ideal Semantics for Analyzing Stream Reasoning”

- **Stream Reasoning**: Logical reasoning on streaming data
“Towards Ideal Semantics for Analyzing Stream Reasoning”

Stream Reasoning: Logical reasoning on streaming data

- Streams = **tuples** (atoms) with **timestamps**
- Essential aspect: **window** functions
What & Why

“Towards Ideal Semantics for Analyzing Stream Reasoning”

- Stream Reasoning: Logical reasoning on streaming data
 - Streams = **tuples** (atoms) with **timestamps**
 - Essential aspect: **window** functions

- Semantics
“Towards Ideal **Semantics** for Analyzing Stream Reasoning”

- **Stream Reasoning**: Logical reasoning on streaming data
 - Streams = **tuples** (atoms) with **timestamps**
 - Essential aspect: **window** functions

- **Semantics**: Lack of theory
“Towards Ideal Semantics for Analyzing Stream Reasoning”

- Stream Reasoning: Logical reasoning on streaming data
 - Streams = **tuples** (atoms) with **timestamps**
 - Essential aspect: **window** functions

- Semantics: Lack of theory

- Analysis
What & Why

“Towards Ideal Semantics for Analyzing Stream Reasoning”

Stream Reasoning: Logical reasoning on streaming data
 - Streams = **tuples** (atoms) with **timestamps**
 - Essential aspect: **window** functions

Semantics: Lack of theory

Analysis: Hard to predict, hard to compare
What & Why

“Towards Ideal Semantics for Analyzing Stream Reasoning”

► Stream Reasoning: Logical reasoning on streaming data
 ► Streams = *tuples* (atoms) with *timestamps*
 ► Essential aspect: *window* functions

► Semantics: Lack of theory

► Analysis: Hard to predict, hard to compare

► Ideal
“Towards Ideal Semantics for Analyzing Stream Reasoning”

Stream Reasoning: Logical reasoning on streaming data
- Streams = **tuples** (atoms) with **timestamps**
- Essential aspect: **window** functions

Semantics: Lack of theory

Analysis: Hard to predict, hard to compare

Ideal
- Idealization: Abstract from practical (operational) issues
- Generalization: Uniform representation
Example: Trams and buses

Arrival times at different stations p_i
Example: Trams and buses

Arrival times at different stations p_i
Example: Trams and buses

Arrival times at different stations p_i

$bus(i_2, p_1)$
$tram(i_1, p_1)$
Example: Trams and buses

Arrival times at different stations p_i

\[
\text{bus}(i_2, p_1) \\
\text{tram}(i_1, p_1)
\]
Example: Trams and buses

Arrival times at different stations p_i

$bus(i_2, p_1)$
$tram(i_1, p_1)$
$tram(i_3, p_2)$

0 2 8
Example: Trams and buses

Arrival times at different stations p_i

$bus(i_2, p_1)$
$tram(i_1, p_1)$
$tram(i_3, p_2)$
Example: Trams and buses

Arrival times at different stations p_i

$\text{bus}(i_2, p_1)$
$\text{tram}(i_1, p_1)$
$\text{tram}(i_3, p_2)$
$\text{bus}(i_4, p_2)$

0 2 8 11
Example: Trams and buses

Arrival times at different stations p_i

- $bus(i_2, p_1)$
- $tram(i_1, p_1)$
- $tram(i_3, p_2)$
- $bus(i_4, p_2)$

- Normal DB: Query for
Example: Trams and buses

Arrival times at different stations p_i

$\text{bus}(i_2, p_1)$
$\text{tram}(i_1, p_1)$
$\text{tram}(i_3, p_2)$
$\text{bus}(i_4, p_2)$

- Normal DB: Query for trams and buses arriving at same station P
Example: Trams and buses

Arrival times at different stations p_i

$\text{bus}(i_2, p_1)$
$\text{tram}(i_1, p_1)$
$\text{tram}(i_3, p_2)$
$\text{bus}(i_4, p_2)$

Normal DB: Query for trams and buses arriving at same station P
Answer: i_1, i_2, p_1
Example: Trams and buses

Arrival times at different stations p_i

- $bus(i_2, p_1)$
- $tram(i_1, p_1)$
- $tram(i_3, p_2)$
- $bus(i_4, p_2)$

Normal DB: Query for trams and buses arriving at same station P

Answer: i_1, i_2, p_1 and i_3, i_4, p_2
Example: Trams and buses

Arrival times at different stations p_i

$bus(i_2, p_1)$
$tram(i_1, p_1)$
$tram(i_3, p_2)$ $bus(i_4, p_2)$

- Normal DB: Query for trams and buses arriving at same station P
 Answer: i_1, i_2, p_1 and i_3, i_4, p_2

- SQL

```
SELECT * FROM tram, bus  
WHERE tram.P = bus.P
```
Example: Trams and buses

Arrival times at different stations p_i

- $bus(i_2, p_1)$
- $tram(i_1, p_1)$
- $tram(i_3, p_2)$
- $bus(i_4, p_2)$

- Normal DB: Query for trams and buses arriving at same station P
 Answer: i_1, i_2, p_1 and i_3, i_4, p_2

- SQL

```
SELECT * FROM tram, bus
WHERE tram.P = bus.P
```

H. Beck (TU Vienna) Towards Ideal Semantics for Analyzing Stream Reasoning ReactKnow’14 2 / 15
Example: Trams and buses

Arrival times at different stations p_i

\[
\text{bus}(i_2, p_1) \\
\text{tram}(i_1, p_1) \\
\text{tram}(i_3, p_2) \\
\text{bus}(i_4, p_2)
\]

- Normal DB: Query for trams and buses arriving at same station P
 Answer: i_1, i_2, p_1 and i_3, i_4, p_2

- SQL

```
SELECT * FROM tram, bus
WHERE tram.P = bus.P
```
Example: Trams and buses

Arrival times at different stations \(p_i \)

\[
\begin{align*}
\text{bus}(i_2, p_1) & \quad \text{tram}(i_1, p_1) \\
\text{tram}(i_3, p_2) & \quad \text{bus}(i_4, p_2)
\end{align*}
\]

- Normal DB: Query for trams and buses arriving at same station \(P \)
 Answer: \(i_1, i_2, p_1 \) and \(i_3, i_4, p_2 \)

- SQL

```sql
SELECT * FROM tram, bus
WHERE tram.P = bus.P
```
Example: Trams and buses

Arrival times at different stations p_i

$\text{bus}(i_2, p_1)$
$\text{tram}(i_1, p_1)$
$\text{tram}(i_3, p_2)$
$\text{bus}(i_4, p_2)$

