
Foundations of Databases

Complexity of Query Languages

Free University of Bozen – Bolzano, 2004–2005

Thomas Eiter

Institut für Informationssysteme

Arbeitsbereich Wissensbasierte Systeme (184/3)

Technische Universität Wien

http://www.kr.tuwien.ac.at/staff/eiter

(revised 2)



Foundations of Databases 1

Issues

• How difficult is it to evaluate queries?

• For this, we must take into account:

– How are query inputs / outputs represented ?

– How difficult is the intrinsic complexity of a query, viewed as an abstract

mapping ?

– How difficult is the evaluation of a query defined by some query expression in

some query language ?

– What kind of use cases are of interest ?

Complexity of Query Languages



Foundations of Databases 2

Database Queries

In an abstracting view, a database query can be viewed as a (partial) function

f : inst(EDB) −→ inst(ODB)

such that every constant occurring in f(I) occurs also in I.

.

..
.
..

f

relations

I
(finite set of facts)

relations

O
(finite set of facts)

(predicates) (predicates)

• Intuitively, f assigns to every input database I output relations, in which no new

constant may occur.

• Usually, ODB consists of a single relation

Complexity of Query Languages



Foundations of Databases 3

Examples

• Transitive closure Query: Directed graph G = (N, E)

– EDB = { e } (e binary)

– ODB = { tc } (tc binary)

Assumption: the vertex set N of G is implicit through e

fTC : inst(EDB)→ inst(ODB),

fTC(I) = {tc(a, b) | ∃ path from a to b in graph G with edges I(e)}

Complexity of Query Languages



Foundations of Databases 4

Examples /2

• “Even-Query”: A Boolean (Yes/No) query

– EDB = { p }, p unary,

– ODB = {even}, even is 0-ary (a propositional atom)

fEven : inst(EDB)→ inst(ODB),

fEven(I) =







{even}, if |I(p)| is even,

{}, if |I(p)| is odd.

Note: for propositional atom a, a ∈ J is equivalent to J(a) = {〈 〉}

Complexity of Query Languages



Foundations of Databases 5

Examples /3

• Graph 3-Uncolorability Query: Boolean Query (Un)directed graph

G = (N, E)

– EDB = { e } (e binary)

– ODB = { uncol } (tc 0-ary)

Assumption: the vertex set N of G is implicit through e

f3uncol : inst(EDB)→ inst(ODB),

f3uncol (I) =







{uncol}, graph G with edges I(e) has no 3-coloring,

{}, otherwise.

Complexity of Query Languages



Foundations of Databases 6

Data Independence

• Databases should provide abstract interfaces and hide internal representation of the

data (i.e., how they are stored).

• This is known as the logical data independence principle

• At the level of queries, this is formalized by the notion of genericity.

Defn. A query f is generic, if it commutes with automorphisms χ on dom (that, is

renamings χ(c) of the elements c in dom), i.e.,

f(χ(I)) = χ(f(I)), for every I ∈ inst(EDB)

I
f
→ f(I)

↓ χ ↓ χ

f(I)
f
→ f(χ(I)) = χ(f(I))

Complexity of Query Languages



Foundations of Databases 7

Example

• The queries fTC , fEven are generic.

• The query which selects all facts from I containing the constant ′Jeff ′ is not

generic.

Constants in queries can be treated differently:

• By relaxing genericity to C =genericity, C ⊆ dom, which requests that χ is

the identity on C

• By moving constants from query expressions to new designated input relations.

Example: {x | G(a, x)}; {x | ∃yG(y, x) ∧ Ca(y)}, provide in the input

Ca = {〈a〉}.

Complexity of Query Languages



Foundations of Databases 8

Computability

• A further requirement for a query f is computability, in terms of a Turing

machine M .

• For each “input” I ∈ inst(EDB),

– M does not terminate if f(I) is undefined.

– M halts on input I with output O = f(I) on its tape if f(I) is undefined.

• A problem to detail here is how I and O are represented on the tape of a Turing

machine.

