Foundations of Databases

Complexity of Query Languages

Free University of Bozen – Bolzano, 2004–2005

Thomas Eiter

Institut für Informationssysteme

Arbeitsbereich Wissensbasierte Systeme (184/3)

Technische Universität Wien

http://www.kr.tuwien.ac.at/staff/eiter

(revised 2)

Issues

1

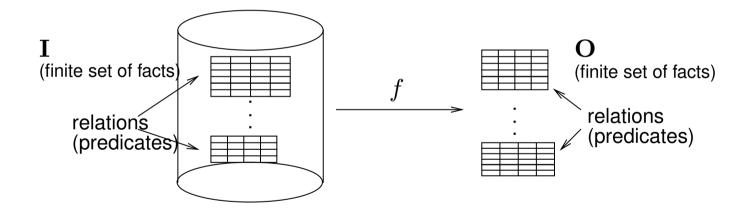
- How difficult is it to evaluate queries?
- For this, we must take into account:
 - How are query inputs / outputs represented ?
 - How difficult is the *intrinsic* complexity of a query, viewed as an abstract mapping ?
 - How difficult is the evaluation of a query defined by some query expression in some query language ?
 - What kind of use cases are of interest?

Database Queries

In an abstracting view, a *database query* can be viewed as a (partial) function

 $f: inst(\mathbf{EDB}) \longrightarrow inst(\mathbf{ODB})$

such that every constant occurring in $f(\mathbf{I})$ occurs also in \mathbf{I} .



- Intuitively, f assigns to every input database I output relations, in which no new constant may occur.
- $\bullet\,$ Usually, ODB consists of a single relation

Examples

- Transitive closure Query: Directed graph G = (N, E)
 - EDB = $\{ e \}$ (*e* binary)
 - **ODB** = $\{ tc \} (tc \text{ binary})$

Assumption: the vertex set N of ${\cal G}$ is implicit through e

$$f_{TC}: inst(\mathbf{EDB}) \to inst(\mathbf{ODB}),$$

$$f_{TC}(\mathbf{I}) = \{tc(a, b) \mid \exists \text{ path from } a \text{ to } b \text{ in graph } G \text{ with edges } \mathbf{I}(e)\}$$

Examples /2

- "Even-Query": A Boolean (Yes/No) query
 - EDB = $\{ p \}$, p unary,
 - **ODB** = $\{even\}$, even is 0-ary (a propositional atom)

$$f_{Even} : inst(\mathbf{EDB}) \to inst(\mathbf{ODB}),$$
$$f_{Even}(\mathbf{I}) = \begin{cases} \{even\}, & \text{if } |\mathbf{I}(p)| \text{ is even}, \\ \{\}, & \text{if } |\mathbf{I}(p)| \text{ is odd.} \end{cases}$$

Note: for propositional atom a, $a \in \mathbf{J}$ is equivalent to $\mathbf{J}(a) = \{\langle \rangle\}$

Examples /3

- Graph 3-Uncolorability Query: Boolean Query (Un)directed graph G = (N, E)
 - EDB = $\{ e \}$ (*e* binary)
 - ODB = { uncol } (tc 0-ary)

Assumption: the vertex set N of ${\cal G}$ is implicit through e

$$f_{3uncol}: inst(\mathbf{EDB}) \to inst(\mathbf{ODB}),$$

$$f_{3uncol}(\mathbf{I}) = \begin{cases} \{uncol\}, & \text{graph } G \text{ with edges } \mathbf{I}(e) \text{ has no 3-coloring}, \\ \{\}, & \text{otherwise.} \end{cases}$$

Data Independence

- Databases should provide abstract interfaces and hide internal representation of the data (i.e., how they are stored).
- This is known as the *logical data independence principle*
- At the level of queries, this is formalized by the notion of *genericity*.