- Stream setting, at time 13: Query for
Example: Trams and buses

Arrival times at different stations p_i

$\text{bus}(i_2, p_1)$
$\text{tram}(i_1, p_1)$
$\text{tram}(i_3, p_2)$
$\text{bus}(i_4, p_2)$

Stream setting, at time 13: Query for Trams and buses arriving at same station P
Example: Trams and buses

Arrival times at different stations p_i

$\text{bus}(i_2, p_1)$
$\text{tram}(i_1, p_1)$

$\text{tram}(i_3, p_2)$ $\text{bus}(i_4, p_2)$

Stream setting, at time 13: Query for

- Trams and buses arriving at same station P within the last 5 min
Example: Trams and buses

Arrival times at different stations p_i

$bus(i_2, p_1)$
$tram(i_1, p_1)$
$tram(i_3, p_2)$
$bus(i_4, p_2)$

- Stream setting, at time 13: Query for
- Trams and buses arriving at same station P within the last 5 min
Answer: i_3, i_4, p_2
Example: Trams and buses

Arrival times at different stations \(p_i \)

- \(tram(i_1, p_1) \)
- \(bus(i_2, p_1) \)
- \(tram(i_3, p_2) \)
- \(bus(i_4, p_2) \)

Stream setting, at time 13: Query for

- Trams and buses arriving at same station \(P \) within the last 5 min

Answer: \(i_3, i_4, p_2 \)

CQL

```
SELECT * FROM tram [RANGE 5], bus [RANGE 5]
WHERE tram.P = bus.P
```
Example: Trams and buses

Arrival times at different stations p_i

$bus(i_2, p_1)$
$tram(i_1, p_1)$
$tram(i_3, p_2)$
$bus(i_4, p_2)$

- Trams and buses arriving at same station P within the last 5 min at the same time

$\textit{Answer}:

$i_1, i_2, p_1 \text{ for query times } 2, ..., 7$

$\textit{CQL: Not expressible in single query (Snapshot semantics)}$

$\text{SELECT * AS tram, bus FROM tram \[NOW\], bus \[NOW\]}$

$\text{WHERE tram.P = bus.P}$

$\text{SELECT * FROM tram, bus \[RANGE 5\]}$
Example: Trams and buses

Arrival times at different stations p_i

$\text{bus}(i_2, p_1)$
$\text{tram}(i_1, p_1)$
$\text{tram}(i_3, p_2)$
$\text{bus}(i_4, p_2)$

Trams and buses arriving at same station P within the last 5 min at the same time

Answer: –
Example: Trams and buses

Arrival times at different stations p_i

$\text{bus}(i_2, p_1)$ $\text{tram}(i_1, p_1)$ $\text{tram}(i_3, p_2)$ $\text{bus}(i_4, p_2)$

Trams and buses arriving at same station P within the last 5 min at the same time

Answer: i_1, i_2, p_1 for query times 2, \ldots, 7
Example: Trams and buses

Arrival times at different stations p_i

- $bus(i_2, p_1)$
- $tram(i_1, p_1)$
- $tram(i_3, p_2)$
- $bus(i_4, p_2)$

Trams and buses arriving at the same station P within the last 5 min at the same time

Answer: i_1, i_2, p_1 for query times 2, ..., 7

- **CQL**: Not expressible in single query (Snapshot semantics)

```
SELECT * AS tram_bus FROM tram [NOW], bus [NOW]
WHERE tram.P = bus.P
```
Example: Trams and buses

Arrival times at different stations p_i

- $bus(i_2, p_1)$
- $tram(i_1, p_1)$

- Trams and buses arriving at same station P within the last 5 min at the same time
 Answer: i_1, i_2, p_1 for query times 2, ..., 7

- **CQL**: Not expressible in single query (Snapshot semantics)

  ```sql
  SELECT * AS tram_bus FROM tram [NOW], bus [NOW] WHERE tram.P = bus.P
  ```
Example: Trams and buses

Arrival times at different stations p_i

- $\text{bus}(i_2, p_1)$
- $\text{tram}(i_1, p_1)$

Trams and buses arriving at same station P within the last 5 min at the same time

Answer: i_1, i_2, p_1 for query times 2, ..., 7

CQL: Not expressible in single query (Snapshot semantics)

```sql
SELECT * AS tram_bus FROM tram [NOW], bus [NOW]
WHERE tram.P = bus.P
```

```sql
SELECT * FROM tram_bus [RANGE 5]
```
Example: Trams and buses

Arrival times at different stations p_i

$\text{bus}(i_2, p_1)$
$\text{tram}(i_1, p_1)$

Trams and buses arriving at same station P within the last 5 min at the same time
Answer: i_1, i_2, p_1 for query times 2, \ldots, 7

CQL: Not expressible in single query (Snapshot semantics)

```sql
SELECT * AS tram_bus FROM tram [NOW], bus [NOW]
WHERE tram.P = bus.P
```

```sql
SELECT * FROM tram_bus [RANGE 5]
```
Window Types

- Time-based

Tuple-based:
- Not necessarily unique. E.g.: Last 3 tuples
- Partition-based
 - Apply tuple-based window on substreams
Window Types

- Time-based
- Tuple-based
Window Types

- **Time-based**
- **Tuple-based**
 - Not necessarily unique. E.g.: Last 3 tuples
Window Types

- Time-based
- Tuple-based
 - Not necessarily unique. E.g.: Last 3 tuples
Window Types

- Time-based
- Tuple-based
 - Not necessarily unique. E.g.: Last 3 tuples
- Partition-based
Window Types

- Time-based
- Tuple-based
 - Not necessarily unique. E.g.: Last 3 tuples
- Partition-based
 - Apply tuple-based window on substreams
Ideas for Windows

- Example: “In the last hour, did a bus always arrive within 5 min?”
Ideas for Windows

- Example: “In the last hour, did a bus always arrive within 5 min?”
Ideas for Windows

- Example: “In the last hour, did a bus always arrive within 5 min?”

- Allow for **nesting**: windows within windows
 - As formal counterpart to repeated runs of continuous queries
Ideas for Windows

- Example: “In the last hour, did a bus always arrive within 5 min?”
- Allow for nesting: windows within windows
 - As formal counterpart to repeated runs of continuous queries
- Allow for looking into the future

\[w(S, t) \rightarrow S' \]

Stream \(S \), time point \(t \in \mathbb{N} \), new stream \(S' \)
Ideas for Windows

- Example: “In the last hour, did a bus always arrive within 5 min?”