Notation:

• Q? denotes the collection of all computable queries

• Q denotes the collection of all generic computable queries

Complexity of Query Languages



Foundations of Databases 9

Database Instance Representation

• Any database instance I of a schema R = {R1, . . . , Rm} must for a Turing

Machine be represented by a string enc(I)

• There are different possibilities

• They are based on encodings enc of the constants dom = {c0, c1, c2, . . .} to

binary strings (e.g., enc(ci) is i in binary, with no leading bits)

– For tuples, enc(〈a1, . . . , ak〉) is e.g. [enc(a1), . . . , enc(ak)]

– For a relation R ∈ inst(R), enc(I(R)) is e.g. enc(t1), . . . , enc(tk),

where t1, . . . , tk are the tuples in R in lexicographic ordering

– Finally, enc(I(R)) = enc(I(R1)); . . . ; enc(I(Rm))

Complexity of Query Languages



Foundations of Databases 10

Enumeration of the domain

• Notice: Above, we assumed that there is an enumeration of dom

• Different enumerations α, α′ will yield different encodings encα, encα′

• Under genericity, the particular enumeration α of dom (= {c0, c1, c2, . . .}) is

not relevant.

• Thus in particular, wlog for a generic query the active domain consists of

Cn = {c0, c1, . . . , cn} represented by 0, 1, 2, . . . , n (in binary)

• Relations over Cn are also often stored as bitmaps (serialized 0-1 matrices)

Example: G = {〈0, 0〉, 〈1, 2〉, 〈2, 0〉} on C2

0-1 matrix

0

B

B

@

1 0 0

0 0 1

1 0 0

1

C

C

A

serialized (row by row): 100|001|100

Complexity of Query Languages



Foundations of Databases 11

Query Language

Defn. A (database) query language is a pair

L = 〈Exp, µ〉,

where

• Exp is a set of expressions E in a formal language (the query expressions)

• µ : Exp −→ Q? is a meaning function, which assigns every E ∈ Exp a

database query µ(E)

Remark: For L being effective, it is required that valid query expressions E ∈ Exp can be

recognized by a (fast) algorithm, and that µ(E) is a computable from E.

Complexity of Query Languages



Foundations of Databases 12

Examples

• L = Relational Algebra

– Exp consists of all tuples 〈R, O, E〉 where E is an expression in Relational

Algebra over relations from R

– µ(〈R, O, E〉) is the query mapping

µ(〈R, O, E〉) : inst(R)→ inst({O})

such that I is mapped to the result of E(I).

Complexity of Query Languages



Foundations of Databases 13

Examples /2

• L = datalog:

– Exp consists of all tuples 〈R, O, P 〉 where P is a datalog program with

associated edb relations R and output relation 0

– The meaning µ is given by

µ(〈R, O, P 〉) = f : EDB→ {O},

where

f(I) = P (I)(O)

Complexity of Query Languages



Foundations of Databases 14

Query Complexity Classes

Query Output Tuple Problem (QOT): Given a database query

f : EDB→ ODB, I ∈ inst(EDB), and a fact R(~c), decide whether

R(~c) ∈ f(I).

Defn. QC denotes the class of all generic queries f for which the QOT problem

has complexity in the class C

In particular:

• QP = class of all generic queries f for which QOT is polynomial (f is fixed)

• QcoNP = class of all generic queries f for which QOT is in coNP⇔ deciding

R(~c) /∈ f(I) is in NP (f is fixed)

Complexity of Query Languages



Foundations of Databases 15

NP-

P

The world of NP and coNP

NP

(Assuming P 6= NP and NP 6= coNP)

coNP

PSPACE

complete
coNP-

complete

Complexity of Query Languages



Foundations of Databases 16

Examples

• The transitive closure query fTC is in QP

• The Even-Query fEven is in QP

• The Graph 3-Uncolorability query f3uncol is in QcoNP

Complexity of Query Languages



Foundations of Databases 17

Complexity of Query Evaluation

Measures of query evaluation complexity (L is fixed):

Data Complexity: For a fixed query expression E ∈ L, decide for a given

I ∈ inst(EDB) and fact A whether A ∈ µ(E)(I) (i.e., QOT for fixed f = µ(E))

Expression Complexity: For fixed I ∈ inst(EDB), decide for given E from L

and A whether A ∈ µ(E)(I) (i.e., QOT for fixed I and varying f = µ(E)).

Combined Complexity: For given E ∈ L, I ∈ inst(EDB) and A, decide

whether A ∈ µ(E)(I) (i.e., QOT without further constraints)

• Typically, combined and expression complexity are similar.

• Most relevant: data complexity

Complexity of Query Languages



Foundations of Databases 18

Main issues

• Is data complexity of L polynomial / (presumably) not polynomial ?

