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Abstract. DL-programs couple nonmonotonic logic programs with DL-ontologies
through queries in a loose way which may lead to inconsistency, i.e., lack of an
answer set. Recently defined repair answer sets remedy this. In particular, for
DL-LiteA ontologies, the computation of deletion repair answer sets can effec-
tively be reduced to constraint matching based on so-called support sets. Here we
consider the problem for DL-programs over EL ontologies. This is more chal-
lenging than adopting a suitable notion of support sets and their computation.
Compared to DL-LiteA, support sets may neither be small nor few, and complete-
ness may need to be given up in favor of sound repair computation on incomplete
support information. We provide such an algorithm and discuss partial support set
computation, as well as a declarative implementation. Preliminary experiments
show a very promising potential of the partial support set approach.

1 Introduction

Nonmonotonic Description Logic (DL-) programs [29] are a prominent proposal to
combine rules and ontologies, following a loose coupling approach (see [21] for an
overview of approaches). Due to a bidirectional information flow between rules and the
ontology via special DL-atoms, they provide a powerful framework for expressing many
advanced reasoning applications. However, the loose interaction between rules and the
ontology can easily lead to inconsistency (lack of answer sets, i.e. models).

Example 1. Consider the DL-program Π = 〈O,P〉 in Figure 1 formalizing an access
policy over an ontology O = T ∪A [4], whose taxonomy (TBox) T is given by (1)-(3),
while (4)-(9) is a sample data part (ABox) A. Besides facts (10), (11) and a simple
rule (12), the rule part P contains defaults (13), (14) expressing that staff members are
granted access to project files unless they are blacklisted, and a constraint (15), which
forbids that owners of project information lack access to it. Both parts, P andO, interact
via DL-atoms, such as DL[Project ] projfile; StaffRequest ](X). The latter specifies
an update of O, via operator ], prior to querying it: i.e. additional assertions Project(c)
are considered for each individual c, such that projfile(c) is true in an interpretation of
P , before all instances X of StaffRequest are retrieved from O. Inconsistency arises as
john , the chief of project p1 and owner of its files, has no access to them.

As an inconsistent DL-program yields no information, a relevant issue is how to
change it in order to gain consistency. In [9], different repair options were discussed



Fig. 1. DL-program Π over a policy ontology

O =



(1) Blacklisted v Staff

(2) StaffRequest ≡ ∃hasAction.Action u ∃hasSubject .Staff u ∃hasTarget .Project

(3) BlacklistedStaffRequest ≡ StaffRequest u ∃hasSubject .Blacklisted

(4) StaffRequest(r1 ) (5) hasSubject(r1 , john) (6) Blacklisted(john)

(7) hasTarget(r1 , p1 ) (8) hasAction(r1 , read) (9) Action(read)



P =



(10) projfile(p1); (11) hasowner(p1 , john);

(12) chief (Y )← hasowner(X ,Y ), projfile(X );

(13) grant(X)← DL[Project ] projfile; StaffRequest ](X),not deny(X);

(14) deny(X)← DL[Staff ] chief ; BlacklistedStaffRequest ](X),

(15) ⊥ ← hasowner(Y,Z),not grant(X),

DL[; hasTarget ](X,Y ),DL[; hasSubject ](X,Z).


and a theoretical framework for repairing inconsistent DL-programs was proposed, in
which the ontology ABox (a likely source of errors) is changed such that the modified
DL-program has answer sets, called repair answer sets. An algorithm to compute the
latter was given in [9] as well, which however lacks practicality.

For DL-LiteA ontologies, a more effective repair algorithm was given in [10]. It is
based on support sets [8] for a DL-atom, which are portions of its input that together
with the ABox determine the value of the DL-atom. The algorithm uses complete
support families, i.e. stocks of support sets such that the value of each DL-atom under
every interpretation can be decided without ontology access. Fortunately, for DL-LiteA
ontologies complete support families are small and easy to compute.

In this paper, we consider a similar approach for ontologies in EL, which like
DL-LiteA is another prominent Description Logic that offers tractable reasoning. De-
spite limited expressivity, EL ontologies are still useful for many application domains,
including biology, medicine, chemistry, policy, etc. Due to range restrictions and concept
conjunctions on the left-hand side of inclusion axioms in EL, a DL-atom accessing
an EL ontology can have arbitrarily large and infinitely many support sets in general.
While for acyclic TBoxes (which is a property often met in practice [13]) the latter is
excluded, complete support set families can be still very large, and constructing as well
as managing them might be impractical. This obstructs to a deployment of the approach
in [10] to EL ontologies.

For this reason, we introduce here a more general algorithm for repair answer set
computation that operates on incomplete (partial) support families. More specifically,
our contributions and advances over previous works [8; 10] are summarized as follows:

– We generalize repair answer set computation to deal with partial support families,
such that EL ontologies can be handled.

– Following [8], we formally define both ground and nonground support sets for EL
ontologies and present techniques for their computation. In contrast to [8; 10], we
take advantage of datalog rewritings of queries over an EL ontology (see also [15]).

– We provide a declarative realization of an algorithm dealing with partial support
families for repair answer set computation within the DLVHEX system. For that, we
present some experimental results showing very promising potential of the approach.
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Fig. 2. Normalized TBox

Tnorm =



(1∗) StaffRequest v ∃hasAction.Action
(2∗) StaffRequest v ∃hasSubject .Staff
(3∗) StaffRequest v ∃hasTarget .Project
(4∗) ∃hasAction.Action v C∃hasA.A

(5∗) ∃hasSubject .Staff v C∃hasS.St

(6∗) ∃hasTarget .Project v C∃hasT .P

(7∗) C∃hasA.A u C∃hasS.St v C∃hasA.Au∃hasS.St

(8∗) C∃hasA.Au∃hasS.St u C∃hasT .P v StaffRequest


As a practical result of this work, we have an implementation of inconsistency

tolerant DL-programs over EL-ontologies, which is the first of its kind.