- Allow for **nesting**: windows within windows
 - As formal counterpart to repeated runs of continuous queries

- Allow for looking into the **future**

- View window operators as **first class citizens**
 - Do not separate window application (first) from logic (then)
Ideas for Windows

- Example: “In the last hour, did a bus always arrive within 5 min?”
- Allow for nesting: windows within windows
 - As formal counterpart to repeated runs of continuous queries
- Allow for looking into the future
- View window operators as first class citizens
 - Do not separate window application (first) from logic (then)
- Leave open specific underlying window functions
Ideas for Windows

- Example: “In the last hour, did a bus always arrive within 5 min?”
- Allow for nesting: windows within windows
 - As formal counterpart to repeated runs of continuous queries
- Allow for looking into the future
- View window operators as first class citizens
 - Do not separate window application (first) from logic (then)
- Leave open specific underlying window functions
 - \(w(S, t) \mapsto S' \)
 - Stream \(S \), time point \(t \in \mathbb{N} \), new stream \(S' \)
Ideas for Time Reference

- **Atoms** \(a \) appearing in the stream at time points 1, 2, 5
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$.

[Diagram showing a time axis with time points 0 to 6 and atoms at positions 1, 2, and 5, and a query at time 4]
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval $[1, 4]$

Example queries: In this window, does a hold . . . now, i.e., exactly at t? . . . at time point 2? . . . at some time point t'? . . . at all time points t'?
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval $[1, 4]$

Example queries: In this window, does a hold...
Ideas for Time Reference

▶ Atoms a appearing in the stream at time points $1, 2, 5$
▶ Query time $t = 4$. Window on interval $[1, 4]$

Example queries: In this window, does a hold...
...now, i.e., exactly at t?
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval $[1, 4]$

Example queries: In this window, does a hold...

...now, i.e., exactly at t?

a
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval [1, 4]

- Example queries: In this window, does a hold...
 ...now, i.e., exactly at t?
 a
 no
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval [1, 4]

![Diagram showing a window on a timeline with time points 0 to 6 and a window encompassing time points 1 to 4, with an atom a appearing at time points 1, 2, and 5.]

- Example queries: In this window, does a hold...
 - ...now, i.e., exactly at t? a no
 - ...at time point 2?
Ideas for Time Reference

- Atoms \(a \) appearing in the stream at time points 1, 2, 5
- Query time \(t = 4 \). Window on interval \([1, 4]\)

Example queries: In this window, does \(a \) hold...
- ...now, i.e., exactly at \(t \)? \(a \) no
- ...at time point 2? \(@_2 a \)
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval $[1, 4]$

![Diagram showing atoms at time points 1, 2, 5 within the window $[1, 4]$]

- Example queries: In this window, does a hold...
 - ...now, i.e., exactly at t? a no
 - ...at time point 2? $\@_2 a$ yes
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval $[1, 4]$

Example queries: In this window, does a hold...

...now, i.e., exactly at t? a no

...at time point 2? $\text{@}_2 a$ yes

...at some time point t'?
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval $[1, 4]$

![Diagram showing time points and atoms]

- Example queries: In this window, does a hold...
 - ...now, i.e., exactly at t? a no
 - ...at time point 2? $\@_2 a$ yes
 - ...at some time point t'? $\Diamond a$
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval $[1, 4]$

Example queries: In this window, does a hold...

- now, i.e., exactly at t? a no
- at time point 2? $@_2 a$ yes
- at some time point t'? $\checkmark a$ yes
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval $[1, 4]$

![Diagram showing time points and window on interval [1, 4] with an atom appearing at time points 1, 2, and 5, and queries regarding time point 4, 2, and all time points up to 5.]

Example queries: In this window, does a hold...

...now, i.e., exactly at t? a no

...at time point 2? $\text{@}_2 a$ yes

...at some time point t'? $\text{◊} a$ yes

...at all time points t'?
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval $[1, 4]$

![Diagram showing Atoms a appearing at time points 1, 2, 5, with query time $t = 4$.]

- Example queries: In this window, does a hold...
 - ...now, i.e., exactly at t? a no
 - ...at time point 2? $\mathbb{@}_2 a$ yes
 - ...at some time point t'? $\mathbb{\Diamond} a$ yes
 - ...at all time points t'? $\mathbb{\Box} a$
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval $[1, 4]$

Example queries: In this window, does a hold...

- ...now, i.e., exactly at t? a no
- ...at time point 2? $@_2 a$ yes
- ...at some time point t'? $\diamond a$ yes
- ...at all time points t'? $\Box a$ no
Ideas for Time Reference

- Atoms a appearing in the stream at time points 1, 2, 5
- Query time $t = 4$. Window on interval $[1, 4]$

```
0 1 2 3 4 5 6
```

- Example queries: In this window, does a hold...
 - ...now, i.e., exactly at t? a no
 - ...at time point 2? a_2 yes
 - ...at some time point t'? a yes
 - ...at all time points t'? a no
Streams

Stream $S = (T, \nu)$, where
Streams

Stream $S = (T, \nu)$, where

- T: interval in \mathbb{N}
Streams

- Stream $S = (T, \nu)$, where
 - T: interval in \mathbb{N}
 - $\nu : T \rightarrow 2^{\mathcal{G}}$ (interpretation of ground atoms \mathcal{G})
Streams

Stream $S = (T, \nu)$, where

- T: interval in \mathbb{N}
- $\nu: T \rightarrow 2^G$ (interpretation of ground atoms G)

Example
Streams

Stream $S = (T, \nu)$, where

- T: interval in \mathbb{N}
- $\nu : T \rightarrow 2^G$ (interpretation of ground atoms G)

Example

- $T = [0, 13]$
Streams

\[\text{Stream } S = (T, \nu), \text{ where} \]

\[T: \text{ interval in } \mathbb{N} \]

\[\nu: T \rightarrow 2^G \] (interpretation of ground atoms \(G \))

\[\text{Example} \]

\[T = [0, 13] \]

\[\nu = \left\{ 2 \mapsto \{ \text{tram}(i_1, p_1), \text{bus}(i_2, p_1) \} \right\} \]
Streams

Stream $S = (T, \nu)$, where

- T: interval in \mathbb{N}
- $\nu: T \rightarrow 2^G$ (interpretation of ground atoms G)

Example

- $T = [0, 13]$
- $\nu = \left\{ 2 \mapsto \{\text{tram}(i_1, p_1), \text{bus}(i_2, p_1)\}, \ 8 \mapsto \{\text{tram}(i_3, p_2)\} \right\}$
Streams

Stream $S = (T, \nu)$, where

- T: interval in \mathbb{N}
- $\nu : T \rightarrow 2^G$ (interpretation of ground atoms G)

