Distributed Nonmonotonic Multi-Context Systems

Minh Dao-Tran Thomas Eiter
Michael Fink Thomas Krennwallner

KBS Group, Institute of Information Systems, Vienna University of Technology

KR 2010 - May 13, 2010
Overview

Multi-Context Systems

Distributed Algorithm for Evaluating Nonmonotonic MCS

Loop Formulas for Multi-Context Systems

Experiments

Conclusions
Multi-Context Systems (MCS)

- MCSen introduced by [Giunchiglia and Serafini, 1994]:
 - represent inter-contextual information flow
 - express reasoning w.r.t. contextual information
 - allow decentralized, pointwise information exchange
 - monotonic, homogeneous logic

- Framework extended for integrating heterogeneous and nonmonotonic logics [Brewka and Eiter, 2007]
Syntax of Multi-Context Systems

- multi-context system
 - a collection $M = (C_1, \ldots, C_n)$ of contexts

- context $C_i = (L_i, kb_i, br_i)$
 - L_i: a logic
 - kb_i: a knowledge base of logic L_i
 - br_i: a set of bridge rules

Which belief sets are accepted by a knowledge base?
Syntax of Multi-Context Systems

- **multi-context system**
 - A collection $M = (C_1, \ldots, C_n)$ of contexts

- **context** $C_i = (L_i, kb_i, br_i)$
 - L_i: a logic
 - kb_i: a knowledge base of logic L_i
 - br_i: a set of bridge rules

- **logic** $L = (\text{KB}_L, \text{BS}_L, \text{ACC}_L)$
 - KB_L: set of well-formed knowledge bases
 - BS_L: is the set of possible belief sets
 - ACC_L: acceptability function $\text{KB}_L \mapsto 2^{\text{BS}_L}$
 Which belief sets are accepted by a knowledge base?
Semantics of Multi-Context Systems (2)

- **multi-context system**
 \[M = (C_1, \ldots, C_n) \]

- **context**
 \[C_i = (L_i, kb_i, br_i) \]

- **logic**
 \[L = (KB_i, BS_i, ACC_i) \]
Syntax of Multi-Context Systems (bridge rules)

- **multi-context system**

 \[M = (C_1, \ldots, C_n) \]

- **context**

 \[C_i = (L_i, kb_i, br_i) \]

- **logic**

 \[L_i = (KB_i, BS_i, ACC_i) \]

- **Bridge rule** \(r \in br_i \) of a context \(C_i \)

 \[s \leftarrow (c_1 : p_1), \ldots, (c_j : p_j), \]

 \[not (c_{j+1} : p_{j+1}), \ldots, not (c_m : p_m) \]

 - \((c_k : p_k) \) looks at belief \(p_k \) in context \(C_{c_k} \)
 - \(r \) is applicable \(\iff \) positive/negative beliefs are present/absent
 - we add the head \(s \) to \(kb_i \) if \(r \) is applicable
Semantics of Multi-Context Systems

- **multi-context system**
 \[M = (C_1, \ldots, C_n) \]

- **context**
 \[C_i = (L_i, kb_i, br_i) \]

- **logic**
 \[L_i = (KB_i, BS_i, ACC_i) \]

- **knowledge base of a context** \(C_i \)
 \[kb_i \in KB_i \]

- **set of bridge rules** \(br_i \) of a context \(C_i \) of form
 \[s \leftarrow (c_1 : p_1), \ldots, (c_j : p_j), not (c_{j+1} : p_{j+1}), \ldots, not (c_m : p_m) \]

- Contexts \(C_1, \ldots, C_n \) are knowledge bases with semantics in terms of accepted belief sets

- \(S = (S_1, \ldots, S_n) \) is a belief state of \(M \) with each \(S_i \in BS_i \)
Semantics of Multi-Context Systems

- **multi-context system**

\[M = (C_1, \ldots, C_n) \]

- **context**

\[C_i = (L_i, kb_i, br_i) \]

- **logic**

\[L_i = (KB_i, BS_i, ACC_i) \]

- **Equilibrium semantics**

 - A belief state \(S = (S_1, \ldots, S_n) \) with \(S_i \in BS_i \)

 ... makes certain bridge rules applicable,

 ... add applicable bridge heads to \(kb_i \)

\[\Rightarrow S \text{ is an equilibrium } \iff \]

each \(kb_i \) plus acceptable bridge heads from \(br_i \) accepts \(S_i \)

\[S_i \in ACC_i(kb_i \cup \{head(r) \mid r \in app(br_i, S)\}) \]
Toward Distributed Equilibria building for MCS

Obstacles:

- abstraction of contexts
- information hiding and security aspects
- lack of system topology
- cycles between contexts

We need to capture:

- dependencies between contexts
- representation of partial knowledge
- combination/join of local results
Import Closure

Import neighborhood of C_k

$\text{In}(k) = \{c_i \mid (c_i : p_i) \in B(r), r \in br_k\}$
Import Closure

Import neighborhood of C_k

$$In(k) = \{ c_i \mid (c_i : p_i) \in B(r), r \in br_k \}$$

Import closure $IC(k)$ of C_k is the smallest set S such that
(i) $k \in S$ and
(ii) for all $i \in S$, $In(i) \subseteq S$.