2 Preliminaries

We first briefly recall DL-programs and repair answer sets; see [29; 9] for details.

Syntax. A DL-program is a pair Π = 〈O,P〉 of a finite ontology O and a finite set of
rules P defined as follows.
• O is an DL-knowledge base (or ontology) over a signature Σo = 〈I,C,R〉 with a set
I of individuals, a set C of concept names and a set R of role names. We assume that
O = T ∪ A is a consistent EL KB [26] with TBox T and ABox A, which are sets of
axioms capturing taxonomic resp. factual knowledge. Concepts C and roles R obey the
following syntax, where A ∈ C is an atomic concept and U ∈ R is an atomic role:

C → A B → C | C uD | ∃R.C R→ U

TBox axioms are of the form B1 v B2 (inclusion axiom); ABox assertions are of
the form A(a) and U(a, b), where A ∈ C, U ∈ R and a, b ∈ I; A TBox is normalized,
if all of its axioms have one of the following forms:

A1 v A2 A1 uA2 v A3 ∃R.A1 v A2 A1 v ∃R.A2,

where A1, A2, A3 are atomic concepts. E.g., the axioms (1) and (2) in Example 1 are in
normal form, while axiom (3) is not. For any EL TBox, an equivalent TBox in normal
form is constructable in linear time [26] (over an extended signature); Figure 2 shows a
normalized form of the TBox in Example 1.

In the sequel, we use P as a generic predicate from C∪R (if distinction is immaterial).
• P consists of logic program rules r of the form

a1 ∨ . . . ∨ an ← b1, . . . , bk,not bk+1, . . . ,not bm , (1)

where n+m > 0, all ai are lp-atoms, and each bi is either an lp-atom or a DL-atom;
here

– an lp-atom is a first-order atom p(t) with predicate p from a set P of predicate
names disjoint with C and R, and constants from a set C; we adopt C = I.

– a DL-atom a(t) is of form DL[λ; Q](t), where

λ = S1 op1 p1, . . . , Sm opm pm, m ≥ 0, (2)
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s.t. for 1 ≤ i ≤ m, Si ∈ C ∪R, opi ∈ {], −∪} is an update operator, 1 and pi ∈ P
is an input predicate of the same arity as Si—intuitively, opi =] (resp., opi = −∪)
increases Si (resp., ¬Si) by the extension of pi; Q(t) is a DL-query, which is either
of the form (i) C(t), where C is a concept and t is a term; (ii) R(t1, t2), where R is
a role and t1, t2 are terms; or (iii) ¬Q′(t) where Q′(t) is from (i)-(ii).

If n = 0, the rule r is a constraint.

Example 2 (cont’d). The DL-atom DL[Project ] projfile; StaffRequest ](X) con-
tained in rule (12) of Example 1 first enriches the concept Project inO by the extension
of the predicate projfile in P via ], and then queries the concept StaffRequest .

Semantics. The semantics of a DL-program Π = 〈O,P〉 is in terms of its grounding
gr(Π) = 〈O, gr(P)〉 over C, i.e., gr(P) contains all ground instances of rules r in P
over C. In the remainder, by default we assume that Π is ground.

A (Herbrand) interpretation of Π is a set I ⊆ HBΠ of ground atoms, where HBΠ is
the usual Herbrand base w.r.t. C and P; I satisfies an lp-atom a, if a ∈ I and a DL-atom
a of the form (2) if

O ∪ τ I(a) |= Q(c) (3)

where τ I(a) =
⋃m
i=1Ai(I), and Ai(I) =

{
{Si(t) | pi(t) ∈ I}, for opi = ];
{¬Si(t) | pi(t) ∈ I}, for opi = −∪.

Satisfaction of a DL-rule r resp. set P of rules by I is then as usual, where I satisfies
not bj if I does not satisfy bj ; I satisfies Π , if it satisfies each r ∈ P . We denote that I
satisfies (is a model of) an object o (atom, rule, etc.) by I |=Oo.

Example 3 (cont’d). Consider I = {projfile(p1 ), hasowner(p1 , john), chief (john)},
which satisfies dl-atom d = DL[Project ] projfile; StaffRequest ](r1 ) of Example 1,
as O ∪ τ I(d) |= StaffRequest(r1 ). However for O′, given by O without (4) and (5),
O′ ∪ τ I(d) 6|= StaffRequest(r1 ) and thus I does not satisfy d under O′.

An (flp-)answer set of Π = 〈O,P〉 is any interpretation I that is a ⊆-minimal model
of the flp-reduct ΠI

FLP , which maps P and I ⊆ HBΠ to the rule set PIFLP = {rIFLP |
r ∈ gr(P)}, where rIFLP = r if the body of r is satisfied, i.e., I |=O bi, for all bi,
1 ≤ i ≤ k and I 6|=O bj , for all k < j ≤ m; otherwise, rIFLP is void.

A DL-program Π is inconsistent, if it has no answer set. An interpretation I is an
(flp-)deletion repair answer set of Π = 〈T ∪ A,P〉, if it is an flp-answer set of some
Π ′ = 〈T ∪ A′,P〉 where A′ ⊆ A; any such A′ is called a deletion repair of Π . Note
that we consider arbitrary deletion repairs. One might resort to more refined notions of
repair [9], e.g., ⊆-maximal deletion repairs, however resulting in a complexity increase.