Example

- $T = [0, 13]$
- $\nu = \begin{cases}
2 \mapsto \{ \text{tram}(i_1, p_1), \text{bus}(i_2, p_1) \}, \\
8 \mapsto \{ \text{tram}(i_3, p_2) \}, \\
11 \mapsto \{ \text{bus}(i_4, p_2) \}
\end{cases}$
Streams

Stream \(S = (T, \nu) \), where

- \(T \): interval in \(\mathbb{N} \)
- \(\nu : T \rightarrow 2^G \) (interpretation of ground atoms \(G \))

Example

- \(T = [0, 13] \)
- \(\nu = \begin{cases} 2 \mapsto \{tram(i_1, p_1), bus(i_2, p_1)\}, & 8 \mapsto \{tram(i_3, p_2)\}, \\ 11 \mapsto \{bus(i_4, p_2)\}, & i \mapsto \emptyset \quad \text{else} \end{cases} \)
Formulas

- Formulas defined by the grammar (atom a, $t \in \mathbb{N}$ timepoint)

$$\alpha ::=$$
Formulas

Formulas defined by the grammar \((\text{atom } a, t \in \mathbb{N} \text{ timepoint})\)

\[\alpha ::= a | \neg \alpha | \alpha \land \alpha | \alpha \lor \alpha | \alpha \rightarrow \alpha \]
Formulas

Formulas defined by the grammar (atom a, $t \in \mathbb{N}$ timepoint)

$$\alpha ::= a \mid \neg \alpha \mid \alpha \land \alpha \mid \alpha \lor \alpha \mid \alpha \rightarrow \alpha \mid \diamond \alpha \mid \Box \alpha \mid @_t \alpha$$
Formulas

- Formulas defined by the grammar (atom $a, t \in \mathbb{N}$ timepoint)

$$\alpha ::= a \mid \neg \alpha \mid \alpha \land \alpha \mid \alpha \lor \alpha \mid \alpha \rightarrow \alpha \mid \Diamond \alpha \mid \Box \alpha \mid \mathtt{@}_t \alpha \mid \mathtt{⊞}_i \alpha$$

- $\mathtt{⊞}_i$ window operator: change view on stream
Formulas

- **Formulas defined by the grammar** (atom $a, t \in \mathbb{N}$ timepoint)

\[\alpha ::= a \mid \neg \alpha \mid \alpha \land \alpha \mid \alpha \lor \alpha \mid \alpha \rightarrow \alpha \mid \diamond \alpha \mid \square \alpha \mid @_i \alpha \mid \mathbb{I}_i \alpha \]

- **\mathbb{I}_i window operator**: change view on stream
 - Utilizing window function with identifier i
Formulas

- Formulas defined by the grammar (atom $a, t \in \mathbb{N}$ timepoint)

$$\alpha ::= a | \neg \alpha | \alpha \land \alpha | \alpha \lor \alpha | \alpha \rightarrow \alpha | \diamond \alpha | \square \alpha | \oplus_i \alpha$$

- \oplus_i window operator: change view on stream
 - Utilizing window function with identifier i
 - Change considered substream based on current time point, and
 - current window, or
 - original stream
Formulas

- Formulas defined by the grammar (atom a, $t \in \mathbb{N}$ timepoint)

$$\alpha ::= a | \neg \alpha | \alpha \land \alpha | \alpha \lor \alpha | \alpha \rightarrow \alpha | \Diamond \alpha | \square \alpha | @t \alpha | \boxdot_i \alpha$$

- \boxdot_i window operator: change view on stream
 - Utilizing window function with identifier i
 - Change considered substream based on current time point, and
 - current window, or
 - original stream
 - Window operator = window function + stream choice function
Formulas

- Formulas defined by the grammar (atom \(a, t \in \mathbb{N} \) timepoint)

\[
\alpha ::= a \mid \neg \alpha \mid \alpha \land \alpha \mid \alpha \lor \alpha \mid \alpha \rightarrow \alpha \mid \lozenge \alpha \mid \square \alpha \mid \Diamond t \alpha \mid \Box i \alpha
\]

- **\(\Box i \)** window operator: change view on stream
 - Utilizing window function with identifier \(i \)
 - Change considered substream based on current time point, and
 - current window, or
 - original stream
 - Window operator = window function + stream choice function
 - Why keep the original stream?
Nested Windows and Stream Choice

▶ “For the last two trams, did a bus always appear within 5 min?”

<table>
<thead>
<tr>
<th>bus</th>
<th>tram</th>
<th>tram</th>
<th>bus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>
Nested Windows and Stream Choice

▶ “For the last two trams, did a bus always appear within 5 min?”

▶ Partition-based window
Nested Windows and Stream Choice

▶ “For the last two trams, did a bus always appear within 5 min?”

Partition-based window
▶ Partition stream into substreams: trams vs. buses
Nested Windows and Stream Choice

▶ “For the last two trams, did a bus always appear within 5 min?”

tram tram

2 8 13

▶ Partition-based window
 ▶ Partition stream into substreams: trams vs. buses
 ▶ Apply tuple-based windows on substreams: 2 trams, 0 buses
Nested Windows and Stream Choice

▶ “For the last two trams, did a bus always appear within 5 min?”

▶ Partition-based window
 ▶ Partition stream into substreams: trams vs. buses
 ▶ Apply tuple-based windows on substreams: 2 trams, 0 buses

▶ In the new view, buses are invisible
Nested Windows and Stream Choice

- “For the last two trams, did a bus always appear within 5 min?”

- **Partition-based window**
 - Partition stream into substreams: trams vs. buses
 - Apply tuple-based windows on substreams: 2 trams, 0 buses

- In the new view, buses are invisible

- \Rightarrow For “within 5 min” window: use data of original stream again
Nested Windows and Stream Choice

“For the last two trams, did a bus always appear within 5 min?"