Alternatively,

$$IC(k) = \{ k \} \cup \bigcup_{j \geq 0} IC^j(k),$$

where

$IC^0(k) = In(k)$, and
$IC^{j+1}(k) = \bigcup_{i \in IC^j(k)} In(i)$.
Let $M = (C_1, \ldots, C_n)$ be an MCS, and let $\epsilon \notin \bigcup_{i=1}^{n} BS_i$.
Partial Belief States and Equilibria

Let $M = (C_1, \ldots, C_n)$ be an MCS, and let $\epsilon \notin \bigcup_{i=1}^{n} \text{BS}_i$

A partial belief state of M is a sequence $S = (S_1, \ldots, S_n)$, where $S_i \in \text{BS}_i \cup \{\epsilon\}$, for $1 \leq i \leq n$
Let $M = (C_1, \ldots, C_n)$ be an MCS, and let $\epsilon \notin \bigcup_{i=1}^{n} BS_i$

A partial belief state of M is a sequence $S = (S_1, \ldots, S_n)$, where $S_i \in BS_i \cup \{\epsilon\}$, for $1 \leq i \leq n$

$S = (S_1, \ldots, S_n)$ is a partial equilibrium of M w.r.t. a context C_k iff for $1 \leq i \leq n$,

- if $i \in IC(k)$ then $S_i \in ACC_i(kb_i \cup \{head(r) \mid r \in app(br_i, S)\})$
- otherwise, $S_i = \epsilon$
Joining Partial Belief States

Join $S \Join T$ of belief sets S and T: like join of tuples in a database.

\[S = \begin{bmatrix} S_1 & \ldots & \epsilon & \ldots & \epsilon & \ldots & S_n \end{bmatrix} \]

\[T = \begin{bmatrix} \epsilon & \ldots & \epsilon & \ldots & T_i & \ldots & T_n \end{bmatrix} \]

\[S \Join T = \begin{bmatrix} S_1 & \ldots & \epsilon & \ldots & T_i & \ldots & S_n = T_n \end{bmatrix} \]

$S \Join T$ is undefined, if $\epsilon \neq S_j \neq T_j \neq \epsilon$ for some j.

\[S \Join \mathcal{T} = \{ S \Join T \mid S \in S, T \in \mathcal{T} \} \]
Algorithm DMCS

Input: an MCS M and a starting context C_k
Output: all partial equilibria of M w.r.t. C_k
Algorithm DMCS

Input: an MCS M and a starting context C_k
Output: all partial equilibria of M w.r.t. C_k

Requirement: solver $\text{lsolve}(S)$ for each context C_k is available which computes $\text{ACC}_k(kb_k \cup \text{app}_k(S))$
Algorithm DMCS

Input: an MCS M and a starting context C_k
Output: all partial equilibria of M w.r.t. C_k

Requirement: solver $\text{Isolve}(S)$ for each context C_k is available which computes $\text{ACC}_k(kb_k \cup \text{app}_k(S))$

Input parameters for DMCS:
- V: set of “interesting” variables (to project the partial equilibria)
- hist: visited path
Algorithm DMCS

Input: an MCS M and a starting context C_k

Output: all partial equilibria of M w.r.t. C_k

Requirement: solver $\text{lsolve}(S)$ for each context C_k is available which computes $\text{ACC}_k(kb_k \cup \text{app}_k(S))$

Input parameters for DMCS:

- V: set of “interesting” variables (to project the partial equilibria)
- hist: visited path

Strategy: DFS-traversal of M starting with C_k, visiting all C_i for $i \in IC(k)$

Instances of DMCS

- running at each context node,
- communicating with each other for exchanging sets of belief states
Acyclic case

Leaf context $C_k (br_k = \emptyset)$

\[
\text{lsolve}((\epsilon, \ldots, \epsilon)) = S
\]
Acyclic case

Leaf context C_k ($br_k = \emptyset$)

$$lsolve((\epsilon, \ldots, \epsilon)) = S$$

Intermediate context C_k

$$((i : p), (j : q) \text{ appear in } br_k)$$

$$S_i \triangleleft S_j$$
Acyclic case

Leaf context C_k ($br_k = \emptyset$)