• Is the language L balanced ?

That is, if computationally “hard” queries for a complexity class C are in L, are

all queries with the complexity C in L ?

• If L is a “hard” query language, are there fragments of L in which queries are

“easy” ?

Desired: Queries from an “easy” fragment should be efficiently recognizable.

Complexity of Query Languages



Foundations of Databases 19

Some Important Complexity Classes

P =
⋃

d>0
TIME(nd),

NP =
⋃

d>0
NTIME(nd),

EXPTIME =
⋃

d>0
TIME(2nd

),

NEXPTIME =
⋃

d>0
NTIME(2nd

),

PSPACE =
⋃

d>0
SPACE(nd),

EXPSPACE =
⋃

d>0
SPACE(2nd

),

(= LOG) L = SPACE(log n),

(= NLOG) NL = NSPACE(log n).

where

(N)TIME(f(n)) = {L | L is decided by some (non-)DTM in time O(f(n))},

(N)SPACE(f(n)) = {L | L is decided by some DTM within space O(f(n))},

Complexity of Query Languages



Foundations of Databases 20

Properties & Relationships

• Each deterministic class is closed under complementation.

• Each deterministic class is included in its nondeterministic counterpart.

• P ⊆=? NP ⊆=? PSPACE

• PSPACE = NPSPACE

• LOG ⊆=? NL ⊆=? P ⊆=? PSPACE

• NL ⊂ PSPACE ⊆=? EXPTIME

• P ⊂ EXPTIME

• NP ⊂ NEXPTIME

Complexity of Query Languages



Foundations of Databases 21

Completeness

• Recall: A decision problems Π is complete for complexity class C if (1)Π belongs to C ,

and (2) each problem Π′ is reducible to Π.

• Usual notion of reducibility: polynomial-time transformation, inside P logspace

transformations.

Defn. A query language L has data (resp., expression) complexity in class C , if if every

query µ(E), E ∈ Exp, has data (resp., expression) complexity in C .

Defn. A query language L = 〈Exp, µ〉 is data- (resp. expression-) complete with respect

to complexity class C , if

1. L has data (resp., expression) complexity in C , and

2. QOT for {µ(E) | E ∈ Exp} is complete for C under data (resp., expression)

complexity.

Complexity of Query Languages



Foundations of Databases 22

Complexity of Generic Queries

• Often, one considers also only generic queries.

• For generic queries, the following notion is used (Abiteboul et al., 1995)

Defn. A query language L is in QC, if

1. each query generic query f ∈ {µ(E) | E ∈ Exp} is in QC, and

2. is complete w.r.t. QC, if in addition for some such f QOT is complete for C .

Complexity of Query Languages



Foundations of Databases 23

Query Complexity of Relational Calculus

Theorem. Relational Calculus under active domain semantics

1. has data complexity in L.

2. is expression-complete w.r.t. PSPACE.

3. is for generic queries in QL.

Intuition:

• Evaluating a variable-free formula recursively is easy (scan input tape for atoms R(~c))

• We can evaluate quantifiers ∃x, ∀x by looping through all values for x in the input.

• A pointer to positions of the input tape is sufficient to catch all values for x

• For fixed query, we have fixed recursion depth, and a fixed number of pointers, each of

which requires O(log |I|) space. |I| . . . size of input I ∈ inst(EDB)

Complexity of Query Languages



Foundations of Databases 24

PSPACE-Hardness

• The hardness part of expression-completeness of Relational Calculus for

PSPACE can be shown by a reduction from Quantified Boolean Formulas:

Given a formula

Q1X1Q2X2 · · ·QnXnE

where Qi ∈ {∃, ∀} and E is a Boolean formula on variables X1, . . . , Xn,

decide whether the formula evaluates to true (where variables range over {0,1}).

• Relational Calculus is not data-complete for QL (under non-trivial notion of

reduction).

• Relational Calculus queries have data-complexity in AC0, which means that

they are evaluable by polynomial-size Boolean circuits of constant depth with ∨,

∧, and ¬ gates of unbounded fan-in.

• Under parallel computation, Rel. Calculus queries are evaluable in constant time.

