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Hybrid Knowledge Bases

• MKNF KBs
[Motik and Rosati, 2010]

• FO-Autoepistemic Logic
[de Bruijn et al., 2011]

• Quantified Equilibrium Logic
[de Bruijn et al., 2007]

• Carin [Levy and Rousset, 1998]

• DL-safe rules
[Motik et al., 2005]

• R-hybrid KBs [Rosati, 2005]

• DL+LOG [Rosati, 2006]

• DL-programs [Eiter et al., 2008]

• Defeasible Logic+DL
[Wang et al., 2004]
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• Applications:
• Semantically enriched route planning
• Assignment problems involving preferences
• Medical systems
• Reasoning on the web . . .

• Problem: inconsistencies often arise as a result of combination
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Inconsistency in DL-programs
Problem: inconsistency in a DL-program
Question: how to deal with it?

Many possibilities..
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Description Logic Ontologies
• 1950’s-1960’s: First Order Logic (FOL) for KR

(undecidable)

(e.g. [McCarthy, 1959])

∀X (Female(X ) ∧ ∃Y (hasChild(X ,Y ))→ Mother(X ))

• 1970’s: Network-shaped structures for KR (no formal semantics)
(e.g. semantic networks [Quillan, 1967], frames [Minsky, 1985])

• 1979: Encoding of frames into FOL [Hayes, 1979]

• 1980’s: Description Logics (DL) for KR
• Decidable fragments of FOL
• Theories encoded in DLs are called ontologies O
• Many DLs with different expressiveness and computational features

• In this work: lightweight DLs (DL-LiteA, EL)
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Description Logic DL-LiteA
• Concepts model sets of objects and roles model binary relations

• Child , hasParent

• More complex concepts and roles can be constructed:

Construct Syntax Example

negated concept ¬C ¬Male

exist. on roles ∃R ∃hasChild

negated roles ¬R ¬hasSibling

role inverses R− hasParent−

• A DL-LiteA ontology O = 〈T ,A〉 consists of:

• TBox T specifying constraints at the conceptual level.
C v B R v S (funct R)

• ABox A specifying facts that hold in the domain.
A(b) P(a, b)

Ontology O = 〈T ,A〉 in DL-LiteA
T =

{
Child v ∃hasParent Female v ¬Male

}
A =

{
hasParent(john, pat) Male(john)

}
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Description Logic EL
Ontology O = 〈T ,A〉 in EL

T = {Aunt ≡ Female u ∃hasSibling(∃hasChild .Human)}

A =

{
Female(ann) hasSibling(ann, pat)
Human(john) hasChild(pat , john)

}
• EL-concepts:

Construct Syntax Example

Conjunction A u B Female u Child

Exist. restr. ∃R.A ∃hasSibling.Male

• TBox axioms1:
C v D C ≡ D

1C and D are arbitrarily complex concepts constructed using ∃ and u
8 / 44
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DL-LiteA and EL: FOL Formalization
Child v ∃hasParent is equiv. to ∀x(Child(x)→ ∃y(hasParent(x , y)))

Syntax FOL formalization

A1 v A2 ∀x(A1(x)→ A2(x))

R1 v R2 ∀x , y(R1(x , y)→ R2(x , y))

A1 v ¬A2 ∀x(A1(x)→ ¬A2(X ))

R1 v ¬R2 ∀x , y(R1(x , y)→ ¬R2(x , y))

∃R v A ∀x(∃y(R(x , y))→ A(x))

∃R− v A ∀x(∃y(R(y , x))→ A(x))

A v ∃R ∀x(A(x)→ ∃y(R(x , y)))

funct(R) ∀x , y , y ′(R(x , y) ∧ R(x , y ′)→ y = y ′)
A1 u A2 v A3 ∀xA1(x) ∧ A2(x)→ A3(x)

∃R.A1 v A2 ∀x(∃y(R(x) ∧ A1(x))→ A2(x)

A1 v ∃R.A2 ∀x(A(x)→ ∃y(R(x , y) ∧ A2(y)))

. . . . . .
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Nonmonotonic Logic Programs
• DLs are powerful for KR but not well-suited for modelling

human-like reasoning (e.g. exceptions) due to monotonicity

• 1980’s: Nonmonotonic logics for KR
(e.g. circumscription, default logic,
auto-epistemic logic)

• 1970’s: Logic programming
(e.g. Prolog)

• Nonmonotonic logic programming under answer set semantics (ASP)
[Gelfond and Lifschitz, 1988]

Example
female(Y ) ∨ female(Z )← not adopted(X ), hasparent(X ,Y )

hasparent(X ,Z ),Y 6= Z
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Nonmonotonic Logic Programs

Definition
A nonmonotonic logic program P is a set of rules of the form:

a1 ∨ . . . ∨ ak︸ ︷︷ ︸
Head (H)

← b1, . . . , bm, not bm+1, . . . , not bn.︸ ︷︷ ︸
Body (B)

• ai ’s and bj ’s are first-order atoms and

• not is a negation as failure (default negation, weak negation)

Example

female(Y ) ∨ female(Z )← not adopted(X ), hasparent(X ,Y )
hasparent(X ,Z ),Y 6= Z
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Answer Set Semantics

P =


hasparent(john, pat); hasparent(john, alex);
female(pat) ∨ female(alex)← not adopted(john),

hasparent(john, pat),
hasparent(john, alex)


• Semantics: given for ground programs (programs without variables)

• Interpretation: consistent set I of ground atoms over Herbrand Base of P
I1 = {hasparent(john, pat), hasparent(john, alex), female(alex)}

• Satisfaction relation: I |= a iff a ∈ I
I1 |= hasparent(john, pat); I1 6|= adopted(john)

• Model: I is a model of P if, for every r in P , I |= H(r), whenever I |= B(r)
I1 is a model of P

• Answer set (stable model): I is an answer set of P (I ∈ AS(P)) if it is a
⊆-minimal model that allows founded model reconstruction using rules
I1 ∈ AS(P)
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Answer Set Semantics

P =


hasparent(john, pat); hasparent(john, alex); adopted(john);
female(pat) ∨ female(alex)← not adopted(john),

hasparent(john, pat),
hasparent(john, alex)



• I3 = {hasparent(john, pat), hasparent(john, alex), adopted(john)}
I3 ∈ AS(P)

• adopted(john) is added, female(alex)/female(pat) are no longer derived
Nonmonotonicity!
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DL Ontologies vs Logic Programs
• ¬ in DLs is different from not in LP

• ¬: classical negation, monotonicity, open world assumption
• not : default negation, nonmonotonicity, closed world assumption

DL ontology O Logic Program P
Child v Person person(X )← child(X )

¬Child v Adult adult(X )← not child(X )

Person(john) person(john)

O 6|= Adult(john) P infers adult(john)

• DLs are strong in subsumption checking, LPs in expressing relations
• DLs allow complex expressions in heads (rhs of v), while

in LPs use of variables in rule bodies is more flexible
• . . .