Defn. A query f is *generic*, if it commutes with automorphisms χ on **dom** (that, is renamings $\chi(c)$ of the elements c in **dom**), i.e.,

$$f(\chi(\mathbf{I})) = \chi(f(\mathbf{I})), \quad \text{for every } \mathbf{I} \in inst(\mathbf{EDB})$$

$$\mathbf{I} \quad \stackrel{f}{\to} \quad f(\mathbf{I}) \\
\downarrow \chi \qquad \qquad \downarrow \chi \\
f(\mathbf{I}) \quad \stackrel{f}{\to} \quad f(\chi(\mathbf{I})) = \chi(f(\mathbf{I}))$$

Complexity of Query Languages

Example

- The queries f_{TC} , f_{Even} are generic.
- The query which selects all facts from I containing the constant '*Jeff*' is not generic.

Constants in queries can be treated differently:

- By relaxing genericity to C = genericity, $C \subseteq$ dom, which requests that χ is the identity on C
- By moving constants from query expressions to new designated input relations. Example: $\{x \mid G(a, x)\} \rightsquigarrow \{x \mid \exists y G(y, x) \land C_a(y)\}$, provide in the input $C_a = \{\langle a \rangle\}$.

Computability

- A further requirement for a query f is *computability*, in terms of a Turing machine M.
- For each "input" $\mathbf{I} \in inst(\mathbf{EDB})$,
 - M does not terminate if $f(\mathbf{I})$ is undefined.
 - M halts on input I with output O = f(I) on its tape if f(I) is undefined.
- A problem to detail here is how I and O are represented on the tape of a Turing machine.

Notation:

- \mathbf{Q}^{\star} denotes the collection of all computable queries
- $\bullet \ Q$ denotes the collection of all generic computable queries

Database Instance Representation

- Any database instance I of a schema $\mathbf{R} = \{R_1, \dots, R_m\}$ must for a Turing Machine be represented by a string $enc(\mathbf{I})$
- There are different possibilities
- They are based on encodings enc of the constants $dom = \{c_0, c_1, c_2, ...\}$ to binary strings (e.g., $enc(c_i)$ is *i* in binary, with no leading bits)
 - For tuples, $enc(\langle a_1, \ldots, a_k \rangle)$ is e.g. $[enc(a_1), \ldots, enc(a_k)]$
 - For a relation $R \in inst(\mathbf{R})$, $enc(\mathbf{I}(R))$ is e.g. $enc(t_1), \ldots, enc(t_k)$, where t_1, \ldots, t_k are the tuples in R in lexicographic ordering

- Finally,
$$enc(\mathbf{I}(R)) = enc(\mathbf{I}(R_1)); \ldots; enc(\mathbf{I}(R_m))$$

Enumeration of the domain

- $\bullet\,$ Notice: Above, we assumed that there is an enumeration of $dom\,$
- Different enumerations α , α' will yield different encodings enc_{α} , $enc_{\alpha'}$
- Under genericity, the particular enumeration α of dom (= {c₀, c₁, c₂, ...}) is not relevant.
- Thus in particular, wlog for a generic query the active domain consists of $C_n = \{c_0, c_1, \dots, c_n\}$ represented by $0, 1, 2, \dots, n$ (in binary)
- Relations over C_n are also often stored as bitmaps (serialized 0-1 matrices)

Example:
$$G = \{\langle 0, 0 \rangle, \langle 1, 2 \rangle, \langle 2, 0 \rangle\}$$
 on C_2
0-1 matrix $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ serialized (row b

serialized (row by row): 100|001|100

10

Query Language

Defn. A (database) query language is a pair

$$\mathcal{L} = \langle Exp, \mu \rangle,$$

where

- Exp is a set of expressions E in a formal language (the *query expressions*)
- $\mu: Exp \longrightarrow \mathbf{Q}^{\star}$ is a *meaning function*, which assigns every $E \in Exp$ a database query $\mu(E)$

Remark: For \mathcal{L} being effective, it is required that valid query expressions $E \in Exp$ can be recognized by a (fast) algorithm, and that $\mu(E)$ is a computable from E.