Complexity of Query Languages



Foundations of Databases 25

Fixpoint Queries and Partial Fixpoint Queries

Theorem. The Fixpoint Queries are

• data-complete w.r.t. P

• expression-complete w.r.t. EXPTIME

Theorem. The Partial Fixpoint Queries are

• data-complete w.r.t. PSPACE

• expression-complete w.r.t. EXPSPACE

Similar results for While+ and While queries.

Complexity of Query Languages



Foundations of Databases 26

Intuition:

Evaluation of query Q

Consider n-ary relation R, m constants: mn tuples for R

• In computation of µ+
R(φ(R)), R can take on at most adom(Q, I)n + 1

different values, hence at most adom(Q, I)n + 1 iterations.

• In computation of µR(φ(R)), R can take on≤ 2adom(Q,I)n

different values⇒

need to consider≤ 2adom(Q,I)n

iterations (otherwise Q is undefined)

• Data-complexity (n fixed): R occupies polynomial space

– For Fixpoint Queries, adom(Q, I)n + 1 is polynomial

– For Partial Fixpoint Queries, counter for 2adom(Q,I)n

uses

log(2adom(Q,I)n

) = adom(Q, I)n, i.e., polynomial space

• Expression-complexity: Exponential blow-up, because of dynamic arities /

number of variables (adom(Q, I)n + 1 is exponential).

Complexity of Query Languages



Foundations of Databases 27

Query Complexity of Datalog

Theorem. (Plain) datalog is

1. data-complete w.r.t. P.

2. expression-complete w.r.t. EXPTIME.

Proof:

• Membership part: Tω
P (I) is reached in a polynomial resp. exponential number

of steps.

• Hardness part: Show this e.g. by a generic encoding of Turing machines to

datalog.

Complexity of Query Languages



Foundations of Databases 28

Turing Machines

• Informally: a Turing machine (TM) is a device able to read from and write on a

semi-infinite tape, whose contents may be locally accessed and changed in a

computation.

• Formally: A Turing machine is a quadruple

(S, Σ, δ, s0),

where

– S is a finite set of states,

– Σ is a finite alphabet of symbols, containing a special symbol called the

blank.

– δ is a transition function, and

– s0 ∈ S is the initial state.

Complexity of Query Languages



Foundations of Databases 29

Turing Machines /2: Transition Function

• The transition function δ is a map

δ : S × Σ → (S ∪ {halt,yes,no})× Σ× {-1, 0, +1},

where

– halt, yes, and no denote three additional states not occurring in S, and

– -1, 0, +1 denote motion directions.

• Assumption: The machine is well-behaved and never moves off the tape, i.e.,

d 6= -1 whenever the cursor is on the leftmost cell; this can be ensured by

proper design of δ.

Complexity of Query Languages



Foundations of Databases 30

Turing Machines /3: Tape & Input

• The tape of T is divided into cells containing symbols of Σ.

• There is a cursor that may move along the tape.

• At the start, T is in the initial state s0, and the cursor points to the leftmost cell of

the tape.

• An input string I is written on the tape as follows: the first |I| cells

c0, . . . , c|I|−1 of the tape, where |I| denotes the length of I , contains the

symbols of I , and all other cells contain .

Example: String “ABCA”: c0 = A,, c1 = B, c2 = C , c3 = C ,

c4 = A, c5 = , c6 = , . . .

Complexity of Query Languages



Foundations of Databases 31

Turing Machines /4: Computation

• Successive steps of computation are made according to δ. Assume that

– T is in a state s ∈ S,

– the cursor points to the symbol σ ∈ Σ on the tape.

Let

δ(s, σ) = (s′, σ′, d).

Then

– T changes its current state to s′,

– overwrites σ′ on σ, and

– moves the cursor to the



















previous cell, if d = -1,

next cell, if d = +1,

samce cell, if d = 0.

Complexity of Query Languages



Foundations of Databases 32

Turing Machines /5: Halting

• When any of the states halt, yes or no is reached, T halts.

• T accepts the input I , if T halts in yes.

• T rejects the input I if T halts in no.

• If halt is reached, the output of T on I is computed.

• This output, denoted by T (I), is defined as the string contained in the initial

segment of the tape which ends before the first blank.

Complexity of Query Languages



Foundations of Databases 33

Simulating a TM by a logic program

• Goal: Given a TM T , describe a datalog program P (T, I, N) which simulates

the computation of T on some input I for at most N steps

• First Step (conceptually easier): Write a propositional (variable-free) program

P (T, I, N) for such simulation (no edb needed).