12 / 44
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DL-programs: syntax

Hybrid Knowledge Bases Problem Statement Repair Semantics Computation Implementation and Evaluation Conclusion

Problem Statement
Goal of the thesis

Develop approaches for dealing with inconsistencies in DL-programs.

• DL-programs:

• Powerful formalism for solving advanced
reasoning tasks on top of ontologies

• Possibility to add information from the rule
part to ontology prior to querying it allows for
bidirectional information flow

• Issues:

• Information exchange between rules and ontology can have
unforeseen effects and cause inconsistency of the DL-program
(absence of answer sets).

19 / 45

DL-program is a pair Π = 〈O,P〉, where

• O is a DL ontology

• P is a set of DL-rules of the form

a1 ∨ . . . ∨ ak ← b1, . . . bm, not bm+1, . . . , not bn,

• ai ’s are first-order atoms and
• bj ’s are either first-order atoms or DL-atoms
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DL-program: syntax

Example
Π = 〈O,P〉 is a DL-program.

O =

{
(1) hasChild− v hasParent (3) Male(pat)
(2) Female v ¬Male (4) hasChild(pat , john)

}

P =

 (5) boy(john);

(6) hasfather(john, pat)← DL[Male ] boy ; Male](pat),
DL[; hasParent](john, pat)
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DL-atoms

DL[Male ] boy ; Male](john)

Intuition: extend concept Male by boy , then query O for Male(john)

A DL-atom is of the form

DL[S1 op1 p1, . . . ,Sm opm pm; Q](t)

• Si : ontology concept or role

• opi ∈ {], −∪}: intuitively ] (resp. −∪) increases Si (resp. ¬Si ) by pi

• pi : unary or binary logic program predicate (input predicate)
• Q(t) is a DL-query:

• C(t), ¬C(t), t = t , where C is an ontology concept
• R(t1, t2), ¬R(t1, t2), t = t1, t2, where R is an ontology role

15 / 44
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DL-programs: semantics
Π = 〈O,P〉 is a DL-program.

O =

{
(1) hasChild− v hasParent (3) Male(pat)
(2) Female v ¬Male (4) hasChild(pat , john)

}

P =


(5) boy(john);

(6) hasfather(john, pat)← DL[; hasParent](john, pat)︸ ︷︷ ︸
d1

,

DL[Male ] boy ; Male](pat)︸ ︷︷ ︸
d2


• Interpretation: I = {boy(john), hasfather(john, pat)}
• Satisfaction relation: I |=O boy(john) as boy(john) ∈ I

I |=O d1 as O |= hasParent(john, pat)

I |=O d2 as O ∪Male(john) |= Male(pat)

• Answer sets: founded models (weak , flp semantics)
I is a weak and FLP answer set

• Inconsistent DL-program: no answer sets
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Example: Inconsistent DL-program

Π = 〈O,P〉

is inconsistent!

O =

 (1) Child v ∃hasParent (4) Male(pat)
(2) Adopted v Child (5) Male(john)
(3) Female v ¬Male (6) hasParent(john, pat)



P =



(7) ischildof (john, alex); (8) boy(john);

(9) hasfather(john, pat)← DL[Male ] boy ; Male](pat),
DL[; hasParent](john, pat);

(10) ⊥ ← not DL[; Adopted ](john),
hasfather(john, pat), ischildof (john, alex),
not DL[Child ] boy ;¬Male](alex)



No answer sets
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Related Work
• Repairing ontologies

• consistent query answering over DL-Lite ontologies based on repair
technique [Bienvenu et al., 2014], [Lembo et al., 2010]

• QA over DL-LiteA ontologies that miss expected tuples (abductive
explanations corresponding to repairs) [Calvanese et al., 2012]

• Repairing nonmonotonic logic programs
• extended abduction for deleting minimal sets of rules

(in reality addition is also possible) [Sakama and Inoue, 2003]
• debugging in ASP [Pührer, 2014], [Syrjänen, 2006]

• Handling inconsistencies in combination of rules and ontologies
• paraconsistent semantics for MKNF KBs [Huang et al., 2013]
• paraconsistent semantics, based on the HT logic [Fink, 2012]
• stepwise debugging of inconsistent DL-programs [Oetsch et al., 2012]
• inconsistency tolerance in DL-programs [Pührer et al., 2010]
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Research Goal
Our goal: develop techniques for handling inconsistencies in DL-programs
Our approach: repair ontology ABox to regain consistency
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Research Questions

On the theoretical level:

? Repair problem formalization, complexity?

? Under which DLs the repair computation is feasible?

? Preferred repairs without complexity increase?

? Can existing evaluation algorithms be extended to compute repairs?

On the practical level:

? Practical algorithms and optimizations?

? Can we reuse existing tools?

◦ Benchmarks?
◦ How to evaluate?

20 / 44
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Contributions

On the theoretical level:

! Repair semantics for DL-programs and its complexity

! Algorithms for repair computation

! Preference selection functions with benign properties

On the practical level:

! Optimizations for DL-LiteA and EL
! Implementation as the dlliteplugin for the dlvhex2 system

implementation of repair semantics within drew3 was not effective

◦ Set of novel benchmarks including real-world data
◦ Evaluation w.r.t. performance and quality of repairs

2
https://github.com/hexhex/core

3
https://github.com/ghxiao/drew
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Repair Answer Sets

Definition
Let Π = 〈O,P〉 be a DL-program, where O = 〈T ,A〉
• an ABox A′ is a repair of Π if

• O′ = 〈T ,A′〉 is consistent and
• Π′ = 〈O′,P〉 has some answer set.

repx (Π) is the set of all repairs of Π (x ∈ {weak , flp}).

• I is a repair answer set of Π, if I ∈ ASx (Π′), where
Π′ = 〈O′,P〉,O′ = 〈T ,A′〉, and A′ ∈ repx (Π).

RASx (Π) is the set of all repair AS of Π.

repI
x (Π) is the set of all A′ under which I is a repair answer set of Π.
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Example: repair

Π = 〈O,P〉 is inconsistent!

O =

 (1) Child v ∃hasParent (4) Male(pat)
(2) Adopted v Child (5) Male(john)
(3) Female v ¬Male (6) hasParent(john, pat)



P =



(7) ischildof (john, alex); (8) boy(john);

(9) hasfather(john, pat)← DL[Male ] boy ; Male](pat),
DL[; hasParent](john, pat);

(10) ⊥ ← not DL[; Adopted ](john),
hasfather(john, pat), ischildof (john, alex),
not DL[Child ] boy ;¬Male](alex).


No answer sets
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Example: repair

Π = 〈O,P〉 is consistent!