Examples

- \mathcal{L} = Relational Algebra
 - Exp consists of all tuples $\langle {f R},O,E
 angle$ where E is an expression in Relational Algebra over relations from ${f R}$

–
$$\mu(\langle {f R}, O, E
angle)$$
 is the query mapping

$$\mu(\langle \mathbf{R}, O, E \rangle) : inst(\mathbf{R}) \to inst(\{O\})$$

such that I is mapped to the result of E(I).

Examples /2

- \mathcal{L} = datalog:
 - Exp consists of all tuples $\langle \mathbf{R}, O, P \rangle$ where P is a datalog program with associated edb relations \mathbf{R} and output relation 0
 - The meaning $\boldsymbol{\mu}$ is given by

$$\mu(\langle \mathbf{R}, O, P \rangle) = f : \mathbf{EDB} \to \{O\},\$$

where

$$f(\mathbf{I}) = P(\mathbf{I})(O)$$

Query Complexity Classes

Query Output Tuple Problem (QOT): Given a database query

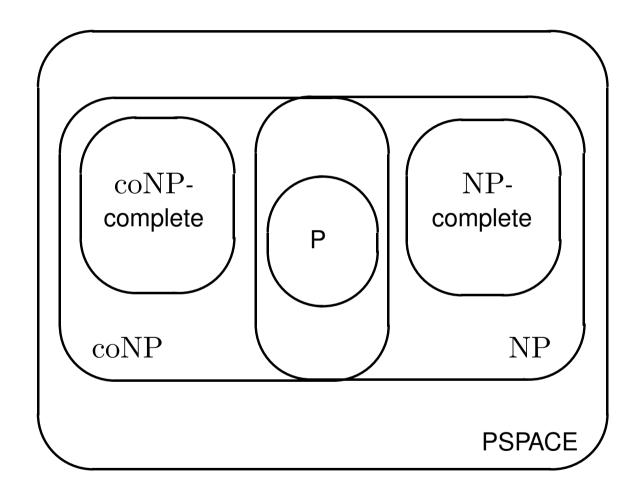
 $f : \mathbf{EDB} \to \mathbf{ODB}, \mathbf{I} \in inst(\mathbf{EDB})$, and a fact $R(\vec{c})$, decide whether $R(\vec{c}) \in f(\mathbf{I})$.

Defn. QC denotes the class of all generic queries f for which the QOT problem has complexity in the class C

In particular:

- \mathbf{QP} = class of all generic queries f for which QOT is polynomial (f is fixed)
- \mathbf{QcoNP} = class of all generic queries f for which QOT is in coNP \Leftrightarrow deciding $R(\vec{c}) \notin f(\mathbf{I})$ is in NP (f is fixed)

The world of NP and coNP



(Assuming $\mathsf{P} \neq NP$ and $NP \neq \mathsf{coNP})$

Examples

- The transitive closure query f_{TC} is in ${f QP}$
- The Even-Query f_{Even} is in ${f QP}$
- The Graph 3-Uncolorability query f_{3uncol} is in \mathbf{QcoNP}

Complexity of Query Evaluation

Measures of query evaluation complexity (\mathcal{L} is fixed):

Data Complexity: For a fixed query expression $E \in \mathcal{L}$, decide for a given $\mathbf{I} \in inst(\mathbf{EDB})$ and fact A whether $A \in \mu(E)(\mathbf{I})$ (i.e., QOT for fixed $f = \mu(E)$)

Expression Complexity: For fixed $\mathbf{I} \in inst(\mathbf{EDB})$, decide for given E from \mathcal{L} and A whether $A \in \mu(E)(\mathbf{I})$ (i.e., QOT for fixed \mathbf{I} and varying $f = \mu(E)$).

Combined Complexity: For given $E \in \mathcal{L}$, $\mathbf{I} \in inst(\mathbf{EDB})$ and A, decide whether $A \in \mu(E)(\mathbf{I})$ (i.e., QOT without further constraints)

- Typically, combined and expression complexity are similar.
- Most relevant: data complexity

Main issues

- Is data complexity of \mathcal{L} polynomial / (presumably) not polynomial ?
- Is the language \mathcal{L} balanced ?