Intermediate context C_k

$((i : p), (j : q) \text{ appear in } br_k)$

Isolve($((\epsilon, \ldots, \epsilon)) = S$)
Acyclic case

Leaf context $C_k (br_k = ∅)$

$\text{lsolve}((\epsilon, \ldots, \epsilon)) = S$

Intermediate context C_k

$((i : p), (j : q) \text{ appear in } br_k)$

$\text{lsolve}(S_i \bowtie S_j) = S_k$

(V, hist)
Cycle breaking

\[\text{hist} = \{ \ldots, k, \ldots \} \]

- \(V \)
- \(C_k \)
- \(C_i \)
- \(C_j \)
- \(C_\ell \)
Cycle breaking

C_k detects a cycle in $hist$

$hist = \{ \ldots, k, \ldots \}$
Cycle breaking

C_k detects a cycle in hist

- Guessing local belief sets
Cycle breaking

C_k detects a cycle in hist

- Guessing local belief sets
- return them to invoking context
Cycle breaking

C_k detects a cycle in $hist$

- Guessing local belief sets
- return them to invoking context

- on the way back, partial belief states w.r.t. bad guesses will be pruned by ∇
Cycle breaking

C_k detects a cycle in $hist$

- Guessing local belief sets
- return them to invoking context
- on the way back, partial belief states w.r.t. bad guesses will be pruned by ∇
- eventually, C_k will remove wrong guesses by calling $lsolve$ on each received partial belief state
Example

A run with $C_1.DMCS(V, \emptyset)$, where $V = \{a, b, c, f, g\}$.

$kb_1 = \emptyset$
$br_1 = \{a \leftarrow (2:b), (3:c)\}$

$kb_2 = \emptyset$
$br_2 = \{b \leftarrow (4:g)\}$

$kb_3 = \{c \leftarrow d, d \leftarrow c\}$
$br_3 = \{c \lor e \leftarrow \text{not}(4:f)\}$

$kb_4 = \{f \lor g \leftarrow \}$
$br_4 = \emptyset$
Example

A run with $C_1 \cdot \text{DMCS}(V, \emptyset)$, where $V = \{a, b, c, f, g\}$.
Example

A run with $C_1 . \text{DMCS}(V, \emptyset)$, where $V = \{a, b, c, f, g\}$.

- $kb_1 = \emptyset$
- $br_1 = \{a \leftarrow (2 : b), (3 : c)\}$

- $kb_2 = \emptyset$
- $br_2 = \{b \leftarrow (4 : g)\}$

- $kb_3 = \{c \leftarrow d\}$
 - $d \leftarrow c$
- $br_3 = \{c \vee e \leftarrow \text{not}(4 : f)\}$

- $kb_4 = \{f \vee g \leftarrow \}$
- $br_4 = \emptyset$

- C_2
- C_3
 - $(\epsilon, \epsilon, \{\neg c, \neg d, e\}, \{\neg f, g\})$
 - $(\epsilon, \epsilon, \{c, d, \neg e\}, \{\neg f, g\})$
 - $(\epsilon, \epsilon, \{\neg c, \neg d, \neg e\}, \{f, \neg g\})$
 - $(\epsilon, \epsilon, \epsilon, \{\neg f, g\})$
 - $(\epsilon, \epsilon, \epsilon, \{f, \neg g\})$

- C_4
A run with $C_1\cdot DMCS(V, \emptyset)$, where $V = \{a, b, c, f, g\}$.

- $kb_1 = \emptyset$
- $br_1 = \{a \leftarrow (2 : b), (3 : c)\}$

- $kb_2 = \emptyset$
- $br_2 = \{b \leftarrow (4 : g)\}$

- $kb_3 = \{c \leftarrow d, d \leftarrow c\}$
- $br_3 = \{c \lor e \leftarrow \text{not} (4 : f)\}$

- $kb_4 = \{f \lor g \leftarrow \}$
- $br_4 = \emptyset$

- $(\epsilon, \{b\}, \epsilon, \{\neg f, g\})$
- $(\epsilon, \{\neg b\}, \epsilon, \{f, \neg g\})$
- $(\epsilon, \epsilon, \{\neg c, \neg d, e\}, \{\neg f, g\})$
- $(\epsilon, \epsilon, \{c, d, \neg e\}, \{\neg f, g\})$
- $(\epsilon, \epsilon, \{\neg c, \neg d, \neg e\}, \{f, \neg g\})$
- $(\epsilon, \epsilon, \epsilon, \{\neg f, g\})$
- $(\epsilon, \epsilon, \epsilon, \{f, \neg g\})$
Example

A run with $C_1 \cdot \text{DMCS}(V, \emptyset)$, where $V = \{a, b, c, f, g\}$.
Example

A run with $C_1.DMCS(V, \emptyset)$, where $V = \{a, b, c, f, g\}$.