O =

 (1) Child v ∃hasParent (4) Female(pat)
(2) Adopted v Child (5) Male(john)
(3) Female v ¬Male (6) hasParent(john, pat)



P =



(7) ischildof (john, alex); (8) boy(john);

(9) hasfather(john, pat)← DL[Male ] boy ; Male](pat),
DL[; hasParent](john, pat);

(10) ⊥ ← not DL[; Adopted ](john),
hasfather(john, pat), ischildof (john, alex),
not DL[Child ] boy ;¬Male](alex).


A′ = {Female(pat),Male(john), hasParent(john, pat)} is a repair
I′ = {ischildof (john, alex), boy(john)} is a repair answer set
A′ ∈ repI′

flp(Π), I′ ∈ RASflp(Π)
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Complexity of Repair Answer Sets

INSTANCE: A ground DL-program Π = 〈O,P〉.
QUESTION: Does there exist a repair answer set for Π under semantics x?

(i.e. RASx (Π) 6= ∅?)

Theorem
Deciding RASx (Π) 6= ∅ and ASx (Π) 6= ∅ have in all cases the same
complexity for a ground Π = 〈O,P〉, where O is in DL-LiteA or EL.

Π RASflp(Π) 6= ∅ RASweak (Π) 6= ∅
normal ΣP

2 -complete NP-complete

disjunctive ΣP
2 -complete ΣP

2 -complete
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DL-program Evaluation

Algorithm AnsSet : Compute ASx(Π)

Input: A DL-program Π, x ∈ {weak,flp}
Output: ASx(Π)
for Î ∈ AS(Π̂) do

if CMP(Î ,Π) ∧ xFND(Î ,Π) then

output Î|Π
end

end

Algorithm RepAns: Compute rep
Î|Π
(σ,x)(Π)

Input: Π=〈O,P〉, O=〈T ,A〉, Î∈AS(Π̂), σ, x∈{weak ,flp}
Output: rep

Î|Π
(σ,x)

(Π)

for A′ ∈ ORP(Î ,Π, σ) do

if CMP(Î , 〈T ,A′, P 〉) ∧ xFND(Î , 〈T ,A′, P 〉) then
output A′

end

end

1
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(1)

(2a,b)

• Π̂ is Π with all DL-atoms a substituted by ordinary atoms ea plus
additional guess rules ea ∨ nea for values of a

• CMP (̂I,Π) is a compatibility check, i.e. check whether the values of
DL-atoms coincide with the values of their replacement atoms in Î

• xFND(̂I,Π) is x-foundedness check

• Î|Π is a restriction of Î to original language of Π
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(1)

(2a,b)

Reasons for inconsistencies:

1. Π̂ does not have any answer sets;

2. for all Î ∈ AS(Π):
a. compatibility check failed or
b. x-foundedness check failed.
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Ontology Repair Problem

To address compatibility issue we introduce:

Definition
An ontology repair problem (ORP) is a triple P = 〈O,D1,D2〉, where

• O = 〈T ,A〉 is an ontology and

• Di = {〈U i
j ,Q

i
j 〉|1 ≤ j ≤ mi}, i = 1, 2 are sets of pairs where

• U i
j is any ABox (update) and

• Q i
j is a DL-query.

A repair (solution) for P is any ABox A′ s.t.

• O′ = 〈T ,A′〉 is consistent;

• O′ ∪ U1
j1 |= Q1

j holds for 1 ≤ j1 ≤ m1;

• O′ ∪ U2
j2 6|= Q2

k holds for 1 ≤ j2 ≤ m2.

ORP is NP-complete in general, even if O = ∅.
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Tractable Cases of ORP for DL-LiteA

C1. bounded δ±-change: S = {A′ | |A′∆A| ≤ k}, for some k

C2. deletion repair: S = {A′ | A′ ⊆ A}
C3. deletion δ+: first delete assertions, s.t. queries in D2 are not satisfied, then

add a bounded number of assertions to satisfy queries in D1

C4. addition under bounded opposite polarity:
S = {A′ | |A′+\A| ≤ k or |A′−\A| ≤ k}, for some k

Function σ : 2ABxAB → 2AB is a selection function, where AB is a set of all A′.
σ(S,A) ⊆ S is a set of preferred ABoxes.

A selection σ : 2ABxAB → 2AB is independent if
σ(S,A) = σ(S′,A) ∪ σ(S\S′,A), whenever S′ ⊆ S.

Example
C1-C4 are independent, but ⊆-minimal repairs are not.
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Naive Repair Algorithm

Algorithm AnsSet : Compute ASx(Π)

Input: A DL-program Π, x ∈ {weak,flp}
Output: ASx(Π)
for Î ∈ AS(Π̂) do

if CMP(Î ,Π) ∧ xFND(Î ,Π) then

output Î|Π
end

end

Algorithm RepAns: Compute rep
Î|Π
(σ,x)(Π)

Input: Π=〈O,P〉, O=〈T ,A〉, Î∈AS(Π̂), σ, x∈{weak ,flp}
Output: rep

Î|Π
(σ,x)

(Π)

for A′ ∈ ORP(Î ,Π, σ) do

if xFND(Î , 〈T ,A′,P〉) then
output A′

end

end

1

• ORP (̂I,Π, σ) computes σ repairs for Î,Π
• xFND(̂I, 〈T ,A′,P〉) checks whether Î is x-founded w.r.t. Π′

RepAnsSet outputs Î|Π if the result of RepAns is nonempty.

RepAns and RepAnsSet are sound and complete for independent σ.
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Ground Support Sets

For optimization purposes we introduce support sets:
Support set for d = DL[λ; Q](t) is a minimal set S, s.t. S ∪ T |= Q(t)

d = DL[Male ] boy ; Male](pat); T = {Female v ¬Male}

When is d true under interpretation I?

• Male(pat) ∈ A
• boy(pat) ∈ I

• boy(alex) ∈ I; Female(alex) ∈ A

where Ad = {Pp(t) | P ] p ∈ λ} ∪ {¬Pp(t) | P −∪ p ∈ λ}
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Ground Support Sets (DL-LiteA)
Definition
S ⊆ A∪Ad is a support set for d = DL[λ; Q](t) w.r.t. O = 〈T ,A〉 in DL-LiteA if
either

(i) S = {P(c)} and Td ∪ S |= Q(t) or

(ii) S = {P(c),P′(d)}, s.t. Td ∪ S is inconsistent.

SuppO(d) is a set of all support sets for d .

d = DL[Male ] boy ; Male](pat); Td = {Female v ¬Male; Maleboy v Male}

When is d true under interpretation I?