Partition-based window
- Partition stream into substreams: trams vs. buses
- Apply tuple-based windows on substreams: 2 trams, 0 buses

In the new view, buses are invisible

⇒ For “within 5 min” window: use data of original stream again
Semantics: Structure

- Structure $M = \langle T, v, \hat{W} \rangle$, where
Semantics: Structure

- Structure $M = \langle T, \nu, \hat{W} \rangle$, where
 - (T, ν) original stream
Semantics: Structure

- Structure $M = \langle T, \nu, \hat{W} \rangle$, where
 - (T, ν) original stream
 - \hat{W} mapping from identifiers (in \mathbb{N}) to \textit{extended} window functions
Semantics: Structure

- Structure $M = \langle T, \nu, \hat{W} \rangle$, where
 - (T, ν) original stream
 - \hat{W} mapping from identifiers (in \mathbb{N}) to \textit{extended} window functions
 - choice function $ch(S_1, S_2) \mapsto S'$

$$\hat{w}(S_1, S_2, t) = w(ch(S_1, S_2), t)$$
Semantics: Structure

- Structure $M = \langle T, \nu, \hat{W} \rangle$, where
 - (T, ν) original stream
 - \hat{W} mapping from identifiers (in \mathbb{N}) to \textit{extended} window functions
 - choice function $ch(S_1, S_2) \mapsto S'$

 $$\hat{w}(S_1, S_2, t) = w(ch(S_1, S_2), t)$$

- Example
Semantics: Structure

- Structure $M = \langle T, \nu, \hat{W} \rangle$, where
 - (T, ν) original stream
 - \hat{W} mapping from identifiers (in \mathbb{N}) to extended window functions
 - choice function $ch(S_1, S_2) \mapsto S'$

 $$\hat{w}(S_1, S_2, t) = w(ch(S_1, S_2), t)$$

- Example
 - w^5 time-based window for last 5 minutes
Semantics: Structure

- Structure $M = \langle T, \nu, \hat{W} \rangle$, where
 - (T, ν) original stream
 - \hat{W} mapping from identifiers (in \mathbb{N}) to extended window functions
 - choice function $ch(S_1, S_2) \mapsto S'$
 \[
 \hat{w}(S_1, S_2, t) = w(ch(S_1, S_2), t)
 \]

- Example
 - w^5 time-based window for last 5 minutes
 - ch_2 choice that selects the second stream ($ch_2(S_1, S_2) = S_2$)
Semantics: Structure

- Structure $M = \langle T, \nu, \hat{W} \rangle$, where
 - (T, ν) original stream
 - \hat{W} mapping from identifiers (in \mathbb{N}) to extended window functions
 - choice function $ch(S_1, S_2) \mapsto S'$

 $$\hat{w}(S_1, S_2, t) = w(ch(S_1, S_2), t)$$

- Example
 - w^5 time-based window for last 5 minutes
 - ch_2 choice that selects the second stream ($ch_2(S_1, S_2) = S_2$)
 - $\hat{W}(1) = \hat{w}^5$, where $\hat{w}^5(S_1, S_2, t) = w^5(S_2, t)$
Semantics: Entailment

- Structure \(M = \langle T, \nu, \hat{W} \rangle \) with original stream \(S_M = (T, \nu) \)
Semantics: Entailment

- Structure $M = \langle T, \nu, \hat{W} \rangle$ with original stream $S_M = (T, \nu)$
- Substream $S = (T_S, \nu_S)$ of S_M: currently considered window
Semantics: Entailment

- Structure $M = \langle T, \nu, \hat{W} \rangle$ with original stream $S_M = (T, \nu)$
- Substream $S = (T_S, \nu_S)$ of S_M: currently considered window
- Time point $t \in T_S$ (query time)
Semantics: Entailment

- Structure $M = \langle T, \nu, \hat{W} \rangle$ with original stream $S_M = (T, \nu)$
- Substream $S = (T_S, \nu_S)$ of S_M: currently considered window
- Time point $t \in T_S$ (query time)
- Entailment between M, S, t and formulas α, β
Semantics: Entailment

- Structure $M = \langle T, \nu, \hat{W} \rangle$ with original stream $S_M = (T, \nu)$
- Substream $S = (T_S, \nu_S)$ of S_M: currently considered window
- Time point $t \in T_S$ (query time)
- Entailment between M, S, t and formulas α, β

$$M, S, t \models a \iff a \in \nu_S(t),$$
Semantics: Entailment

- Structure $M = \langle T, \nu, \hat{W} \rangle$ with original stream $S_M = (T, \nu)$
- Substream $S = (T_S, \nu_S)$ of S_M: currently considered window
- Time point $t \in T_S$ (query time)
- Entailment between M, S, t and formulas α, β

$M, S, t \models a$ iff $a \in \nu_S(t)$,

$M, S, t \models \neg \alpha$ iff $M, S, t \not\models \alpha$,

$M, S, t \models \alpha \land \beta$ iff $M, S, t \models \alpha$ and $M, S, t \models \beta$,

$M, S, t \models \alpha \lor \beta$ iff $M, S, t \models \alpha$ or $M, S, t \models \beta$,

$M, S, t \models \alpha \rightarrow \beta$ iff $M, S, t \not\models \alpha$ or $M, S, t \models \beta$.
Semantics: Entailment

- Structure $M = \langle T, \nu, \hat{W} \rangle$ with original stream $S_M = (T, \nu)$
- Substream $S = (T_S, \nu_S)$ of S_M: currently considered window
- Time point $t \in T_S$ (query time)
- Entailment between M, S, t and formulas α, β

$M, S, t \models a$ \quad iff \quad a \in \nu_S(t),$

$M, S, t \models \neg \alpha$ \quad iff \quad $M, S, t \not\models \alpha,$

$M, S, t \models \alpha \land \beta$ \quad iff \quad $M, S, t \models \alpha$ and $M, S, t \models \beta,$

$M, S, t \models \alpha \lor \beta$ \quad iff \quad $M, S, t \models \alpha$ or $M, S, t \models \beta,$

$M, S, t \models \alpha \rightarrow \beta$ \quad iff \quad $M, S, t \not\models \alpha$ or $M, S, t \models \beta,$

$M, S, t \models \diamond \alpha$ \quad iff \quad $M, S, t' \models \alpha$ for some $t' \in T_S,$
Semantics: Entailment

- Structure \(M = \langle T, \nu, \hat{W} \rangle \) with original stream \(S_M = (T, \nu) \)
- Substream \(S = (T_S, \nu_S) \) of \(S_M \): currently considered window
- Time point \(t \in T_S \) (query time)
- Entailment between \(M, S, t \) and formulas \(\alpha, \beta \)

 \[M, S, t \models \alpha \quad \text{iff} \quad \alpha \in \nu_S(t), \]
 \[M, S, t \models \neg \alpha \quad \text{iff} \quad M, S, t \notmodels \alpha, \]
 \[M, S, t \models \alpha \land \beta \quad \text{iff} \quad M, S, t \models \alpha \text{ and } M, S, t \models \beta, \]
 \[M, S, t \models \alpha \lor \beta \quad \text{iff} \quad M, S, t \models \alpha \text{ or } M, S, t \models \beta, \]
 \[M, S, t \models \alpha \rightarrow \beta \quad \text{iff} \quad M, S, t \notmodels \alpha \text{ or } M, S, t \models \beta, \]
 \[M, S, t \models \diamond \alpha \quad \text{iff} \quad M, S, t' \models \alpha \text{ for some } t' \in T_S, \]
 \[M, S, t \models \square \alpha \quad \text{iff} \quad M, S, t' \models \alpha \text{ for all } t' \in T_S, \]
Semantics: Entailment