$kb_1 = \emptyset$
$br_1 = \{ a \leftarrow (2 : b), (3 : c) \}$

$kb_2 = \emptyset$
$br_2 = \{ b \leftarrow (4 : g) \}$

$kb_3 = \{ c \leftarrow d \}
\quad d \leftarrow c$
$br_3 = \{ c \lor e \leftarrow not (4 : f) \}$

$kb_4 = \{ f \lor g \leftarrow \}$
$br_4 = \emptyset$

$kb_4 = \{ f \lor g \leftarrow \}$
$br_4 = \emptyset$
DMCS is using `lsolve()` to incorporate the bridge rules into the local knowledge base: this must be done for every intermediate result.

Some logics allow to combine br_i and kb_i:
- contexts with answer set programs, or
- contexts with propositional formulas

Benefit: a single call to a SAT solver is sufficient to compute the local semantics of a context.

This is used to adapt DMCS and provide a prototype implementation.
Experiments

Diamond

<table>
<thead>
<tr>
<th></th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>#1944</td>
<td>#5240</td>
<td>#15088</td>
<td>#348</td>
<td>#12</td>
</tr>
<tr>
<td>P2</td>
<td>#1014</td>
<td>#56</td>
<td>#32</td>
<td>#14596</td>
<td>#5220</td>
</tr>
<tr>
<td># of equilibria</td>
<td>10</td>
<td>4</td>
<td>14</td>
<td>56</td>
<td>32</td>
</tr>
</tbody>
</table>

P1=(7,8,4,4) P2=(10,12,6,6) # equilibria

evaluation time / secs (logscale)
Experiments

P1=(7,8,4,4) P2=(10,12,6,6) # equilibria

evaluation time / secs (logscale)

Ring

R1 R2 R3 R4 R5
#176 #208 #80 #111 #2200 #120736 #98656 #19388 #2119 #19388
Experiments

Diamond

Parameter $P_i=(n,s,b,r)$ # equilibria

DMCSOPT

DMCS

#43.125
#1235
#35.25
#5772.8
#30.75
#80.5

#43.125 #1235 #35.25 #5772.8 #30.75 #80.5
Conclusions

- MCS is a general framework for integrating diverse formalisms
- First attempt for distributed MCS evaluation
- In certain settings, we can compile bridge rules away and use SAT solvers locally to generate partial equilibria (loop formulas for MCS)
- Initial experiments with a prototype implementation

Future work:
- Improve scalability
- Move away from "knowing-nothing" to "knowing-something"
- Approximation semantics
- Syntactic restrictions
- Specialized algorithms for some types of topologies
- How to deal with dynamic setting?
Conclusions

- MCS is a general framework for integrating diverse formalisms
- First attempt for distributed MCS evaluation
- In certain settings, we can compile bridge rules away and use SAT solvers locally to generate partial equilibria (loop formulas for MCS)
- Initial experiments with a prototype implementation

Future work:

- improve scalability
 - move away from “knowing-nothing” to “knowing-something”
 - approximation semantics
 - syntactic restrictions
 - specialized algorithms for some types of topologies
- how to deal with dynamic setting?
Related work

Frameworks/Platforms

- Framework for P2P inference systems [Hirayama and Yokoo, 2005]: consequence finding v.s. model building
- MWeb [Analyti et al., 2008]: scope and context for modular web rule bases on the Web

Distributed Reasoning

- Satisfiability checking for homogeneous, monotonic MCS [Roelofsen et al., 2004]: (co-inductive) fixpoint strategy, not truly distributed
- DisSAT [Hirayama and Yokoo, 2005]: finding single models (randomize)
- Distributed Description Logic [Serafini and Tamilin, 2005], [Serafini et al., 2005]
 - reasoning v.s. (distributed) model building
 - loose v.s. tight integration (signatures, meaning of symbols)

Katsutoshi Hirayama and Makoto Yokoo.
The distributed breakout algorithms.

Floris Roelofsen, Luciano Serafini, and Alessandro Cimatti.

Luciano Serafini and Andrei Tamilin.
Drago: Distributed reasoning architecture for the semantic web.