• S1 = {Male(pat)}, coherent with any I

• S2 = {Maleboy (pat)}, coherent with I ⊇ boy(pat)

• S3 = {Maleboy (alex); Female(alex)}, coherent with I ⊇ boy(alex)

where Ad = {Pp(t) | P ] p ∈ λ} ∪ {¬Pp(t) | P −∪ p ∈ λ}
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either

(i) S = {P(c)} and Td ∪ S |= Q(t) or
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SuppO(d) is a set of all support sets for d .
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Nonground Support Sets (DL-LiteA)
d = DL[Male ] boy ; Male](X ), Td = {Female v ¬Male; Maleboy v Male}

Nonground support sets:

• S1 = {Male(X )}
• S2 = {Maleboy (X )}
• S3 = {Maleboy (Y ); Female(Y )}

Definition
S = {P(Y),P′(Y′)} (S = {P(Y)}) is a DL-LiteA nonground support set for a
DL-atom d(X) w.r.t. T if for every θ : V → C it holds that Sθ is a support set for
d(Xθ) w.r.t. OC = 〈T ,AC〉, where AC is a set of all possible assertions over C.

Nonground support sets are compact representations of ground ones.

Completeness: family of nonground support sets S for d(X) is complete w.r.t. O
if for every θ : X→ C and S ∈ SuppO(d(Xθ)) some S′ ∈ S exists, s.t. S = S′θ′.

Complete support families allow to avoid access to O during DL-atom
evaluation.
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Nonground Support Set Computation (DL-LiteA)

d = DL[Male ] boy ; Male](X ); T = {Female v ¬Male}

• Construct Td by compiling info about input predicates of d into T :
Td = T ∪ {Maleboy v Male}

• Compute classification Cl(Td ) (e.g. using ASP techniques):
cl(Td ) = Td ∪{Male v ¬Female; Maleboy v ¬Female}∪{P v P | P ∈ P}

• Extract support sets from Cl(Td ):

• S1 = {Male(X )}
• S2 = {Maleboy (X )}
• S3 = {Maleboy (Y ),¬Male(Y )}
• S4 = {Maleboy (Y ),Female(Y )}

 {S1,S2,S3,S4} is complete!

• S5 = {Male(Y ),¬Male(Y )}
• S6 = {Male(Y ),Female(Y )}

}
O is consistent!
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Optimized Deletion-RAS Computation (DL-LiteA)

X Compute complete support families S for all DL-atoms of Π

• Construct Π̂ from Π = 〈O,P〉:
• Replace all DL-atoms a with normal atoms ea
• Add guessing rules on values of a: ea ∨ nea

• For all Î ∈ AS(Π̂) : Dp = {a | ea ∈ Î}; Dn = {a | nea ∈ Î}

X Ground support sets in S wrt. Î and A: S Î
gr ← Gr(S, Î,A)

X Find A′, such that
X For all a ∈ Dp: there is S ∈ S Î

gr (a), s.t.
S ∩ A′ 6= ∅ or S ⊆ Aa

X For all a′ ∈ Dn: for all S ∈ S Î
gr (a′):

S ∩ A′ = ∅ and S 6⊆ Aa′

X Minimality check of Î|Π wrt. Π′ = 〈O′,P〉, O′ = 〈T ,A′〉
32 / 44

Sound and complete
wrt. deletion repair answer sets!
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Extending Approach to EL

T = {StaffRequest ≡ ∃hasSubj.Staff u ∃hasTarg.Proj}
d = DL[Proj ] projfile; StaffRequest](X )

• Construct Td by compiling info about input predicates of d into T :
Td = T ∪ {Projprojfile v Proj}

• Rewrite DL-query over normalized Td into a datalog program:

Tdnorm =


(1) StaffRequest v ∃hasSubj.Staff (2) Projprojfile v Proj
(3) StaffRequest v hasTarg.Proj (4) ∃hasSubj.Staff v C1

(5) ∃hasTarg.Proj v C2 (6) C1 u C2 v StaffRequest



• Unfold the DL-query and extract support sets:

StaffRequest(X )← hasSubj(X ,Y ),Staff (Y ), hasTarg(X ,Z ),Proj(Z )
StaffRequest(X )← hasSubj(X ,Y ),Staff (Y ), hasTarg(X ,Z ),Projprojfile(Z )
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T = {StaffRequest ≡ ∃hasSubj.Staff u ∃hasTarg.Proj}
d = DL[Proj ] projfile; StaffRequest](X )

• Construct Td by compiling info about input predicates of d into T :
Td = T ∪ {Projprojfile v Proj}

• Rewrite DL-query over normalized Td into a datalog program:

PTdnorm
=


(1*) StaffRequest(X )← C1(X ),C2(X )

(2*) C1(X )← hasSubj(X ,Y ),Staff (Y )

(3*) C2(X )← hasTarg(X ,Y ),Proj(Y )

(4*) Proj(X )← Projprojfile(X )
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(3*) C2(X )← hasTarg(X ,Y ),Proj(Y )

(4*) Proj(X )← Projprojfile(X )


• Unfold the DL-query and extract support sets:

S1 = {hasSubj(X ,Y ),Staff (X ), hasTarg(X ,Z ),Proj(Z )}
S2 = {hasSubj(X ,Y ),Staff (X ), hasTarg(X ,Z ),Projprojfile(Z )}
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Extending Approach to EL
T = {StaffRequest ≡ ∃hasSubj.Staff u ∃hasTarg.Proj}
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Td = T ∪ {Projprojfile v Proj}

• Rewrite DL-query over normalized Td into a datalog program:

PTdnorm
=


(1*) StaffRequest(X )← C1(X ),C2(X )

(2*) C1(X )← hasSubj(X ,Y ),Staff (Y )

(3*) C2(X )← hasTarg(X ,Y ),Proj(Y )

(4*) Proj(X )← Projprojfile(X )


• Unfold the DL-query and extract support sets:

− infinitely many support sets (axioms ∃R.A v A)
− exponentially many for acyclic T

• Completeness is costly!
• Compute partial support families: bound size/number
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Optimized Deletion RAS Computation (EL)

X Compute partial support families S for all DL-atoms of Π

• Construct Π̂ from Π = 〈O,P〉:
• Replace all DL-atoms a with normal atoms ea
• Add guessing rules on values of a: ea ∨ nea

• For all Î ∈ AS(Π̂) : Dp = {a | ea ∈ Î}; Dn = {a | nea ∈ Î}
X Ground support sets in S wrt. Î and A: S Î

gr ← Gr(S, Î,A)

X For all HS H ⊆ A of support families for all a ∈ Dn:

X If all a ∈ Dp have at least one S ∈ S Î
gr , s.t.