That is, if computationally "hard" queries for a complexity class C are in \mathcal{L} , are all queries with the complexity C in \mathcal{L} ?

 If L is a "hard" query language, are there fragments of L in which queries are "easy" ?

Desired: Queries from an "easy" fragment should be efficiently recognizable.

Some Important Complexity Classes

$$P = \bigcup_{d>0} \text{TIME}(n^d),$$

$$NP = \bigcup_{d>0} NTIME(n^d),$$

EXPTIME =
$$\bigcup_{d>0} \text{TIME}(2^{n^d}),$$

NEXPTIME =
$$\bigcup_{d>0} \operatorname{NTIME}(2^{n^d}),$$

$$PSPACE = \bigcup_{d>0} SPACE(n^d),$$

EXPSPACE =
$$\bigcup_{d>0} SPACE(2^{n^d}),$$

$$(= LOG) L = SPACE(\log n),$$

$$(= \text{NLOG}) \text{ NL} = \text{NSPACE}(\log n).$$

where

$$\begin{aligned} \text{(N)TIME}(f(n)) &= \{L \mid L \text{ is decided by some (non-)DTM in time } O(f(n))\}, \\ \text{(N)SPACE}(f(n)) &= \{L \mid L \text{ is decided by some DTM within space } O(f(n))\}, \end{aligned}$$

Properties & Relationships

- Each deterministic class is closed under complementation.
- Each deterministic class is included in its nondeterministic counterpart.
- $P \subseteq_{=?} NP \subseteq_{=?} PSPACE$
- PSPACE = NPSPACE
- LOG $\subseteq_{=?}$ NL $\subseteq_{=?}$ P $\subseteq_{=?}$ PSPACE
- NL \subset PSPACE $\subseteq_{=?}$ EXPTIME
- $P \subset EXPTIME$
- NP \subset NEXPTIME

Completeness

- Recall: A decision problems Π is complete for complexity class C if (1)Π belongs to C, and (2) each problem Π' is reducible to Π.
- Usual notion of reducibility: polynomial-time transformation, inside P logspace transformations.

Defn. A query language \mathcal{L} has data (resp., expression) complexity in class C, if if every query $\mu(E), E \in Exp$, has data (resp., expression) complexity in C.

Defn. A query language $\mathcal{L} = \langle Exp, \mu \rangle$ is data- (resp. expression-) complete with respect to complexity class C, if

- 1. \mathcal{L} has data (resp., expression) complexity in C, and
- 2. QOT for $\{\mu(E) \mid E \in Exp\}$ is complete for C under data (resp., expression) complexity.

Complexity of Generic Queries

- Often, one considers also only generic queries.
- For generic queries, the following notion is used (Abiteboul et al., 1995)

Defn. A query language \mathcal{L} is in \mathbf{QC} , if

- 1. each query generic query $f \in \{\mu(E) \mid E \in Exp\}$ is in \mathbf{QC} , and
- 2. is complete w.r.t. \mathbf{QC} , if in addition for some such f QOT is complete for C.

Query Complexity of Relational Calculus

Theorem. Relational Calculus under active domain semantics

- 1. has data complexity in L.
- 2. is expression-complete w.r.t. PSPACE.
- 3. is for generic queries in **QL**.

Intuition:

- Evaluating a variable-free formula recursively is easy (scan input tape for atoms $R(\vec{c})$)
- We can evaluate quantifiers $\exists x, \forall x$ by looping through all values for x in the input.
- A pointer to positions of the input tape is sufficient to catch all values for x
- For fixed query, we have fixed recursion depth, and a fixed number of pointers, each of which requires $O(\log |\mathbf{I}|)$ space. $|\mathbf{I}| \dots$ size of input $\mathbf{I} \in inst(\mathbf{EDB})$

PSPACE-Hardness

 The hardness part of expression-completeness of Relational Calculus for PSPACE can be shown by a reduction from Quantified Boolean Formulas: Given a formula

$$Q_1 X_1 Q_2 X_2 \cdots Q_n X_n E$$

where $Q_i \in \{\exists, \forall\}$ and *E* is a Boolean formula on variables X_1, \ldots, X_n , decide whether the formula evaluates to true (where variables range over $\{0,1\}$).