- Structure $M = \langle T, \nu, \hat{W} \rangle$ with original stream $S_M = (T, \nu)$
- Substream $S = (T_S, \nu_S)$ of S_M: currently considered window
- Time point $t \in T_S$ (query time)
- Entailment between M, S, t and formulas α, β

$$
\begin{align*}
M, S, t &\notmodels a \quad \text{iff} \quad a \notin \nu_S(t), \\
M, S, t &\notmodels \neg \alpha \quad \text{iff} \quad M, S, t \notmodels \alpha, \\
M, S, t &\models \alpha \land \beta \quad \text{iff} \quad M, S, t \models \alpha \text{ and } M, S, t \models \beta, \\
M, S, t &\models \alpha \lor \beta \quad \text{iff} \quad M, S, t \models \alpha \text{ or } M, S, t \models \beta, \\
M, S, t &\models \alpha \rightarrow \beta \quad \text{iff} \quad M, S, t \notmodels \alpha \text{ or } M, S, t \models \beta, \\
M, S, t &\notmodels \diamond \alpha \quad \text{iff} \quad M, S, t' \models \alpha \text{ for some } t' \in T_S, \\
M, S, t &\notmodels \Box \alpha \quad \text{iff} \quad M, S, t' \models \alpha \text{ for all } t' \in T_S, \\
M, S, t &\models @_t \alpha \quad \text{iff} \quad M, S, t' \models \alpha \text{ and } t' \in T_S,
\end{align*}
$$
Semantics: Entailment

- Structure $M = \langle T, \nu, \hat{W} \rangle$ with original stream $S_M = (T, \nu)$
- Substream $S = (T_S, \nu_S)$ of S_M: currently considered window
- Time point $t \in T_S$ (query time)
- Entailment between M, S, t and formulas α, β

$M, S, t \vdash \alpha \quad \text{iff} \quad \alpha \in \nu_S(t)$,
$M, S, t \vdash \neg \alpha \quad \text{iff} \quad M, S, t \not\models \alpha,$
$M, S, t \vdash \alpha \land \beta \quad \text{iff} \quad M, S, t \vdash \alpha \quad \text{and} \quad M, S, t \vdash \beta,$
$M, S, t \vdash \alpha \lor \beta \quad \text{iff} \quad M, S, t \not\models \alpha \quad \text{or} \quad M, S, t \models \beta,$
$M, S, t \vdash \alpha \rightarrow \beta \quad \text{iff} \quad M, S, t \not\models \alpha \quad \text{or} \quad M, S, t \models \beta,$
$M, S, t \vdash \Diamond \alpha \quad \text{iff} \quad M, S, t' \models \alpha \quad \text{for some} \quad t' \in T_S,$
$M, S, t \vdash \Box \alpha \quad \text{iff} \quad M, S, t' \models \alpha \quad \text{for all} \quad t' \in T_S,$
$M, S, t \vdash @_{t'} \alpha \quad \text{iff} \quad M, S, t' \models \alpha \quad \text{and} \quad t' \in T_S,$
$M, S, t \vdash \Box_i \alpha \quad \text{iff} \quad M, S', t \models \alpha \quad \text{where} \quad S' = \hat{w}_i(S_M, S, t).$
Queries

- Query $\alpha[t]: \{ M, S_M, t \} \models \alpha$?
Queries

- Query $\alpha[t]$: "$M, S_M, t \models \alpha$"?

```
tram(i_1, p_1)  bus(i_2, p_1)  tram(i_3, p_2)  bus(i_4, p_2)
```

<table>
<thead>
<tr>
<th>0</th>
<th>2</th>
<th>8</th>
<th>11</th>
<th>13</th>
</tr>
</thead>
</table>

Queries

- Query $\alpha[t]$: "$M, S_M, t \vdash \alpha$"?

$$
\begin{array}{c}
bus(i_2, p_1) \\
tram(i_1, p_1) \\
tram(i_3, p_2) \\
bus(i_4, p_2)
\end{array}
$$

$M, S_M, 13 \vdash bus(i_2, p_1)$?
Queries

- Query $\alpha[t]$: "$M, S_M, t \vdash \alpha$"?

$M, S_M, 13 \not\models bus(i_2, p_1)$, since $bus(i_2, p_1) \not\in \nu(13)$
Queries

- Query $\alpha[t]$: “$M, S_M, t \models \alpha$”?

$$
\begin{aligned}
\text{bus}(i_2, p_1) \\
\text{tram}(i_1, p_1) \\
\text{tram}(i_3, p_2) \quad \text{bus}(i_4, p_2)
\end{aligned}
$$

$M, S_M, 13 \models \Diamond \text{bus}(i_2, p_1)$?
Queries

- Query $\alpha[t]: "M, S_M, t \models \alpha"$?

$$
\begin{align*}
\text{bus}(i_2, p_1) \\
\text{tram}(i_1, p_1) \\
\text{tram}(i_3, p_2) \quad \text{bus}(i_4, p_2)
\end{align*}
$$

$M, S_M, 13 \models \Diamond \text{bus}(i_2, p_1)$, since $\exists t' \in T_{S_M}$ s.t. $\text{bus}(i_2, p_1) \in \nu(t')$
Queries

- Query $\alpha[t]$: “$M, S_M, t \models \alpha$"? \square_1: last 5 min

\[
\begin{align*}
\text{bus}(i_2, p_1) & \quad \text{tram}(i_1, p_1) \\
\text{tram}(i_3, p_2) & \quad \text{bus}(i_4, p_2)
\end{align*}
\]

$M, S_M, 13 \models \square_1 \Diamond \text{bus}(i_2, p_1)$?
Queries

- Query $\alpha[t]$: “$M, S_M, t \models \alpha$”?
 - \square_1: last 5 min

$M, S_M, 13 \not\models \square_1 \diamond bus(i_2, p_1)$
Queries

- Query $\alpha[t]: \text{"}M, S_M, t \models \alpha\text{"}$?
 \mathcal{D}_1: last 5 min

$M, S_M, 13 \models \mathcal{D}_1 \diamond \text{bus}(i_4, p_2)$
Non-ground Queries