• Use a special atom accept such that P (T, I, N) computes accept true iff T

accepts I in at most N steps.

• Modify the program P (T, I, N) to obtain a datalog program with relations and

edb.

Complexity of Query Languages



Foundations of Databases 34

Expressing the Transition Function by Rules

• The transition function δ can be represented by a table

• The rows are tuples t = 〈s, σ, s′, σ′, d〉, expressing an if-then-rule:

if at some time instant τ T is in state s, the cursor points to cell number π,

and this cell contains symbol σ

then at instant τ + 1 the T is in state s′, cell number π contains symbol σ′,

and the cursor points to cell number π + d.

• Using this table, we describe the complete evolution of T on input string I from

its initial configuration at time instant 0 to the configuration at instant N by a

propositional logic program P (T, I, N).

Complexity of Query Languages



Foundations of Databases 35

Groups of Propositional Atoms

symbolσ[τ, π] for 0 ≤ τ ≤ N , 0 ≤ π ≤ N and σ ∈ Σ. Intuitive meaning: at

instant τ of the computation, cell number π contains symbol σ.

cursor[τ, π] for 0 ≤ τ ≤ N and 0 ≤ π ≤ N . Intuitive meaning: at instant τ the

cursor points to cell number π.

states[τ ] for 0 ≤ τ ≤ N and s ∈ S. Intuitive meaning: at instant τ , T is in state s.

accept Intuitive meaning: T has reached state yes.

Complexity of Query Languages



Foundations of Databases 36

Initial Configuration

• Denote by Ik the k-th symbol of the string I = I0 · · · I|I|−1.

• The initial configuration of T on input I is reflected by the following initialization

facts in P (T, I, N):

symbolσ[0, π] ← for 0 ≤ π < |I|, where Iπ = σ

symbol [0, π] ← for |I| ≤ π ≤ N

cursor[0, 0] ←

states0
[0] ←

Complexity of Query Languages



Foundations of Databases 37

Transition Rules

• Each entry 〈s, σ, s′, σ′, d〉 of δ is translated into the following transition rules

(0 ≤ τ < N , 0 ≤ π < N , and 0 ≤ π + d):

symbolσ′ [τ + 1, π] ← states[τ ], symbolσ[τ, π], cursor[τ, π]

cursor[τ + 1, π + d] ← states[τ ], symbolσ[τ, π], cursor[τ, π]

states′ [τ + 1] ← states[τ ], symbolσ[τ, π], cursor[τ, π]

• Further inertia rules carry over values of tape cells which are not changed during

the transition (0 ≤ τ < N , 0 ≤ π < π′ ≤ N ):

symbolσ[τ + 1, π] ← symbolσ[τ, π], cursor[τ, π′]

symbolσ[τ + 1, π′] ← symbolσ[τ, π′], cursor[τ, π]

Complexity of Query Languages



Foundations of Databases 38

Accept Rules

• The accept rules derive the atom accept, whenever an accepting configuration is

reached:

accept ← stateyes[τ ] for 0 ≤ τ ≤ N .

Complexity of Query Languages



Foundations of Databases 39

Simulation Result

Proposition. The least model of P (T, I, N) contains accept if and only if T

accepts the input string I within N steps.

Observations:

• T0
P = ∅

• T1
P contains the initial configuration of T at time instant 0.

• By construction, the least fixpoint Tω
P of P is reached at T N+2

P

• the ground atoms added to Tτ
P , 2 ≤ τ ≤ N + 1, describe the configuration of

T on the input I at the time instant τ − 1.

Complexity of Query Languages



Foundations of Databases 40

Modification to Datalog Program with Variables

The above propositional program can be lifted to programs with variables to simulate

computation of T on designated inputs I .

Main ideas:

• Use relations symbolσ(~x, ~y), cursor(~x, ~y) and states(~x) instead of the

propositional atoms symbolσ[X, Y ], cursor[X, Y ] and states[X] respectively.

• The time points τ and tape positions π from 0 to N − 1 are represented by

tuples tτ = 〈c1, ..., cl〉 of the same arity.

• Use a successor relation on tuples 〈c1, ..., cl〉 to encode π + 1 and τ + 1.

Complexity of Query Languages



Foundations of Databases 41

Modification for Data Complexity

N = nk, k constant (n = |I|), is polynomial.

