1. Motivation

- Information exchange between rules and ontology can cause inconsistency.

- DL-program $\Pi = (\mathcal{O}, P)$ is inconsistent.

\[\mathcal{O} = \{ \]
- (1) Child \sqsubseteq HasParent
- (2) Adopted \sqsubseteq Child
- (3) Male \sqsubseteq John
- (4) Male \sqsubseteq Pat
- (5) Female \sqsubseteq Male
- (6) hasParent(john, pat)
- (7) isnchildof(john, alex)
- (8) boy(john)
- (9) hasFather(john, pat) \rightarrow DL: Male \sqsubseteq boy; Male \sqsubseteq pat; DL: hasParent(john, pat)
- (10) \bot $\not\models$ notDL; Adopted(john), pat, boy, notDL, Child \sqcup boy; \sqcup Male(alex)

\[P = \{ \]
- (11) \bot $\not\models$ notDL; Adopted(john), pat, boy, notDL, Child \sqcup boy; \sqcup Male(alex)

Aim of this work: change ontology ABox to make DL-program consistent.

- $\mathcal{A}' = \{ \text{Male}(john), \text{hasParent}(john, pat) \}$ is a possible repair of Π that yields flp-repair answer set $I = \{ \text{ischild}(john, alex), \text{boy}(john) \}$.

Contributions:

- Notion of repair and repair answer set;
- Preference selection function σ and its independence property;
- Sound and complete algorithm for repair computation;
- Tractable cases of special ontology repair problem for DL-Lite$_A$.

2. DL-programs

- DL-program: ontology + rules (loose-coupling approach);
- DL-atoms serve as query interfaces to ontology;
- Bidirectional information flow between ontology and rules.

\[\Pi = (\mathcal{O}, P) \] is a DL-program.

\[\Pi = \{ \mathcal{O} \subseteq (1) C \sqsubseteq (2) A \} \]

\[P = \{ \]
- (3) $r(c) \quad \text{D}L[C \sqsubseteq r; D(c)]$
- (4) $q(c) \quad \text{D}L[C \sqsubseteq r; D(c)]$

\[\Pi = (\mathcal{O}, P) \] is consistent.

3. DL-program Evaluation

Given:

\[\Pi = (\mathcal{O}, P), P = \{ r(c); q(c) \quad \text{D}L[C \sqsubseteq r; D(c)] \}, \mathcal{O} = \{ C \sqsubseteq D; A(c) \}. \]

Construct:

\[\Pi = \{ r(c); q(c) \quad \exists c \in c ; \exists c > n c \} \]

Compute:

- $\text{Answer sets of } \Pi: \text{AS}(\Pi) = \{ r(c), q(c) \quad \text{D}L[C \sqsubseteq r; D(c)] \}$

Check:

- $\text{Consistency: } \text{AS}(\Pi) = \{ r(c), q(c) \quad \text{D}L[C \sqsubseteq r; D(c)] \}$
- $\text{Minimality: } \text{AS}(\Pi) = \{ r(c), q(c) \quad \text{D}L[C \sqsubseteq r; D(c)] \}$

4. Ontology Repair Problem (ORP)

Ontology repair problem (ORP) is a triple $P = (\mathcal{O}, D_1, D_2)$, where $\mathcal{O} = (T, A)$; ontology;

\[\Pi = \{ \mathcal{O} \subseteq (1) C \sqsubseteq (2) A \} \]

Related problems were studied in [Sakama, et al., 2003; Calvanese et al., 2012].

Repair (solution) for P is any ABox \mathcal{A}' s.t.

- $\mathcal{O}' = \{ T, A' \}$ is consistent;
- $\tau((T, A' \cup U_j^i) \sqsubseteq Q_j \text{ holds for } 1 \leq j \leq m_1)$
- $\tau((T, A' \cup U_j^i) \sqsubseteq Q_j \text{ holds for } 1 \leq j \leq m_2)$

Given:

\[\Pi = (\mathcal{O}, P), s.t. P = \{ r(c); q(c) \quad \text{D}L[C \sqsubseteq r; D(c)] \}

\[\Pi = \{ r(c); q(c) \quad \text{D}L[C \sqsubseteq r; D(c)] \}

\[\mathcal{A}' = \{ A(c) \} \] is a possible repair for P if $\mathcal{O} = \{ E \sqsubseteq D; A \sqsubseteq D; \neg C(c) \}$.

5. Selection Preferences and Tractable Cases of ORP

Selection function σ: given set of ABoxes \mathcal{S} and ABox \mathcal{A} selects σ-preferred $\mathcal{S}' \subseteq \mathcal{S}$.

Independent σ: ABox one can immediately decide whether $\mathcal{A}' \in \mathcal{S}$ is σ-selected.

- σ deletion repair is independent;
- σ set-minimal (cardinality minimal) change repair is independent.

6. Repair Answer Set Computation

- RepAns extends DL-program evaluation to DL-program repair computation;
- RepAnsSet uses RepAns to compute answer sets of repaired program.

7. References