- Non-ground query: Assignments s.t. substitution hold
Non-ground Queries

- Non-ground query: Assignments s.t. substitution hold

\[
\begin{align*}
bus(i_2, p_1) \\
tram(i_1, p_1) \\
tram(i_3, p_2) \\
bus(i_4, p_2)
\end{align*}
\]
Non-ground Queries

- Non-ground query: Assignments s.t. substitution hold

\[\text{bus}(i_2, p_1) \]
\[\text{tram}(i_1, p_1) \]
\[\text{tram}(i_3, p_2) \]
\[\text{bus}(i_4, p_2) \]

\[M, S_M, 13 \models \mathbb{D}_1 \Diamond \text{bus}(X, P) ? \]
Non-ground Queries

- Non-ground query: Assignments s.t. substitution hold

\[\begin{align*}
bus(i_2, p_1) \\
tram(i_1, p_1) \\
tram(i_3, p_2) \\
bus(i_4, p_2)
\end{align*}\]

\[M, S_M, 13 \models \blacklozenge_1 \lozenge bus(X, P)？\]

\[X \mapsto i_4, \ P \mapsto p_2\]
Non-ground Queries

- Non-ground query: Assignments s.t. substitution hold

\[\begin{align*}
 &bus(i_2, p_1) \\
 &tram(i_1, p_1) \\
 &tram(i_3, p_2) & bus(i_4, p_2) \\
 \end{align*} \]

\[M, S, U \models \square_1 \Diamond bus(i_2, p_1) ? \]
Non-ground Queries

- Non-ground query: Assignments s.t. substitution hold

\[
\text{bus}(i_2, p_1) \\
\text{tram}(i_1, p_1) \\
\text{tram}(i_3, p_2) \quad \text{bus}(i_4, p_2)
\]

\[M, S, U \models \blacklozenge_1 \Box_1 \Diamond \text{bus}(i_2, p_1)\]?

\[U \mapsto 2, \ldots, 7\]
Non-ground Queries

- Non-ground query: Assignments s.t. substitution hold

\[\text{bus}(i_2, p_1) \]
\[\text{tram}(i_1, p_1) \]
\[\text{tram}(i_3, p_2) \]
\[\text{bus}(i_4, p_2) \]

\[M, S_M, 13 \models 1 (\Diamond \text{tram}(X, P) \land \Diamond \text{bus}(Y, P)) \]
Non-ground Queries

- Non-ground query: Assignments s.t. substitution hold

\[
\begin{align*}
\text{bus}(i_2, p_1) & \\
\text{tram}(i_1, p_1) & \\
\text{tram}(i_3, p_2) & \quad \text{bus}(i_4, p_2)
\end{align*}
\]

\[
M, S_M, 13 \models \Box_1 (\Diamond \text{tram}(X, P) \land \Diamond \text{bus}(Y, P))?
\]

\[
X \leftrightarrow i_3, \quad P \leftrightarrow p_2, \quad Y \leftrightarrow i_4
\]
Non-ground Queries

- Non-ground query: Assignments s.t. substitution hold

\[\text{bus}(i_2, p_1) \quad \text{tram}(i_1, p_1) \quad \text{tram}(i_3, p_2) \quad \text{bus}(i_4, p_2)\]

\[M, S_M, U \models \Box_1 (\text{tram}(X, P) \land \text{bus}(Y, P))?\]
Non-ground Queries

- Non-ground query: Assignments s.t. substitution hold

\[
\begin{align*}
&\text{bus}(i_2, p_1) \\
&\text{tram}(i_1, p_1) \\
&\text{tram}(i_3, p_2) \quad \text{bus}(i_4, p_2)
\end{align*}
\]

\[
M, S_M, U \models \Box_1 \Diamond (\text{tram}(X, P) \land \text{bus}(Y, P))?
\]

\[
U \leftrightarrow 2, \ldots, 7 \quad \times \quad X \leftrightarrow i_1, \ P \leftrightarrow p_1, \ Y \leftrightarrow i_2
\]
Non-ground Queries

Non-ground query: Assignments s.t. substitution hold

\[M, S_M, 13 \models \mu_U(\text{tram}(X, P)) \land \text{bus}(Y, P)) \]
Non-ground Queries

- Non-ground query: Assignments s.t. substitution hold

\[\text{bus}(i_2, p_1) \]
\[\text{tram}(i_1, p_1) \]
\[\text{tram}(i_3, p_2) \]
\[\text{bus}(i_4, p_2) \]

\[M, S_M, 13 \models \@_U(\text{tram}(X, P)) \land \text{bus}(Y, P) \]?

\[U \mapsto 2, \quad X \mapsto i_1, \quad P \mapsto p_1, \quad Y \mapsto i_2 \]
Example: Nested Window

“In the last hour, did a bus always appear in the last 5 minutes?”

```
bus  bus  bus
206  213  217  t
```
Example: Nested Window

- “In the last hour, did a bus always appear in the last 5 minutes?”

 ![Diagram]

 - \Box_i: time-based window for last i minutes
Example: Nested Window

- “In the last hour, did a bus always appear in the last 5 minutes?”

- \square_i: time-based window for last i minutes

- Query: \square_{60}

$\text{bus} \quad \text{bus} \quad \text{bus}$

$\begin{array}{c}
206 \\
213 \\
217 \\
t
\end{array}$
Example: Nested Window

- “In the last hour, did a bus always appear in the last 5 minutes?”

- ▶️: time-based window for last i minutes

- Query: \square_{60}
Example: Nested Window

- “In the last hour, did a bus always appear in the last 5 minutes?”

- ▶️ i: time-based window for last i minutes

- Query: ▶️ 60 □ ▶️ 5
Example: Nested Window

“In the last hour, did a bus always appear in the last 5 minutes?”

- bus_t: time-based window for last i minutes

- Query: $\preceq_{60} \; \preceq \; \preceq_{5}$
Example: Nested Window

- “In the last hour, did a bus always appear in the last 5 minutes?”

\[\text{bus} \quad \text{bus} \quad \text{bus} \]
\[\begin{array}{c}
206 \\
213 \\
217 \\
t
\end{array} \]

- \(\mathcal{W}_i \): time-based window for last \(i \) minutes

- Query: \(\mathcal{W}_{60} \quad \square \quad \mathcal{W}_5 \quad \diamond \quad \text{bus} \)
Example: Nested Window

▶ “In the last hour, did a bus always appear in the last 5 minutes?”

\[
\begin{array}{ccc}
bus(i, p) & bus(j, q) & bus(k, r) \\
206 & 213 & 217 & t
\end{array}
\]

▶ i: time-based window for last i minutes

▶ Query: $\begin{array}{c} \lhd 60 \ \square \ \lhd 5 \ \diamond \bus \end{array}$

▶ Limitation: $\begin{array}{c} \lhd 60 \ \square \ \lhd 5 \ \diamond \bus(X, P) \end{array}$
Example: Nested Window

- “In the last hour, did a bus always appear in the last 5 minutes?”