Example 4 (cont’d). Program Π is inconsistent; if we remove (6) from A, then I =
{projfile(p1 ), hasowner(p1 , john), chief (john), grant(r1 )}, becomes an answer set.
Along with the facts (8) and (9) the flp-reduct PIFLP contains the ground rule (10), where
X is substituted by r1 . Then I is a deletion repair answer set with respect to the repair
A′ = {Action(read), hasAction(r1 , read),StaffRequest(r1 ), hasSubject(r1 , john),
hasTarget(r1 , p1 )}.

1 We disregard here for simplicity the less used constrains-operator −∩ and subsumption queries.
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Shifting Lemma. To simplify matters and avoid dealing with the logic program pred-
icates separately, we shall shift as in [10] the lp-input of DL-atoms to the ontology.
Given a DL-atom d = DL[λ; Q](t) and P ◦ p ∈ λ, ◦ ∈ {], −∪}, we call Pp(c) an input
assertion for d, where Pp is a fresh ontology predicate and c ∈ C;Ad is the set of all such
assertions. For a TBox T and a DL-atom d, we let Td = T ∪ {Pp v P | P ] p ∈ λ},
and for an interpretation I , let OId = Td ∪ A ∪ {Pp(t) ∈ Ad | p(t) ∈ I}. We then have:

Proposition 1 ([10]). For every O = T ∪ A, DL-atom d = DL[λ; Q](t) and interpre-
tation I , it holds that I |=O d iff I |=OI

d DL[ε; Q](t) iff OId |= Q(t).

Unlike O ∪ τ I(d), in OId there is a clear distinction between native assertions and
input assertions for d w.r.t. I (via facts Pp and axioms Pp v P ), mirroring its lp-input.

3 Support Sets for DL-atoms
In this section, we provide a definition of support sets using the framework given in [8].
Intuitively, a support set for a DL-atom d is a portion of its input that determines the
output values of d.

Definition 1 (Ground Support Sets). Let d(c) = DL[λ; Q](c) be a ground DL-atom
of a DL-program Π = 〈O,P〉. Then a support set for d is a subset of the Herbrand Base
S = {pi(t) ∈ HBΠ , Pi ] pi ∈ λ}, s.t. for all interpretations I, I ′ ⊇ S, it holds that
I |=O d iff I ′ |=O d. Moreover, S is positive (resp. negative), if for every interpretation
I ⊇ S it holds that I |=O d (resp. I 6|=O d).

In this work we exploit only positive support sets, i.e. portions of the ontology input,
which ensure that the DL-atom will be true.

Example 5. Recall Π and d(r1) = DL[Project ] projfile; StaffRequest ](r1) from
Example 1. A positive ground support set for d(r1) is S = {projfile(p1 )}. Indeed, for
all interpretations I ⊇ {projfile(p1 )}, it holds thatA∪T ∪λI(d) |= StaffRequest(r1).

Intuitively, support sets reflect the relevant part of an external source (ontology in our
case). Thus different ground support sets can be similar with respect to their structure.
With this motivation in mind in [8] support sets were lifted to the nonground level. The
definition of a nonground support set exploits source information in the form of so-called
conditional guards (γ); we now adapt it to DL-programs.

Definition 2. Let Π be a DL-program and let d(X) = DL[λ; Q](X) be a DL-atom of
Π . A positive nonground support set S for d(X) is a pair 〈N, γ〉, where

– N ⊆ {pi(Y ) | Pi ◦ pi ∈ λ, ◦ ∈ {], −∪}} is a set of nonground atoms over the input
signature λ of d;

– γ : C|X| × grndC(N)→ {0, 1} is a Boolean function (called the guard), s.t. for all
c ∈ C|X| and Ngr ∈ grndC(N) it holds that γ(c, Ngr) = 1 only if Ngr is a ground
support set for d(c).
In this definition, grndC(N) is the support family, i.e. a set of support sets, con-

structed from N by replacing all variables with constants from C in all possible ways.
Intuitively, the guard γ is an abstract function that checks a condition under which the
ground atoms for predicates in N form a ground support set. A family S of support sets
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is said to be complete for a (non-ground) DL-atom d(X) iff for every c ∈ C|X| and
ground support set S of d(c), there exists S′ = 〈N, γ〉 ∈ S, such that S ∈ grndC(N)
and γ(c, S) = 1.

Example 6. The DL-atom d(X) = DL[Project ] projfile; StaffRequest ](X) has S1 =
〈projfile(Y ), γ〉 as a nonground support set, where γ : C × grndC(projfile(Y )) →
{0, 1} is such that γ(c, projfile(c′)) = 1 only if the ABox A contains the assertions
hasAction(c, c1 ), Action(c1 ), hasSubject(c, c2 ), Staff (c2 ), and hasTarget(c, c′),
where c1, c2 are arbitrary constants from C.

Another nonground support set for d(X) is S2 = 〈∅, γ′〉, where γ′ : C × ∅ → {0, 1}
is such that γ′(c, ∅) = 1 only if StaffRequest(c) ∈ A.