- Relational Calculus is *not* data-complete for QL (under non-trivial notion of reduction).
- Relational Calculus queries have data-complexity in AC₀, which means that they are evaluable by polynomial-size Boolean circuits of constant depth with ∨, ∧, and ¬ gates of unbounded fan-in.
- Under parallel computation, Rel. Calculus queries are evaluable in constant time.

Fixpoint Queries and Partial Fixpoint Queries

Theorem. The Fixpoint Queries are

- data-complete w.r.t. P
- expression-complete w.r.t. EXPTIME

Theorem. The Partial Fixpoint Queries are

- data-complete w.r.t. PSPACE
- expression-complete w.r.t. EXPSPACE

Similar results for While⁺ and While queries.

Intuition:

Evaluation of query ${\boldsymbol{Q}}$

Consider *n*-ary relation R, m constants: m^n tuples for R

- In computation of $\mu_R^+(\phi(R))$, R can take on at most $adom(Q, \mathbf{I})^n + 1$ different values, hence at most $adom(Q, \mathbf{I})^n + 1$ iterations.
- In computation of $\mu_R(\phi(R))$, R can take on $\leq 2^{adom(Q,\mathbf{I})^n}$ different values \Rightarrow need to consider $\leq 2^{adom(Q,\mathbf{I})^n}$ iterations (otherwise Q is undefined)
- Data-complexity (n fixed): R occupies polynomial space
 - For Fixpoint Queries, $adom(Q,\mathbf{I})^n+1$ is polynomial
 - For Partial Fixpoint Queries, counter for $2^{adom(Q,\mathbf{I})^n}$ uses $\log(2^{adom(Q,\mathbf{I})^n}) = adom(Q,\mathbf{I})^n$, i.e., polynomial space
- Expression-complexity: Exponential blow-up, because of dynamic arities / number of variables $(adom(Q, \mathbf{I})^n + 1$ is exponential).

Query Complexity of Datalog

Theorem. (Plain) datalog is

- 1. data-complete w.r.t. P.
- 2. expression-complete w.r.t. EXPTIME.

Proof:

- Membership part: $\mathbf{T}_P^{\omega}(\mathbf{I})$ is reached in a polynomial resp. exponential number of steps.
- Hardness part: Show this e.g. by a generic encoding of Turing machines to datalog.

Turing Machines

- Informally: a Turing machine (TM) is a device able to read from and write on a semi-infinite tape, whose contents may be locally accessed and changed in a computation.
- Formally: A Turing machine is a quadruple

 $(S, \Sigma, \delta, s_0),$

where

- S is a finite set of states,
- Σ is a finite alphabet of symbols, containing a special symbol $_$ called the blank.
- δ is a transition function, and
- $s_0 \in S$ is the initial state.

Turing Machines /2: Transition Function

 $\bullet\,$ The transition function δ is a map

 $\delta: S \times \Sigma \rightarrow (S \cup \{ \texttt{halt}, \texttt{yes}, \texttt{no} \}) \times \Sigma \times \{-1, 0, +1\},$

where

- halt, yes, and no denote three additional states not occurring in $S, \, {\rm and}$

- -1, 0, +1 denote motion directions.
- Assumption: The machine is well-behaved and never moves off the tape, i.e., $d \neq -1$ whenever the cursor is on the leftmost cell; this can be ensured by proper design of δ .

Turing Machines /3: Tape & Input

- The tape of T is divided into cells containing symbols of Σ .
- There is a cursor that may move along the tape.
- At the start, T is in the initial state s₀, and the cursor points to the leftmost cell of the tape.
- An input string I is written on the tape as follows: the first |I| cells $c_0, \ldots, c_{|I|-1}$ of the tape, where |I| denotes the length of I, contains the symbols of I, and all other cells contain \Box .