S ∩ H = ∅, then do eval. postcheck on Dn

(evaluate atoms from Dn over I and A\H)

X Else do eval. postcheck on Dn and Dp

X Check minimality of Î|Π wrt. Π′ = 〈T ,A\H,P〉

Sound wrt. deletion repair answer sets,
complete if all support families are complete!
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System Architecture

OP

Π

Π̂

Figure 7.1: System architecture of the dlliteplugin for Repair Answer Set Computation
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Experiments
Assessment of our algorithms concerns the following aspects:
• Scalability

• size of the DL-program data part
• size of the ontology TBox
• number of rules in the DL-program

• Repair quality
• bounding number/type of assertions for deletion

• Expressive features
• defaults
• guesses
• recursiveness

• Real world data
• Taxi-driver assignment problem
• Open Street Map

• Effects of support family completeness
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Taxi-Driver Benchmark (DL-LiteA)

O =

(1) Driver v ¬Cust (4) adjoint v ¬disjoint
(2) ∃worksIn v Driver (5) EDriver v Driver
(3) worksIn v ¬notworksIn



P=



(5) cust(X )← isIn(X ,Y ), not DL[;¬Cust](X );

(6) driver(X )← not cust(X ), isIn(X ,Y );

(7) drives(X ,Y )← driver(X ), cust(Y ), needsTo(Y ,Z1), goTo(X ,Z2),
DL[; adjoint](Z1,Z2), not omit(X ,Y );

(8) omit(X ,Y )← DL[; EDriver ](X ), needsTo(Y ,Z ),
DL[; notworksIn](X ,Z );

(9) ok(Y )← customer(Y ), drives(X ,Y );

(10) fail ← customer(Y ), not ok(Y );

(11) ⊥ ← fail
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Taxi-Driver Benchmark (DL-LiteA)
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RAS-pred=EDriver

• A: 500 customers, 200 drivers (190 edrivers), 23 regions (Vienna districts), every
driver works in 2-4 regions

• P : randomly generated positions and intentions of customers and drivers
• Instance size reflects the size of the relevant data part
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Open Street Map Benchmark (EL)

O =

{
(1) BuildingFeature u ∃isLocatedInside.Private v NoPublicAccess
(2) BusStop u Roofed v CoveredBusStop

}

P =


(9) publicstation(X )← DL[BusStop ] busstop; CoveredBusStop](X );

not DL[; Private](X );
(10) ⊥ ← DL[BuildingFeature ] publicstation; NoPublicAccess](X ),

publicstation(X ).


• Rules on top of the MyITS ontology:4

• personalized route planning with semantic information
• TBox with 406 axioms

• O (part): building features located inside private areas are not publicly
accessible, covered bus stops are those with roof.

• P checks that public stations don’t lack public access, using CWA on
private areas.

4
http://www.kr.tuwien.ac.at/research/projects/myits/
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Open Street Map Benchmark (EL)
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• A: bus stops (285) and leisure areas (682) of Cork, plus role
isLocatedInside on them (9)

• Randomly made 80% bus stops roofed, 60% leisure areas private

• For isLocatedInside(bs, la) make bs a bus stop with p chance (x-axis)

• DL-atoms have few support sets
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Family Benchmark (DL-LiteA)
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1. Data part variations:
• A50 contains 50 children (7 adopted), 20 female, 32 male adults

(20 times that many for A1000), T is fixed
• Instance size p: facts boy(c), isChildOf (c, d) are in P with prob. p/100.
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Family Benchmark (DL-LiteA)
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2. TBox part variations:
• Tn additionally contains P v Person for all concepts P of O, for each concept

P and 1 ≤ i ≤ n the axiom PMemberOfSocGroupi v P is in P with prob.
p/100, A50 is fixed
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Family Benchmark (DL-LiteA)
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3. Rule part variations:
• Rn additionally contains rules which identify contacts for children within a

social group, contact information is propagated, A50 and T are fixed
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Benchmark Statistics

Benchmark Ontology expressivity TBox size Concepts Roles ABox Size Individuals

Family DL-LiteA 3 5 1
A50 312 102

A1000 6183 2021

Network DL-LiteA
3 4 2 A67 204 67

3 5 2 A161 672 161

Taxi

Basic

DL-LiteA

3 4 2
A50 259 75

A500 4370 714

Time 4 6 2 274 75

Districts 389 339 41
A50 418 93

A500 6744 723

LUBM

Basic

DL-LiteA
95 44 31 7293 1555

Diamond

Extended 101 48 31 7412 1605

Policy EL 5 8 3

A40 199 64

A100 475 148

A1000 4615 1408

OSM EL 405 356 36 4195 1537

LUBM-basic EL 94 47 28 2285 832
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Conclusions

• Hybrid Knowledge Bases: rules + DL ontology

• DL-programs: loose coupling combination

• Inconsistency is a challenging issue
• already for rules and ontology considered separately

• Many possibilities for repair

• We focus on changing ontology data part to restore consistency
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Summary of Contributions

• Repair semantics for inconsistent DL-programs

• Complexity is the same as for ordinary AS computation
if DL is in DL-LiteA or EL

• Practical algorithms for deletion repair answer set computation
based on support sets

• Implementation as the dlliteplugin within the dlvhex system

• Evaluation on a set of novel benchmarks (promising results)

• Further optimizations: pruning out DL-atoms
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Future Work

• Extend work to other DLs

• Practical algorithms for other independent selections

• Further optimizations

• Repairing rules and DL-atoms

• Paraconsistent reasoning . . .

43 / 44



Hybrid Knowledge Bases Problem Statement Repair Semantics Computation Implementation and Evaluation Conclusion

Relevant Publications
Thomas Eiter, Michael Fink, and Daria Stepanova.
Semantic independence in DL-programs.
In Proceedings of the 6th International Conference on Web Reasoning and Rule Systems (RR 2012), 58-74, 2012.

Thomas Eiter, Michael Fink, and Daria Stepanova.
Data repair of inconsistent DL-programs.
In Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013), 2013.

Thomas Eiter, Michael Fink, and Daria Stepanova.
Inconsistency management for Description Logic Programs and beyond.
In Proceedings of the 6th International Conference on Web Reasoning and Rule Systems (RR 2013), 1-3, 2013.

Thomas Eiter, Michael Fink, and Daria Stepanova.
Towards practical deletion repair of inconsistent DL-programs.
In Proceedings of the 27th International Workshop on Description Logics (DL workshop 2014), 169-180, 2014.

Thomas Eiter, Michael Fink, Christoph Redl, and Daria Stepanova.
Exploiting support sets for answer set programs with external computations.
In Proceedings of the 28th Conference on Artificial Intelligence (AAAI 2014), 1041-1048, 2014.

Thomas Eiter, Michael Fink, and Daria Stepanova.
Computing repairs for inconsistent DL-programs over EL ontologies.
In Proceedings of the 14th International Conference on Logics in Artificial Intelligence (JELIA 2014), 426-441, 2014.