<table>
<thead>
<tr>
<th>bus(i, p)</th>
<th>bus(j, q)</th>
<th>bus(k, r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>206</td>
<td>213</td>
<td>217</td>
</tr>
<tr>
<td>t</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- \Box_i: time-based window for last i minutes

- Query: $\Box_{60} \square \Box_{5} \diamond \text{bus}$

- Limitation: $\Box_{60} \square \Box_{5} \diamond \text{bus}(X, P)$
 - Result: List of fixed combinations X, P
 - Need a rule: $\text{some } \text{bus} \leftarrow \text{bus}(X, P)$
 - Then: $\Box_{60} \square \Box_{5} \diamond \text{some } \text{bus}$
Conclusion Stream

- Past

- $t - k$
Conclusion Stream

\[? \models ? \]

- Past: Lack of theoretical underpinning for stream reasoning

\[t - k \]
Conclusion Stream

? ⪯ ?

\[t - k \quad t \text{ (now)} \]

- Past: Lack of theoretical underpinning for stream reasoning
- Now
Conclusion Stream

\[\square (a \land \lozenge b) \]

- **Past:** Lack of theoretical underpinning for stream reasoning
- **Now:** First language for modelling semantics precisely
 - flexible window operator (first class citizen)
 - time reference / time abstraction
- **Soon:** Rule-based extension (OrdRing @ ISWC, Oct.'14)
- **Later:** Language properties, capture CQL and ETALIS
- **Eventually:** Distributed setting, heterogeneous nodes
Conclusion Stream

? |= ? ⊢ (a ∧ ◊b)

Past: Lack of theoretical underpinning for stream reasoning

Now: First language for modelling semantics precisely
 ▶ flexible window operator (first class citizen)
 ▶ time reference / time abstraction

Soon
Conclusion Stream

\[\text{ ? } \models \text{ ? } \quad \Box (a \land \Diamond b) \quad b \leftarrow a \]

\[
\begin{align*}
 t - k & \\ t \text{ (now)} & \\ t + \varepsilon
\end{align*}
\]

- **Past:** Lack of theoretical underpinning for stream reasoning
- **Now:** First language for modelling semantics precisely
 - flexible window operator (first class citizen)
 - time reference / time abstraction
- **Soon:** Rule-based extension (OrdRing @ ISWC, Oct.’14)
Conclusion Stream

- Past: Lack of theoretical underpinning for stream reasoning
- Now: First language for modelling semantics precisely
 - flexible window operator (first class citizen)
 - time reference / time abstraction
- Soon: Rule-based extension (OrdRing @ ISWC, Oct.'14)
- Later
Conclusion Stream

\[
? \models ? \quad \square (a \land \Diamond b) \quad b \leftarrow a \quad \text{CQL, ETALIS properties}
\]

- Past: Lack of theoretical underpinning for stream reasoning
- Now: First language for modelling semantics precisely
 - flexible window operator (first class citizen)
 - time reference / time abstraction
- Soon: Rule-based extension (OrdRing @ ISWC, Oct.’14)
- Later: Language properties, capture CQL and ETALIS
Conclusion Stream

- **Past:** Lack of theoretical underpinning for stream reasoning
- **Now:** First language for modelling semantics precisely
 - flexible window operator (first class citizen)
 - time reference / time abstraction
- **Soon:** Rule-based extension (OrdRing @ ISWC, Oct.’14)
- **Later:** Language properties, capture CQL and ETALIS
- **Eventually**
Conclusion Stream

Past: Lack of theoretical underpinning for stream reasoning

Now: First language for modelling semantics precisely
 - flexible window operator (first class citizen)
 - time reference / time abstraction

Soon: Rule-based extension (OrdRing @ ISWC, Oct.’14)

Later: Language properties, capture CQL and ETALIS

Eventually: Distributed setting, heterogeneous nodes
Conclusion Stream

- Past: Lack of theoretical underpinning for stream reasoning
- Now: First language for modelling semantics precisely
 - flexible window operator (first class citizen)
 - time reference / time abstraction
- Soon: Rule-based extension (OrdRing @ ISWC, Oct.’14)
- Later: Language properties, capture CQL and ETALIS
- Eventually: Distributed setting, heterogeneous nodes
To je ono.

(That’s it.)
Time-based window

▶ Example

- ℓ: 2 time points into the past
- u: 1 time points into the future
- d: 3 step size (slide parameter)

- \circ: query times t
- \times: pivot points t'

\[t = 4 \]
Time-based window

- Example: Query time $t = 4$
 - ℓ 2 time points into the past
 - u 1 time points into the future
 - d 3 step size (slide parameter)
Appendix

Time-based window

- Example: Query time $t = 4$
 - ℓ: 2 time points into the past
 - u: 1 time point into the future
 - d: 3 step size (slide parameter)

- d: 3 step size (slide parameter)
- \bullet: query times t
- \times: pivot points t'
Time-based window

- Example: Query time $t = 4$
 - ℓ 2 time points into the past
 - u 1 time points into the future
 - d 3 step size (slide parameter)

- \bullet: query times t
- \times: pivot points t'
Appendix

Time-based window

- Example: Query time $t = 4$
 - ℓ: 2 time points into the past
 - u: 1 time points into the future
 - d: 3 step size (slide parameter)

Diagram:
- \bullet: query times t
- \times: pivot points t'
Time-based window

- Example: Query time $t = 4$
 - ℓ 2 time points into the past
 - u 1 time points into the future
 - d 3 step size (slide parameter)

- \bullet: query times t
- \times: pivot points t'
Time-based window

Example: Query time $t = 4$

- ℓ: 2 time points into the past
- u: 1 time points into the future
- d: 3 step size (slide parameter)

Diagram showing a time-based window with query times and pivot points.
Time-based window

- Example: Query time $t = 4$
 - ℓ 2 time points into the past
 - u 1 time points into the future
 - d 3 step size (slide parameter)

\bullet: query times t
\times: pivot points t'
Time-based window

Example: Query time $t = 4$

- ℓ: 2 time points into the past
- u: 1 time points into the future
- d: 3 step size (slide parameter)

•: query times t ×: pivot points t'
Time-based window

► Example

\(\ell \) 2 time points into the past

\(u \) 1 time points into the future

\(d \) 3 step size (slide parameter)

![Diagram showing query times and pivot points]

- ●: query times \(t \)
- ×: pivot points \(t' \)