Example: String "
$$ABCA$$
": $c_0 = A$,, $c_1 = B$, $c_2 = C$, $c_3 = C$, $c_4 = A$, $c_5 = \Box$, $c_6 = \Box$, ...

Turing Machines /4: Computation

- Successive steps of computation are made according to δ . Assume that
 - T is in a state $s \in S$,
 - the cursor points to the symbol $\sigma \in \Sigma$ on the tape.

Let

$$\delta(s,\sigma) = (s',\sigma',d).$$

Then

- T changes its current state to s',
- overwrites σ' on σ , and
- $\text{ moves the cursor to the} \begin{cases} \text{ previous cell,} & \text{if } d = -1, \\ \text{next cell,} & \text{if } d = +1, \\ \text{samce cell,} & \text{if } d = 0. \end{cases}$

Turing Machines /5: Halting

- When any of the states halt, yes or no is reached, T halts.
- T accepts the input I, if T halts in yes.
- T rejects the input I if T halts in no.
- If halt is reached, the output of T on I is computed.
- This output, denoted by T(I), is defined as the string contained in the initial segment of the tape which ends before the first blank.

Simulating a TM by a logic program

- Goal: Given a TM T, describe a datalog program P(T, I, N) which simulates the computation of T on some input I for at most N steps
- First Step (conceptually easier): Write a *propositional (variable-free)* program P(T, I, N) for such simulation (no *edb* needed).
- Use a special atom *accept* such that P(T, I, N) computes *accept* true iff T accepts I in at most N steps.
- Modify the program P(T, I, N) to obtain a datalog program with relations and edb.

Expressing the Transition Function by Rules

- The transition function δ can be represented by a table
- The rows are tuples $t = \langle s, \sigma, s', \sigma', d \rangle$, expressing an if-then-rule:

if at some time instant τT is in state s, the cursor points to cell number π , and this cell contains symbol σ then at instant $\tau + 1$ the T is in state s', cell number π contains symbol σ' , and the cursor points to cell number $\pi + d$.

• Using this table, we describe the complete evolution of T on input string I from its initial configuration at time instant 0 to the configuration at instant N by a propositional logic program P(T, I, N).

Groups of Propositional Atoms

- $symbol_{\sigma}[\tau, \pi]$ for $0 \le \tau \le N$, $0 \le \pi \le N$ and $\sigma \in \Sigma$. Intuitive meaning: at instant τ of the computation, cell number π contains symbol σ .
- *cursor*[τ, π] for $0 \le \tau \le N$ and $0 \le \pi \le N$. Intuitive meaning: at instant τ the cursor points to cell number π .

*state*_s[τ] for $0 \le \tau \le N$ and $s \in S$. Intuitive meaning: at instant τ , T is in state s.

accept Intuitive meaning: T has reached state yes.

Initial Configuration

- Denote by I_k the k-th symbol of the string $I = I_0 \cdots I_{|I|-1}$.
- The initial configuration of T on input I is reflected by the following initialization facts in P(T, I, N):

$$\begin{array}{ll} \textit{symbol}_{\sigma}[0,\pi] & \leftarrow & \text{for } 0 \leq \pi < |I|, \text{ where } I_{\pi} = \sigma \\ \textit{symbol}_{_}[0,\pi] & \leftarrow & \text{for } |I| \leq \pi \leq N \\ \textit{cursor}[0,0] & \leftarrow & \\ \textit{state}_{s_0}[0] & \leftarrow & \end{array}$$

Transition Rules

• Each entry $\langle s, \sigma, s', \sigma', d \rangle$ of δ is translated into the following transition rules $(0 \le \tau < N, 0 \le \pi < N, \text{ and } 0 \le \pi + d)$:

$$\begin{aligned} symbol_{\sigma'}[\tau+1,\pi] &\leftarrow state_{s}[\tau], symbol_{\sigma}[\tau,\pi], cursor[\tau,\pi] \\ cursor[\tau+1,\pi+d] &\leftarrow state_{s}[\tau], symbol_{\sigma}[\tau,\pi], cursor[\tau,\pi] \\ state_{s'}[\tau+1] &\leftarrow state_{s}[\tau], symbol_{\sigma}[\tau,\pi], cursor[\tau,\pi] \end{aligned}$$