• Use k-ary tuples and an active domain U of size n, stored in the edb.

• The functions τ+1 and π+d are realized by means of the successor Succk and

first (last) element Firstk (Lastk) w.r.t. a linear order≤k on Uk (built from

relations in edb, or fully built-in).

• Store the string I = enc(I) encoding a (selected) input database I of the

query, and padding ’s on the initial tape of T in the edb using relations

inputσ(·) of arity k.

Informally, inputσ(π) means that cell cπ contains initially symbol σ.

• Copy inputσ(π) to symbolσ(0, π)

Complexity of Query Languages



Foundations of Databases 42

Modification for Expression Complexity

N = 2m, where m = nk.

• Use m-ary tuples over a fixed domain U = {0, 1}, and an empty database.

• The functions τ+1 and π+d are realized by means of the successor Succm

w.r.t. a linear order≤m on Um, built entirely in P .

Complexity of Query Languages



Foundations of Databases 43

Defining Succm and≤m over U

Inductive definition of Succm on U

• Suppose Succi(~x, ~y), Firsti(~x), and Lasti(~x) tell the successor, the first, and the last

element from a linear order≤i on U i, where ~x and ~y have arity i.

• Use rules

Succi+1(z, ~x, z, ~y) ← Succi(~x, ~y)

Succi+1(z, ~x, z′, ~y) ← Succ1(z, z′), Lasti(~x), Firsti(~y)

Firsti+1(z, ~x) ← First1(z), Firsti(~x)

Lasti+1(z, ~x) ← Last1(z), Lasti(~x)

• For i = 1 Succ1(x, y), First1(x), and Last1(x) on U1 = U must be provided.

Complexity of Query Languages



Foundations of Databases 44

• The order≤m is then easily defined by rules

≤m(~x, ~x) ← dom(x1), . . . , dom(xm)

≤m(~x, ~y) ← Succm(~x, ~z), ≤m (~z, ~y)

dom(x) ← First1(x)

dom(y) ← Succ1(x, y)

where ~x = x1, . . . , xm, using dom for the active domain.

Complexity of Query Languages



Foundations of Databases 45

Modification for expression-complexity Hardness

N = 2m, where m = nk, and U = {0, 1}, use ordering 0 ≤1 1

Modify the program P (T, I, N) as follows:

• Provide facts Succ1(0, 1), First1(0), and Last1(1) in P .

• Initialization facts:

– Translate symbolσ[0, π] into rules

symbolσ(~x,~t)← Firstm(~x),

where ~t represents the position π,

– translate similarly the facts cursor[0, 0] and states0
[0].

– Translate symbol [0, π], where |I| ≤ π ≤ N , to the rule

symbol (~x, ~y) ← Firstm(~x), ≤m(~t, ~y)

where ~t represents the number |I|.

Complexity of Query Languages



Foundations of Databases 46

• transition and inertia rules: For realizing τ + 1 and π + d, use in the body atoms

Succm(~x, ~x′).

Example:

symbolσ′ [τ + 1, π] ← states[τ ], symbolσ[τ, π], cursor[τ, π]

is translated into

symbolσ′(~x′, ~y) ← states(~x), symbolσ(~x, ~y), cursor(~x, ~y), Succm(~x, ~x′).

• accept rules: translation is straightforward.

Complexity of Query Languages



Foundations of Databases 47

Concluding EXPTIME Hardness

Let P ′(T, I, N) denote the datalog program with empty edb described for T , I , and

N = 2m, m = nk (where n = |I|)

• P ′(T, I, N) is constructible from T and I in polynomial time (in fact, in logarithmic

space).

• P ′(T, I, N) has accept in its least model⇔ T accepts input I in at most N steps.

Consequence:

Theorem. Datalog has EXPTIME-hard expression complexity.

Notice:

• The program P ′(T, I, N) uses constants (0,1)

• They can be easily eliminated from the program (move e.g. Succ1, First1, and Last1 to

edb).

Complexity of Query Languages



Foundations of Databases 48

Bibliography

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and Expressive Power of Logic

Programming. ACM Computing Surveys, 33(3):374–425, 2001. Available at

http://www.kr.tuwien.ac.at/staff/eiter/et-archive/.

[3] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems – The Complete Book. Prentice

Hall, 2002.

Complexity of Query Languages