Thomas Eiter, Michael Fink, and Daria Stepanova.
Towards practical deletion repair of inconsistent DL-programs.
In Proceedings of the 21st European Conference on Artificial Intelligence (ECAI 2014), 285-290, 2014.

Daria Stepanova.
Inconsistencies in hybrid knowledge bases.
In Proceedings of 14th Doctoral Consortium on Knowledge Represenation (DC of KR 2014), 2014.

44 / 44



References I
Meghyn Bienvenu, Camille Bourgaux, and François Goasdoué.
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Additional Material Background Further Selected Experiments Optimization

DL-program
Consider grounding grd(Π)= 〈O, grd(P)〉 of Π = 〈O,P〉 over C and P .

Interpretation I is a consistent set of ground literals over C and P .

• for ground literal `: I |=O ` iff ` ∈ I;

• for ground DL-atom a = DL[S1op1p1, . . . ,Smopmpm; Q](c):

I |=O a

iff T ∪ A ∪ λI(a) |= Q(c), where λI(a) =
⋃m

i=1 Ai (I) is a DL-update of O
under I by a:
• Ai (I) = {Si (t) | pi (t) ∈ I}, for opi = ];
• Ai (I) = {¬Si (t) | pi (t) ∈ I}, for opi = −∪;
• Ai (I) = {¬Si (t) | pi (t) 6∈ I}, for −∩.

FLP-reduct P I,O
flp of P is a set of ground DL-rules r s.t. I |= b+(r), I 6|= b−(r).

Weak-reduct P I,O
weak of P : removes all DL-atoms bi , 1 ≤ i ≤ k and all not bj ,

k < j ≤ m from the rules of P I,O
flp .

I is an x-answer set of P iff I is a minimal model of its x-reduct.
5 / 22
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Family: data

p
A50 A1000

AS
RAS

AS
RAS

no restr lim = 10 no restr lim = 10

10 (20) 0.14 (0)[0] 0.22 (0)[20] 1.73 (0)[20] 63.12 (0)[0] 37.03 (0)[20] 60.21 (0)[20]
20 (20) 0.14 (0)[0] 0.23 (0)[20] 2.10 (0)[19] 62.56 (0)[0] 38.56 (0)[20] 62.19 (0)[20]
30 (20) 0.14 (0)[0] 0.24 (0)[20] 2.33 (0)[18] 62.83 (0)[0] 40.03 (0)[20] 64.27 (0)[20]
40 (20) 0.14 (0)[0] 0.25 (0)[20] 2.88 (0)[11] 63.23 (0)[0] 41.81 (0)[20] 66.81 (0)[20]
50 (20) 0.14 (0)[0] 0.25 (0)[20] 3.93 (0) [1] 63.42 (0)[0] 43.86 (0)[20] 68.87 (0)[20]
60 (20) 0.15 (0)[0] 0.26 (0)[20] 3.93 (0) [2] 63.42 (0)[0] 45.87 (0)[20] 71.63 (0)[20]
70 (20) 0.14 (0)[0] 0.27 (0)[20] 4.00 (0) [0] 63.18 (0)[0] 47.83 (0)[20] 74.14 (0)[20]
80 (20) 0.15 (0)[0] 0.28 (0)[20] 4.08 (0) [0] 63.38 (0)[0] 49.71 (0)[20] 76.35 (0)[20]
90 (20) 0.15 (0)[0] 0.29 (0)[20] 4.48 (0) [0] 63.59 (0)[0] 52.18 (0)[20] 79.14 (0)[20]

100 (20) 0.14 (0)[0] 0.30 (0)[20] 4.42 (0) [0] 63.08 (0)[0] 54.14 (0)[20] 81.81 (0)[20]

Table : Family benchmark: data size variations, fixed P and T
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Family: TBox (DL-LiteA)

p
Tmax = 500 Tmax = 5000

AS
RAS

AS
RAS

no restr lim = 10 no restr lim = 10

10 (20) 0.15 (0)[0] 0.32 (0)[20] 1.95 (0)[20] 0.28 (0)[0] 3.58 (0)[20] 6.03 (0)[20]
20 (20) 0.16 (0)[0] 0.47 (0)[20] 2.17 (0)[20] 0.48 (0)[0] 12.89 (0)[20] 15.96 (0)[20]
30 (20) 0.17 (0)[0] 0.68 (0)[20] 2.47 (0)[20] 0.75 (0)[0] 27.76 (0)[20] 31.42 (0)[20]
40 (20) 0.19 (0)[0] 0.93 (0)[20] 2.78 (0)[20] 1.10 (0)[0] 48.46 (0)[20] 53.24 (0)[20]
50 (20) 0.20 (0)[0] 1.25 (0)[20] 3.19 (0)[20] 1.51 (0)[0] 76.39 (0)[20] 81.54 (0)[20]
60 (20) 0.21 (0)[0] 1.58 (0)[20] 3.56 (0)[20] 1.99 (0)[0] 108.33 (0)[20] 114.71 (0)[20]
70 (20) 0.23 (0)[0] 2.09 (0)[20] 4.18 (0)[20] 2.56 (0)[0] 146.62 (0)[20] 152.91 (0)[20]
80 (20) 0.24 (0)[0] 2.54 (0)[20] 4.68 (0)[20] 3.17 (0)[0] 191.37 (0)[20] 198.72 (0)[20]
90 (20) 0.26 (0)[0] 3.06 (0)[20] 5.28 (0)[20] 3.91 (0)[0] 241.51 (0)[20] 248.19 (0)[20]

Table : Family benchmark: TBox size variations, fixed P and A50

7 / 22



Additional Material Background Further Selected Experiments Optimization

Family: Rules (DL-LiteA)

p
Rulesmax = 50 Rulesmax = 500 Rulesmax = 5000

RAS RASlim=10 RAS RASlim=10 RAS RASlim=20

10 (20) 0.55 (0)[20] 2.09 (0)[20] 2.56 (0)[20] 23.23 (0)[0] 64.65 (0)[20] 110.92 (0)[20]
20 (20) 0.69 (0)[20] 2.35 (0)[20] 5.22 (0)[20] 77.30 (0)[0] 257.35 (11)[9] 300.00 (20)[0]
30 (20) 0.90 (0)[20] 2.67 (0)[20] 8.50 (0)[20] 158.23 (0)[0] 300.00 (20)[0] 300.00 (20)[0]
40 (20) 0.97 (0)[20] 2.86 (0)[20] 11.86 (0)[20] 128.87 (1)[0] 300.00 (20)[0] 300.00 (20)[0]
50 (20) 1.18 (0)[20] 3.11 (0)[20] 14.91 (0)[20] 144.71 (0)[0] 300.00 (20)[0] 300.00 (20)[0]
60 (20) 1.29 (0)[20] 3.28 (0)[20] 17.68 (0)[20] 164.70 (0)[0] 300.00 (20)[0] 300.00 (20)[0]
70 (20) 1.42 (0)[20] 3.19 (0)[20] 20.11 (0)[20] 186.38 (3)[0] 300.00 (20)[0] 300.00 (20)[0]