• Further *inertia rules* carry over values of tape cells which are not changed during the transition ($0 \le \tau < N$, $0 \le \pi < \pi' \le N$):

$$symbol_{\sigma}[\tau + 1, \pi] \leftarrow symbol_{\sigma}[\tau, \pi], cursor[\tau, \pi']$$
$$symbol_{\sigma}[\tau + 1, \pi'] \leftarrow symbol_{\sigma}[\tau, \pi'], cursor[\tau, \pi]$$

Accept Rules

• The accept rules derive the atom *accept*, whenever an accepting configuration is reached:

accept \leftarrow state_{yes}[\tau] for
$$0 \le \tau \le N$$
.

Simulation Result

Proposition. The least model of P(T, I, N) contains *accept* if and only if T accepts the input string I within N steps.

Observations:

- $\mathbf{T}_P^0 = \emptyset$
- \mathbf{T}_P^1 contains the initial configuration of T at time instant 0.
- By construction, the least fixpoint \mathbf{T}_P^ω of P is reached at T_P^{N+2}
- the ground atoms added to \mathbf{T}_P^{τ} , $2 \leq \tau \leq N+1$, describe the configuration of T on the input I at the time instant $\tau 1$.

Modification to Datalog Program with Variables

The above propositional program can be lifted to programs with variables to simulate computation of T on designated inputs I.

Main ideas:

- Use relations $symbol_{\sigma}(\vec{x}, \vec{y})$, $cursor(\vec{x}, \vec{y})$ and $state_{s}(\vec{x})$ instead of the propositional atoms $symbol_{\sigma}[X, Y]$, cursor[X, Y] and $state_{s}[X]$ respectively.
- The time points τ and tape positions π from 0 to N-1 are represented by tuples $t_{\tau} = \langle c_1, ..., c_l \rangle$ of the same arity.
- Use a *successor relation* on tuples $\langle c_1, ..., c_l \rangle$ to encode $\pi + 1$ and $\tau + 1$.

Modification for Data Complexity

 $N = n^k$, k constant (n = |I|), is polynomial.

- Use k-ary tuples and an active domain U of size n, stored in the edb.
- The functions $\tau+1$ and $\pi+d$ are realized by means of the successor $Succ^k$ and first (last) element $First^k$ (Last^k) w.r.t. a linear order \leq^k on U^k (built from relations in edb, or fully built-in).
- Store the string $I = enc(\mathbf{I})$ encoding a (selected) input database \mathbf{I} of the query, and padding _'s on the initial tape of T in the edb using relations $input_{\sigma}(\cdot)$ of arity k.

Informally, *input*_{σ}(π) means that cell c_{π} contains initially symbol σ .

• Copy $\mathit{input}_\sigma(\pi)$ to $\mathit{symbol}_\sigma(0,\pi)$

Modification for Expression Complexity

 $N=2^m$, where $m=n^k$.

- Use m-ary tuples over a fixed domain $U = \{0, 1\}$, and an empty database.
- The functions τ+1 and π+d are realized by means of the successor Succ^m w.r.t. a linear order ≤^m on U^m, built entirely in P.

Defining $Succ^m$ and \leq^m over U

Inductive definition of $Succ^m$ on U

- Suppose $Succ^{i}(\vec{x}, \vec{y})$, $First^{i}(\vec{x})$, and $Last^{i}(\vec{x})$ tell the successor, the first, and the last element from a linear order \leq^{i} on U^{i} , where \vec{x} and \vec{y} have arity i.
- Use rules

$$\begin{array}{rcl} \textit{Succ}^{i+1}(z,\vec{x},z,\vec{y}) &\leftarrow &\textit{Succ}^{i}(\vec{x},\vec{y}) \\ \textit{Succ}^{i+1}(z,\vec{x},z',\vec{y}) &\leftarrow &\textit{Succ}^{1}(z,z'),\textit{Last}^{i}(\vec{x}),\textit{First}^{i}(\vec{y}) \\ \textit{First}^{i+1}(z,\vec{x}) &\leftarrow &\textit{First}^{1}(z),\textit{First}^{i}(\vec{x}) \\ \textit{Last}^{i+1}(z,\vec{x}) &\leftarrow &\textit{Last}^{1}(z),\textit{Last}^{i}(\vec{x}) \end{array}$$

• For i = 1 Succ¹(x, y), First¹(x), and Last¹(x) on $U^1 = U$ must be provided.