The abstract definition of nonground support sets leaves room for flexible realiza-
tion of the conditional guard γ. A natural one is by (unions of) conjunctive queries
(UCQs) over the ontology ABox viewed as a database. In Example 6, the guard γ of S1

takes as input a constant c ∈ C and a ground instance of form projfile(c′), and returns
1 if the Boolean CQ q(c) ← ∃X,X ′ φ(X,X ′) evaluates to true, where φ(X,X ′) =
hasAction(c,X ) ∧Action(X ) ∧ hasSubject(c,X ′) ∧ Staff (X ′) ∧ hasTarget(c, c′).
The UCQ q(c)← ∃X,X ′ φ(X,X ′)∨ψ(X,X ′), whereψ(X,X ′) = hasAction(c,X )∧
Action(X ) ∧ hasSubject(c,X ′) ∧Blacklisted(X ′) ∧ hasTarget(c,X ′), is more gen-
eral; even more general guards are possible (e.g. nonrecursive datalog programs).

3.1 Computing Support Sets for DL-atoms over EL Ontology
We now provide a method for support set construction that allows us to just work with
ontology predicates when constructing nonground support sets.

As negation is not available nor expressible in EL (⊥ is unavailable), from now on
we restrict our attention to DL-atoms DL[λ; Q](c) with positive updates, i.e. ◦ ∈ {]}
for all P ◦ p ∈ λ.

The discussion above reveals that for support set construction, it is natural to exploit
(conjunctive) query answering methods in EL (e.g., [23; 19; 18; 25]). Most of them are
based on rewriting the query and the TBox into a datalog program over the ABox; to
construct guard functions that use a datalog rewriting of the TBox seems thus suggestive.

Suppose we are given a DL-program Π = 〈O,P〉, where O = 〈T ,A〉 is an
EL ontology and a DL-atom d(X) = DL[λ; Q](X). Our method for constructing
nonground support sets for d(X) consists of the following three steps.
Step 1. DL-query Rewriting over the TBox. The first step exploits the rewriting of
the DL-query Q of d(X) over the TBox Td = T ∪ {Pp v P | P ] p ∈ λ} into a
set of datalog rules, see e.g. Figure 3. At the preprocessing stage, the normalization
technique is first applied to the TBox Td. This technique restricts the syntactic form
of TBoxes by decomposing complex axioms into syntactically simpler ones. For this
purpose, a minimal required set of fresh concept symbols is introduced. Given a TBox
Td, its normalized form Tdnorm is computed in linear time [1]. We then rewrite the part
of the TBox, relevant for the query at hand, into a datalog program ProgQ,Tdnorm

using
the translation given in Table 1, which is a variant of [22; 28]. When rewriting axioms of
the form A1 v ∃R.A2 (fourth axiom in Table 1) we introduce fresh constants (oA2

) to
represent “unknown” objects. A similar rewriting is exploited in the REQUIEM system
(where function symbols are used instead of fresh constants). As a result we obtain:
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Axiom Datalog rule
A1 v A2 A2(X)← A1(X)

A1 uA2 v A3 A3(X)← A1(X), A2(X)
∃R.A2 v A1 A2(X)← R(X,Y ), A3(Y )
A1 v ∃R.A2 R(X, oA2)← A1(X)

A2(oA2)← A1(X)

Table 1. EL TBox Rewriting

Lemma 1. For any data part, i.e., ABox A, and any ground assertion Q(c), deciding
ProgQ,Tdnorm

∪ A |= Q(c) is equivalent to checking Tdnorm ∪ A |= Q(c).

Step 2. Query Unfolding. The second step proceeds with the standard unfolding of
the rules of ProgQ,Tdnorm

w.r.t. the target DL-query Q. We start with the rule that has
Q in the head and expand its body using other rules of the program ProgQ,Tdnorm

. By
applying this procedure exhaustively, we get a number of rules which correspond to the
rewritings of the query Q over Tdnorm. Note that it is not always possible to obtain all
of the rewritings effectively, since in general there might be infinitely many of them
(exponentially many for acyclic T ). We discuss possible restrictions in the next section.

Step 3. Support Set Extraction. The last step is devoted to the extraction of nonground
support sets from the rewritings computed in Step 2. We select those that contain only
predicates from Td and obtain a set of rules r of the form

Q(X)← P1(Y1), . . . Pk(Yk), Pk+1pk+1
(Yk+1), . . . , Pnpn(Yn), (4)

where each Pi is a native ontology predicate if 1 ≤ i ≤ k, and a predicate mirroring
lp-input of d otherwise. From such rules r we construct pairs S = 〈N, γ〉, where

– N = {pi(Yi) |Pipi(Yi) ∈ B(r), k + 1 ≤ i ≤ n};
– γ : C|X| × grndC(N) → {0, 1} is such that γ(c, Ngr) = 1 only if Q(c) follows

from r ∪ Ad, where Ad = A ∪ {Pipi(t) | pi(t) ∈ Ngr}.
Then the following holds.

Proposition 2. Let d(X) = DL[λ; Q](X) be a DL-atom of a program Π = 〈O,P〉,
where O = 〈T ,A〉, is an EL ontology. A set S, constructed using Step 1-Step 3 is a
nonground support set for d(X).

Proof. Towards a contradiction assume that S is not a nonground support set for d(X).
This means that either (1) N is not a set of nonground predicates from λ or (2) the
function γ of Definition 2 is not correct.

The predicates of the form PP in the TBox Td are obtained from λ of d(X) by
construction and clearly so are the predicates Pjpj of each rule r. Thus predicates in N
are indeed nonground predicates from the input signature of d(X).