Table : Family benchmark: rule size variations, fixed T and A50
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Taxi-Driver

p AS
RAS

no restr lim = 3 lim = 10 limp = 2 limc = 10 EDriver

2 (20) 2.11 (0) [0] 9.22 (0) [7] 25.05 (0) [6] 24.91 (0) [7] 12.32 (0) [7] 10.24 (0) [6] 7.56 (0) [0]
10 (20) 2.23 (0) [0] 14.17 (0)[20] 46.37 (0)[20] 46.52 (0)[20] 20.54 (0)[20] 15.75 (0)[15] 12.16 (0) [4]
18 (20) 5.58 (0) [5] 15.96 (0)[20] 51.89 (0)[20] 52.44 (0)[20] 23.11 (0)[20] 17.93 (0)[20] 28.00 (0)[20]
26 (20) 17.95 (0)[12] 18.28 (0)[20] 55.30 (0)[20] 55.84 (0)[20] 25.57 (0)[20] 20.27 (0)[20] 31.76 (0)[20]
34 (20) 37.87 (0)[17] 20.81 (0)[20] 58.71 (0)[20] 58.51 (0)[20] 28.35 (0)[20] 22.93 (0)[20] 36.00 (0)[20]

Table : Taxi-driver benchmark results: A500
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LUBM

p AS
RAS

RAS lim = 20 limp = 2 limc = 20 IS

2 (20) 3.97 (0)[0] 13.98 (0)[20] 38.90 (0)[20] 16.01 (0)[20] 15.24 (0)[20] 15.20 (0)[6]
6 (20) 4.25 (0)[0] 16.16 (0)[20] 115.62 (0)[19] 18.08 (0)[20] 18.63 (0)[19] 11.16 (0)[2]

10 (20) 4.64 (0)[0] 18.95 (0)[20] 245.40 (0)[7] 20.85 (0)[20] 20.79 (0)[4] 9.12 (0)[0]
14 (20) 4.86 (0)[0] 21.50 (0)[20] 236.40 (1)[3] 23.73 (0)[20] 23.50 (0)[1] 9.53 (0)[0]
18 (20) 5.33 (0)[0] 24.86 (0)[20] 230.21 (0)[1] 27.11 (0)[20] 26.86 (0)[0] 10.15 (0)[0]
22 (20) 5.54 (0)[0] 28.21 (0)[20] 228.12 (0)[0] 30.19 (0)[20] 29.93 (0)[0] 10.36 (0)[0]
26 (20) 5.71 (0)[0] 31.50 (0)[20] 222.78 (0)[0] 33.84 (0)[20] 33.26 (0)[0] 10.75 (0)[0]
30 (20) 6.07 (0)[0] 36.88 (0)[20] 225.18 (0)[0] 38.82 (0)[20] 38.47 (0)[0] 11.45 (0)[0]
34 (20) 6.36 (0)[0] 42.18 (0)[20] 241.30 (0)[0] 44.29 (0)[20] 44.01 (0)[0] 12.22 (0)[0]
38 (20) 6.55 (0)[0] 46.07 (0)[20] 245.77 (0)[0] 47.87 (0)[20] 47.64 (0)[0] 12.41 (0)[0]
42 (20) 6.93 (0)[0] 52.50 (0)[20] 255.74 (0)[0] 54.17 (0)[20] 56.91 (0)[0] 12.94 (0)[0]
46 (20) 7.15 (0)[0] 56.98 (0)[20] 276.52 (5)[0] 58.96 (0)[20] 58.47 (0)[0] 13.35 (0)[0]
50 (20) 7.53 (0)[0] 63.96 (0)[20] 276.07 (5)[0] 65.79 (0)[20] 65.50 (0)[0] 14.18 (0)[0]

Table : LUBM benchmark results
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Network Guessing

p
RAS

no restr lim = 10 limc = 100 Broken

2 (20) 178.52 (3)[15] 187.65 (2)[16] 175.64 (2)[16] 179.57 (3)[15]
4 (20) 201.89 (6)[10] 211.10 (7) [9] 213.66 (9) [7] 178.55 (3)[13]
8 (20) 212.18 (10) [2] 215.44 (10) [2] 205.77 (9) [3] 191.97 (7) [5]

10 (20) 190.58 (9) [0] 184.80 (8) [1] 191.54 (9) [0] 191.06 (9) [0]

Table : Network-guessing benchmark results: A161
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Network Connectivity

p
RAS

no restr lim = 3 lim = 20 lim = 100 Broken, forbid

2 (20) 179.49 (1)[19] 280.73 (16)[0] 288.64 (17)[3] 176.06 (1)[19] 125.47 (0)[0]
4 (20) 218.80 (8)[12] 291.80 (18)[0] 295.48 (19)[1] 226.25 (8)[12] 127.68 (0)[0]
8 (20) 230.79 (9)[11] 298.39 (19)[0] 300.00 (20)[0] 232.65 (9)[11] 126.97 (0)[0]

10 (20) 258.08 (14)[5] 300.00 (20)[0] 300.00 (17)[0] 259.69 (14)[6] 125.63 (0)[0]

Table : Network-connectivity benchmark results: A161
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Optimizations: Independent DL-atoms
In our repair approach number of DL-atoms impacts performance..
Optimizations: identify DL-atoms that always have the same value!

Definition
A ground DL-atom a is independent if for all satisfiable ontologies O,O′
and all interpretations I, I′ it holds that I |=O a iff I′ |=O′ a.

A ground DL-atom a is a contradiction (resp. tautology), if for all
satisfiable ontologies O and all interpretations I, it holds that I 6|=O a
(resp. I |=O a).

Contradiction:
DL[; C 6v C]();
. . . ?

Tautology:
DL[; C v C]();
. . . ?
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Contradictions

When is a DL-atom contradictory in general?

Proposition
A ground DL-atom a = DL[λ; Q](t) is contradictory iff λ = ε and Q(t) is
unsatisfiable, i.e. has one of the forms:

• C 6v C;

• C 6v >;

• ⊥ 6v C;

• ⊥ 6v >;

• > v ⊥.
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Tautologies
When is a DL-atom a = DL[λ; Q](t) tautologic in general?

• Q is tautologic: Q ∈ {C v >,⊥ v C,C v C};
• λ is s.t. a is tautologic.

Concept query case distinction:

DL[λ; Q](t)

DL[λ;¬C](t) DL[λ; C](t)
no tautologies

DL[λ; C v D]()

no tautologies

DL[λ; C 6v D]()

no tautologies

C 6= D.