Hence the function γ must be incorrect, i.e. some c ∈ C|X|, and Ngr ∈ grndC(N)
must exist, s.t. γ(c, Ngr) = 1 but Ngr is not a positive ground support set for d(c). The
latter means that some interpretation I ′ ⊇ Ngr exists s.t. I ′ 6|=O d(c). By Proposition 1
we have that OI′d 6|= Q(c), i.e. Td ∪Ad ∪ {Pipi(t) | pi(t) ∈ I ′} 6|= Q(c). On the other
hand, we know that Q(c) follows from r and Ad ∪ {Pipi(t) | pi(t) ∈ I ′}. Since r is
obtained by unfolding of the rules in ProgQ,Tdnorm

, we know that Q(c) also follows
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Fig. 3. DL-query Rewriting for DL[Project ] projfile; StaffRequest ](X) over Tdnorm

ProgQ,Tdnorm
=



(4′) C∃hasA.A(X )← hasAction(X ,Y ),Action(Y ).
(5′) C∃hasS.St(X )← hasSubject(X ,Y ),Staff (Y ).
(6′) C∃hasT .P (X )← hasTarget(X ,Y ),Project(Y ).
(7′) C∃hasA.Au∃hasS.St(X )← C∃hasA.A(X ),C∃hasS.St(X ).
(8′) StaffRequest(X )← C∃hasA.Au∃hasS.St(X ),C∃hasT .P (X ).
(9) Project(X )← Projectprojfile(X ).


from ProgQ,Tdnorm

∪Ad and hence from Tdnorm∪A by construction of ProgQ,Tdnorm
.

Consequently, T ∪ Ad |= Q(c) must hold. ut

As shown above, when working with support sets we can restrict ourselves to the
ontology predicates and operate only on them. More specifically, rules of the form (4)
fully reflect nonground support sets as of Definition 2, and ground instantiations of such
a rule over constants from C implicitly correspond to ground support sets.

According to novel results [15], complete support families can be computed for large
classes of ontologies. However, in general there might be exponentially many unfoldings
produced at Step 2. Thus, to cope with exponentiality, one might often want to apply
reasonable restrictions on the support families.

4 Partial Support Family Computation

In this section we discuss restrictions on the size, structure and number of support sets,
which is of interest for practical applications, and we analyze conditions under which all
support sets from the restricted category form a complete support family.

In general, unlike for the DL-LiteA case, due to possible cyclic dependencies of the
form C v ∃R.C allowed in EL, the explanations of an instance query can be of infinite
size and so are the support sets for DL-atoms accessing an EL ontology.

An analysis of a vast number of ontologies has revealed that in many realistic cases
they do not contain (or imply) cyclic axioms [13]; we thus assume that the TBox of the
ontology in a given DL-program is acyclic (i.e., does not entail inclusion axioms of form
C v ∃R.C). However, even under this restriction support sets can be large in general.

Example 7. If T implies the following chain of inclusions ∃R1.A1 v Q,∃R2.A2 v
A1,∃R3.A3 v A2, . . . ,∃Rn.An v An−1, then the set of ground support sets for

DL[R1 ] p1, R2 ] p2, . . . , Rn ] pn, An ] q; Q](c1)

contains {p1(c1, c2), p2(c2, c3), p3(c3, c4) . . . pn(cn−1, cn), q(cn)}. Replacing Ai with
nested range restrictions and conjunctions would yield support sets of exponential size.

This raises the question of reasonable restrictions on the form and size of support
sets, and under which conditions such restrictions still yield complete support families.
Support set size. A natural approach for computing a partial support family is the
restriction of the target support set size. We may put a certain bound on the size of
support sets that we want to compute and proceed with unfolding of the rules of the
datalog program. When a certain unfolding branch reaches the size limit, we stop its
further expansion and choose a different branch.
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Suppose the size is bounded by n. Under the following conditions on the TBox the
set of all support sets of size at most n is complete:

– inclusions do not contain any existential restrictions on the left hand side and the
number of conjuncts on the left hand side of all inclusions in the TBox is bounded by n.

– all existential restrictions of form ∃R.A occurring on the left hand side of inclusions
are such that A occurs in the TBox elsewhere only in simple atomic concept inclusions.

Number of Support Sets. Another restriction relevant in practice regards the number
of support sets. In general, determining the exact number of support sets that is needed
to form a complete family for a DL-atom is a hard problem. It is tightly related to
counting minimal explanations for an abduction problem, which was analyzed in [16]
for propositional theories under various restrictions; there it was shown that counting
all smallest solutions (explanations) for an abduction problem over a Horn theory is
#OptP [logn]-complete. Moreover, meaningful conditions such that a fixed number n
of support sets suffices to obtain a complete family are non-obvious (bounded tree-width
[14] might be useful, as for efficient datalog abduction); a careful analysis of real world
ontologies is needed to ensure practical relevance. This remains for future research.

5 Algorithm for Repair Answer Set Computation

In this section, we present our algorithm SoundRAnsSet for computing deletion repair
answer sets by exploiting support families for DL-atoms accessing an EL ontology.

Exploiting DLVHEX, DL-programs are evaluated via a rewriting Π̂ of gr(Π), where
DL-atoms a are replaced by ordinary atoms ea (replacement atoms), together with a
guess on their truth by additional “choice” rules ea ∨ nea, where nea stands for the
negation of ea. We denote interpretations of Π̂ by Î , and use Î|Π when referring to their
restriction to the original language of Π .

The naive algorithm for repair answer set computation [9] cycles through all ABox
candidates A′ and checks whether under A′ the guess for the replacement atoms coin-
cides with their actual values. IfA′ fulfills this, an unfoundedness check is performed for
this repair candidate. An alternative approach [10], specifically targeted at DL-LiteA
ontologies, aims at finding repairs using complete support families for DL-atoms. In our
algorithm SoundRAnsSet for EL ontologies (see Algorithm 1) we also exploit support
families, but do not require that they are complete. If the families are complete (which
may be known), then SoundRAnsSet is guaranteed to be complete; otherwise, it may
miss repair answer sets (an easy extension ensures completeness though).

We start (a) by computing a family S of nonground support sets for each DL-atom.
Next the replacement program Π̂ is created, whose answer sets Î are computed one by
one in (b). For Î , we first determine the sets Dp (resp. Dn) of DL-atoms that are guessed
true (resp. false) in it and then use the function Gr(S, Î,A) which instantiates S for the
DL-atoms in Dp ∪Dn to relevant ground support sets, i.e., those compatible with Î .

In (d) we check whether some DL-atom in Dn has a support set S consisting just of
input assertions; if so we move to the next answer set Î of Π̂ . Otherwise, we (e) loop
over all minimal hitting sets H ⊆ A of the support sets for DL-atoms in Dn, formed by
ABox assertions only. For each H we check whether every atom in Dp has at least one
support set disjoint from H . If yes (f), i.e. removing H fromA does not affect the values
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of DL-atoms in Dp, then we evaluate in a postcheck the atoms from Dn over T ∪ A\H
w.r.t. Î . Otherwise, we evaluate the DL-atoms from Dn and Dp. A Boolean flag rep
stores the evaluation result of a function evaln(resp. evalp). More specifically, given Dn

(resp. Dp), Î and T ∪ A\H , the function evaln (resp. evalp) returns true, if all atoms
in Dn (resp. Dp) evaluate to false (resp. true). If rep is true and the foundedness check
flpFND(Î ,A \H,P) succeeds, then in (g) Î|Π is output as repair answer set.

We remark that in many cases, the foundedness check might be trivial [7]; if we
would consider weak FLP-answer sets [9], it can be skipped.

Example 8 (cont’d). ConsiderΠ from Example 1 with equivalence (≡) in axioms (2) and
(3) substituted byw. Let Î = {projfile(p1 ), hasowner(p1 , john), chief (john), ea ,neb}
be returned at (b), where a= DL[Project ] projfile; Staffrequest ](r1 ) and
b= DL[Staff ] chief ; BlacklistedStaffRequest ](r1 ). At (c) we obtained

– SÎgr(a) = {S1, S2}, where S1 = {hasAction(r1 , read), hasSubject(r1 , john),
Action(read),Staff (john), hasTarget(r1 , p1 ),Projectprojfile(p1 )} and
S2 = {StaffRequest(r1 )};

– SÎgr(b) = {S′1, S′2} with S′1 = {StaffRequest(r1 ), hasSubject(r1 , john),
Blacklisted(john)} and S′2 = {BlacklistedStaffRequest(r1 )}.
At (e) we got a hitting set H = {StaffRequest(r1 ),BlacklistedStaffRequest(r1 )},

which is disjoint with S1. Thus we get to the if branch of (f) and check whether b
is false under A\{StaffRequest(r1 )}. This is not true, hence rep = false and we
pick a different hitting set H ′, e.g {Blacklisted(john),BlacklistedStaffRequest(r1 )}.
Proceeding with H ′, we get to (g), since at (f) evaln(b, Î, T ∪ A ∩H) = true.

Proposition 3. SoundRAnsSet is sound, it outputs only deletion repair answer sets.

If the support families are complete, then the postchecks at (f) are redundant. In case
the if-condition of (f) is satisfied, we set rep = true , otherwise rep = false .

Proposition 4. If for all DL-atoms in Π the support families in S are complete, then
SoundRAnsSet is complete, i.e., it outputs every deletion repair answer set.

We easily can turn SoundRAnsSet into a complete algorithm, by modifying (e) to
consider all hitting sets and not only minimal ones. In the worst case, this means a
fallback to almost the naive algorithm (note that all hitting sets can be enumerated
efficiently relative to their number).

6 Implementation and Experiments

We have implemented the algorithm within the DLVHEX evaluation framework,2 thus
providing a means to effectively compute some deletion repair answer sets for EL.
For support set computation we exploit the REQUIEM tool [22], which produces the
rewritings of the target query using datalog rewriting techniques.

More specifically, we proceed as follows: first for each DL-atom we compute query
rewritings of a certain size using REQUIEM. We then use a declarative approach

2 http://www.kr.tuwien.ac.at/research/systems/dlvhex
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Algorithm 1: SoundRAnsSet : compute deletion repair answer sets
Input: Π=〈T ∪ A,P〉
Output: a set of deletion repair answer sets of Π

(a) compute a set S of nongr. supp. sets for the DL-atoms in Π
(b) for Î ∈ AS(Π̂) do
(c) Dp ← {a | ea ∈ Î}; Dn ∈ {a | nea ∈ Î}; SÎgr ← Gr(S, Î,A);

(d) if every S ∈ SÎgr(a
′) for a′ ∈ Dn fulfills S ∩ A 6= ∅ then

(e) for all min. hitting sets H ⊆ A of
⋃
a′∈Dn

SÎgr(a
′) do

(f) if for every a ∈ Dp some S ∈ SÎgr(a) exists s.t. S ∩H = ∅;
then rep← evaln(Dn, Î, T ∪ A\H) ;
else rep← evaln(Dn, Î, T ∪ A\H) ∧ evalp(Dp, Î, T ∪ A\H);

(g) if rep and flpFND(Î , 〈T ∪ A\H,P〉) then output Î|Π ;
end

end
end

for computing repair answer sets, in which support detection and minimal hitting set
computation are accomplished by rules. To this end, for each DL-atom a(X) fresh
predicates Sa(X), SPa (Y ) and SA,Pa (Y ) are introduced, where Y = XX′, which
intuitively say that a(X) has some support set, some support set with only logic program
predicates, and some mixed support set, respectively (for simplicity we superficially use
uniform variables). Furthermore, rules of the following form are added:

(1) Sa(X) ← SP
a (Y ) (5) ⊥ ← nea(X), SP

a (Y )

(2) Sa(X) ← SA,P
a (Y ) (6) P̄1a(Y ) ∨ . . . ∨ P̄na(Y )← nea(X), SA,P

a (Y )

(3) SP
a (Y ) ← rb(Sp

a(Y )) (7) evala(X)← ea(X), not Ca(X), not Sa(X)

(4) SA,P
a (Y )← rb(SA,P

a (Y )), (8) evala(X)← nea(X), not Ca(X)
nd(SA,P(Y ))

Here Ca(X) states that the support family for a(X) is known to be complete; such
information can be added by facts. The rules (1)-(4) derive information about support
sets of a(X) under a potential repair; rb(S) stands for a rule body rendering of a support
set S, and nd(S) = not P̄1a(Y ), . . . ,not P̄na(Y ), where {P1a(Y ), . . . , Pna(Y )}
is the ontology part of S and P̄ia(Y ) states that the assertion Pia(Y ) is marked for
deletion. The constraint (5) forbids a(X), if guessed false, to have a matching support
set with only input assertions; (6) means that if a(X) has instead a matching mixed
support set, then some assertion from its ontology part must be eliminated. The rule (7)
says that if a(X) is guessed true and completeness of its support family is not known,
then an evaluation postcheck must be performed (evala(X)) if no matching support set
is available; rule (8) is similar for a(X) guessed false (mind rule (5)).
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6.1 Experiments

We have conducted a preliminary experimental evaluation of our approach by considering
inconsistent DL-programs over acyclic OWL 2 EL ontologies.
Experimental Setup. We have computed repair answer sets with complete and incom-
plete support families. The experiments were run on a Linux server with two 12-core
AMD 6176 SE CPUs/128GB RAM using DLVHEX 2.3.0; a timeout of 300 secs was set
for each run. As benchmarks, we used the following problems.
Access Policy Control. The first benchmark is a slight modification of Example 1 with an
additional TBox axiom Blacklisted v Unauthorized . We have run experiments in two
settings: (a) with complete support families and (b) with support families obtained under
different restrictions, viz. bounded size and cardinality. We considered three ABoxes
with 40, 100 and 1000 staff members, respectively, and generated facts of the form
hasowner(pi , si), and such that Staff (si),Project(pi) ∈ A. For the setting where com-
plete support families were computed, we used ABoxes with 100 and 1000 staff members,
respectively. For the incomplete scenario we used an ABox with 40 staff members. In
each data set, 30% of staff members are unauthorized and 20% are blacklisted. Instances
vary on facts hasowner(pi , si). For each si, pi s.t. Staff (si),Project(pi) ∈ A, a fact
hasowner(pi , si) is added to the program with probability p/100, where p ranges from
20 to 90 for the complete setting and from 5 to 35 for the incomplete one.

The total average running times (including support set computation and timeouts) for
computing the first repair answer set for these settings are shown in Table 2. The number
of timeouts per each run is reported in brackets. The columns for the incomplete case
show the restriction on support sets we used in their generation, viz. size (resp. number)
of support sets bounded by 2 resp. unlimited; the latter means that in fact all support sets
were computed, but the system is not aware of the completeness.

We exploit partial completeness for the number restriction case, i.e. if no more
support sets for an atom are computed and the number limit is not yet reached, then the
support family for the considered atom is complete.
Open Street Map. For the second benchmark, we added rules on top of the ontology
developed in the MyITS project,3 which enhanced personalized route planning with
semantic information. The ontology contains 4601 axioms, where 406 axioms are in the
TBox and 4195 are in the ABox. The fragment O relevant for our scenario and the rules
P are shown in Figure 4. Intuitively,O states that building features located inside private
areas are not publicly accessible and a covered bus stop is a bus stop with a roof. The
rules P check that public stations do not lack public access, using CWA on private areas.

We used the method in [12] to extract data from the OpenStreetMap,4 and we
constructed an ABoxA by extracting the sets of all bus stops (285) and leisure areas (682)
of the Irish city Cork, as well as isLocatedInside relations between them (9) (i.e., bus
stops located in leisure areas). As the data has been gathered by many volunteers, chances
of inaccuracies may be high (e.g. imprecise gps data). As data about roofed bus stops and
private areas is not available yet, we randomly made 80% of the bus stops roofed and 60%
of leisure areas private. Finally, we added for each bsi s.t. isLocatedInside(bsi, laj) ∈ A

3 http://www.kr.tuwien.ac.at/research/projects/myits/
4 http://www.openstreetmap.org/
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p
Complete supp. family

p
Support set size restricted Support set number restricted
sizelim=2 sizelim=∞ numlim=2 numlim=∞

A100 A1000 A40

20 (30) 2.28 (0) 13.89 (0) 5 (30) 21.09 (0) 4.35 (2) 2.70 (2) 4.30 (2)
30 (30) 2.27 (0) 13.93 (0) 10 (30) 26.62 (5) 5.50 (3) 6.64 (3) 5.49 (3)
40 (30) 2.28 (0) 14.02 (0) 15 (30) 30.20 (12) 7.53 (5) 3.25 (10) 7.56 (5)
50 (30) 2.29 (0) 14.33 (0) 20 (30) 48.99 (5) 5.21 (4) 3.07 (4) 5.38 (4)
60 (30) 2.28 (0) 14.59 (0) 25 (30) 37.37 (16) 26.41 (6) 4.48 (14) 26.39 (6)
70 (30) 2.29 (0) 15.08 (0) 30 (30) 19.33 (22) 38.75 (6) 6.74 (12) 40.41 (6)
80 (30) 2.30 (0) 15.59 (0) 35 (30) 16.32 (26) 49.41 (10) 5.23 (17) 51.47 (10)
90 (30) 2.30 (0) 16.23 (0)