Example
a = DL[ C −∩ p, C′ ] p, C′ −∩ q, C −∪ q;¬C](c)
I is s.t. p(c) 6∈ I, q(c) 6∈ I

τ I(a) = {¬C(c)}

I is s.t. p(c) ∈ I, q(c) 6∈ I

τ I(a) = {C′(c),¬C′(c)}

I is s.t. p(c) 6∈ I, q(c) ∈ I

τ I(a) = {¬C(c)}

I is s.t. p(c) ∈ I, q(c) ∈ I

τ I(a) = {¬C(c)}
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Tautologies with Concept Query

DL[λ;¬C](t)

Proposition
A ground DL-atom a with the query ¬C(t) is tautologic iff it has one of
the following forms

c1. DL[λ,C −∩ p,C −∪ p;¬C](t),

p

c2. DL[λ,C −∩ p,D ] p,D −∪ p;¬C](t),

c3. DL[λ,C −∩ p0,C0 ] p0,C0 −∩ p′0,C
1 ] p1,C1 −∩ p′1, . . . ,

Cn ] pn,Cn −∩ p′n,C −∪ pn+1;¬C](t),

c4. DL[λ,C −∩ p0,C0 ] p0,C0 −∩ p′0,C
1 ] p1,C1 −∩ p′1, . . . ,

Cn ] pn,Cn ] p′n,D ] pn+1,D −∪ p′n+1;¬C](t),

where for every i = 0, . . . , n + 1, pi = p′j for some j < i or pi = p0, and
p′n+1 = p′ij for some j ≤ n or p′n+1 = p0.
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Example
a = DL[C −∩ p,C′ ] p, C′ −∩ q,C −∪ q;¬C](c) is the special case of c3.

I is s.t.
p(c) 6∈ I, q(c) 6∈ I τ I(a) = {¬C(c)}
I is s.t. p(c) ∈ I, q(c) 6∈ I τ I(a) = {C′(c),¬C′(c)}
I is s.t. p(c) 6∈ I, q(c) ∈ I τ I(a) = {¬C(c)}
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Tautologies with Role Query

What if the query is a role R(t1, t2) or negated role ¬R(t1, t2)?

Role query case distinction:

DL[λ; Q](t1, t2)

DL[λ; R](t1, t2)
no tautologies

DL[λ;¬R](t1, t2)
c1-c4, where C,C i ,D-roles, pi , p′i -binary

Example
(c2) for roles is of the form DL[λ,R1 −∩ p,R2 −∪ p;¬R1](t1, t2).
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Axiomatization for Tautologies (Ktaut)

Axioms:

a0. DL[; Q](),

a1. DL[S −∩ p,S −∪ p;¬S](t),

a2. DL[S −∩ p,S′ ] p,S′ −∪ p;¬S](t),

where Q ∈ {S v S,S v >,> 6v ⊥}, S,S′ are distinct.

Rules of Inference:
Expansion Increase

DL[λ; Q](t)

DL[λ, λ′; Q](t)
(e)

DL[λ,S ] p; Q](t)

DL[λ,S ] q,S′ ] p,S′ −∩ q; Q](t)
(in])

DL[λ,S −∪ p; Q](t)

DL[λ,S −∪ q,S′ ] p,S′−∩ q; Q](t)
(in−∪)
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Inclusion Constraints
Inclusion constraint (IC): q(Y1, . . . ,Yn)← p(X1, . . . ,Xm),
where n ≤ m, Yi are pairwise distinct from Xi ;

• p ⊆ q, if n = m and Yi = Xi ;

• p ⊆ q−, if n = m and Yi = Xn−i+1.

C is a set of inclusion constraints of Π; CL(C) is the logical closure of C;
inpa(C) is a set of all q(Y )← p(X ) in C s.t. p, q are in λ, a = DL[λ; Q](t);

C is separable for a if every IC ∈ inpa(CL(C)) involves predicates of same arity.

Example
Π = {(1) p2(Y ,X )← p1(X ,Y ).

(2) p3(Z )← p1(X ,Y ).
(3) r1(X ,Y )← DL[S1 ] p1,S2 −∪ p2; S3](X ,Y )︸ ︷︷ ︸

a

.}

C = {p1 ⊆ p−2 , p1 ⊆ p3}; CL(C) = C;
inpa(CL(C)) = {p1 ⊆ p−2 }; C is separable for a.
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Axiomatization for Tautologies under Inclusion K⊆taut

Axioms:

a0. DL[; Q](),

a1. DL[S −∩ p,S −∪ p;¬S](t),

a2. DL[S −∩ p,S′ ] q,S′ −∪ q;¬S](t),

where q ∈ {p, p−}, Q ∈ {S v S,S v >,> 6v ⊥}, S,S′ are distinct.

Rules of Inference: rules of Ktaut plus additional:

Inclusion Increase

DL[λ,S −∪ p; Q](t) p ⊆ q

DL[λ,S −∪ q; Q](t)
(i1)

DL[λ,S ] p; Q](t) p ⊆ q

DL[λ,S ] q; Q](t)
(i2)

DL[λ,S ] p; Q](t)

DL[λ,S ] q,S′ ] p−,S′ −∩ q−; Q](t)
(in−] )

DL[λ,S −∪ p; Q](t)

DL[λ,S −∪ q,S′ ] p−,S′−∩ q−; Q](t)
(in−−∪)
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Example

Π = {(1) so(ch, chile).
(2) vi(X )← ex(X ).
(3) sw(X )← ex(X ), not bi(X ).
(4) ex(X )← so(X ,Y ).
(5) no(X )← DL[H ] vi,H −∪ sw ,A −∩ ex ;¬A](X ).

(1) Cherimoya (ch) is a Southern fruit (so) from Chile;

(2) All exotic fruits (ex) are vitaminized (vi);

(3) Any exotic fruit is sweet (sw) unless it is known to be bitter (bi);

(4) All Southern fruits are exotic;

(5) H is healthy, A is African, no is nonafrican.

Is a = DL[H ] vi,H −∪ sw ,A −∩ ex ;¬A](ch) tautologic?
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Example (cont.)

Is a = DL[H ] vi,H −∪ sw ,A −∩ ex ;¬A](ch) tautologic?

Yes, it is!

DL[H ] ex ,H −∪ ex ,A −∩ ex ;¬A](ch)

DL[H ] ex ,H −∪ ex ,A −∩ ex ;¬A](ch) ex ⊆ vi

DL[H ] vi,H −∪ ex ,A −∩ ex ;¬A](ch)
(i2)

ex ⊆ sw

DL[H ] vi,H −∪ sw ,A −∩ ex ;¬A](ch)
(i1)

DL[H ] ex ,H −∪ ex ,A −∩ ex ;¬A](ch) is an axiom a2 of K⊆taut .
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