Table 2. Policy benchmark results (30 runs per p; time in sec. (#timeouts) for 1st rep. AS)

p Complete supp. family
Support set size restricted Support set number restricted

sizelim=1 sizelim=2 sizelim=∞ numlim=1 numlim=2 numlim=∞
10 (30) 10.08 (0) 13.87 (0) 13.22 (0) 14.19 (0) 13.82 (0) 13.98 (0) 13.89 (0)
20 (30) 9.36 (0) 23.38 (0) 22.82 (0) 20.32 (1) 20.32 (1) 20.19 (1) 20.29 (1)
30 (30) 9.13 (0) 27.92 (1) 27.48 (1) 20.36 (3) 20.39 (3) 20.18 (3) 20.22 (3)
40 (30) 9.53 (0) 54.63 (3) 54.36 (3) 23.34 (10) 23.31 (10) 23.42 (10) 23.51 (10)
50 (30) 9.62 (0) 76.08 (1) 76.18 (1) 19.61 (13) 19.48 (13) 19.48 (13) 19.64 (13)

Table 3. OpenStreetMap benchmark results (30 runs per p; time in sec. (#timeouts) for 1st rep. AS)

Fig. 4. DL-program Π over OpenStreetMap ontology

O =

{
(1) BuildingFeature u ∃isLocatedInside.Private v NoPublicAccess
(2) BusStop u Roofed v CoveredBusStop

}

P =


(9) publicstation(X)← DL[BusStop ] busstop; CoveredBusStop](X);

not DL[; Private](X);
(10) ⊥ ← DL[BuildingFeature ] publicstation; NoPublicAccess](X),

publicstation(X ).


the fact busstop(bsi) to P with probability p/100. Some instances are inconsistent since
in our data set there are roofed bus stops, located inside private areas.

The results for both complete and incomplete support families are shown in Table 3.

Discussion of Results. As expected, using complete support families works for both
settings well in practice. For the policy benchmark, allowing up to 2 support sets is more
effective than bounding the size by 2. This is due to exploitation of partial completeness
for the case when the number of support sets is limited. Moreover, there are just few
support sets for each DL-atom in this scenario; however almost all support sets have
size larger than 2. Thus many random guesses on potential repair candidates need to be
done, which is witnessed by jumps in the runtime for p = 40 to p = 80. If both size and
number of support sets are unlimited, the obtained results are practically the same.

A similar behavior is observed for the OpenStreetMap scenario. Even if the ontology
is big, runtimes do not differ significantly from the Policy example. This is due to liberal
safety [6], which effectively restricts the reasoning only to relevant individuals. We can
again see that bounding the number of support sets works better; however, there are no
jumps for bounded support set size. This is because a considerable number of support
sets has size at most 2, and they guide the repair search effectively.
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7 Related Work and Conclusion

We considered computing repair answer sets of DL-programs over EL ontologies, for
which we generalized the support set approach [10; 8] for DL-LiteA to work with
incomplete families of supports sets; this advance is needed since in EL complete
support families can be large or even infinite. We discussed how to generate support
families, by exploiting query rewriting over ontologies to datalog [19; 23; 25], which is
in contrast to [10; 8] where TBox classification is invoked. We presented an algorithm to
compute deletion repair answer sets which trades answer completeness for scalability (a
variant is complete); a declarative implementation shows very promising results.

As for related work, our DL-program repair is related to ABox cleaning [20;
24]. However, the latter differs in various aspects: it aims at restoring consistency
of an inconsistent ontology by deleting ⊆-minimal sets of assertions (i.e., computing
⊆-maximal deletion repairs); we deal with inconsistency incurred on top of a consistent
ontology, by arbitrary (non-monotonic) rules which access it with an interface. Further-
more, we must consider multiple ABoxes at once (via updates), and use EL instead of
DL-Lite . Refining our algorithm to compute ⊆-maximal deletion repairs is possible.

Our support sets are related to solutions of abduction problems for EL [2], and
correspond in the ground case to support sets for query answering over first-order
rewritable ontologies [3]; nonground computation naturally links to TBox classification
[17]. Abduction had been studied for DL-Lite in [5] and for datalog e.g. in [14; 16].
The use of incomplete support families for DL-atoms is related in spirit to approximate
inconsistency-tolerant reasoning on DLs using restricted support sets [3]; however, we
target repair computation while [3] targets inference from all repairs.

As for implementation, no comparable system exists. The DReW system [27] can
evaluate DL-programs over EL ontologies after transforming the input to datalog, where
DL-atoms are replaced by datalog rewritings; the latter amount to succinct representa-
tions of support sets. However, DReW can not handle inconsistencies and how to inject
repairs efficiently is non-obvious (naive attempts fail).

It remains an issue for further research to identify classes of EL ontologies for
which support sets have a benign structure and can be effectively computed, and on the
other side to extend the work to other members of the EL family. To increase usability
in practice, real world ontologies need to be analyzed to develop good heuristics and
strategies for computing incomplete support families. Another possible research direction
is computing specific types of repairs, e.g. by bounded deletion or addition [9].
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