 $\bullet~{\rm The~order}\leq^m$ is then easily defined by rules

$$\leq^{m}(\vec{x}, \vec{x}) \leftarrow dom(x_{1}), \dots, dom(x_{m})$$

$$\leq^{m}(\vec{x}, \vec{y}) \leftarrow Succ^{m}(\vec{x}, \vec{z}), \leq^{m} (\vec{z}, \vec{y})$$

$$dom(x) \leftarrow First^{1}(x)$$

$$dom(y) \leftarrow Succ^{1}(x, y)$$

where $\vec{x} = x_1, \ldots, x_m$, using *dom* for the active domain.

Modification for expression-complexity Hardness

$$N=2^m,$$
 where $m=n^k,$ and $U=\{0,1\},$ use ordering $0\leq^1 1$

Modify the program P(T, I, N) as follows:

- Provide facts $Succ^{1}(0, 1)$, $First^{1}(0)$, and $Last^{1}(1)$ in P.
- Initialization facts:
 - Translate $\mathit{symbol}_{\sigma}[0,\pi]$ into rules

$$symbol_{\sigma}(\vec{x}, \vec{t}) \leftarrow First^{m}(\vec{x}),$$

where \vec{t} represents the position π ,

- translate similarly the facts cursor[0,0] and $state_{s_0}[0]$.
- Translate $\textit{symbol}_[0,\pi],$ where $|I| \leq \pi \leq N,$ to the rule

$$symbol_{\vec{x}}(\vec{x},\vec{y}) \leftarrow First^m(\vec{x}), \leq^m(\vec{t},\vec{y})$$

where \vec{t} represents the number |I|.

• transition and inertia rules: For realizing $\tau + 1$ and $\pi + d$, use in the body atoms $Succ^{m}(\vec{x}, \vec{x}')$.

Example:

$$symbol_{\sigma'}[\tau+1,\pi] \leftarrow state_s[\tau], symbol_{\sigma}[\tau,\pi], cursor[\tau,\pi]$$

is translated into

$$symbol_{\sigma'}(\vec{x}', \vec{y}) \leftarrow state_s(\vec{x}), symbol_{\sigma}(\vec{x}, \vec{y}), cursor(\vec{x}, \vec{y}), Succ^m(\vec{x}, \vec{x}').$$

• accept rules: translation is straightforward.

Concluding EXPTIME Hardness

Let P'(T, I, N) denote the datalog program with empty edb described for T, I, and $N = 2^m$, $m = n^k$ (where n = |I|)

- P'(T, I, N) is constructible from T and I in polynomial time (in fact, in logarithmic space).
- P'(T, I, N) has *accept* in its least model $\Leftrightarrow T$ accepts input I in at most N steps. Consequence:

Theorem. Datalog has $EXPTIME\mbox{-hard}$ expression complexity.

Notice:

- The program P'(T, I, N) uses constants (0,1)
- They can be easily eliminated from the program (move e.g. *Succ*¹, *First*¹, and *Last*¹ to *edb*).

Complexity of Query Languages

Bibliography

- [1] S. Abiteboul, R. Hull, and V. Vianu. *Foundations of Databases*. Addison-Wesley, 1995.
- [2] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and Expressive Power of Logic Programming. ACM Computing Surveys, 33(3):374–425, 2001. Available at http://www.kr.tuwien.ac.at/staff/eiter/et-archive/.
- [3] H. Garcia-Molina, J. D. Ullman, and J. Widom. *Database Systems The Complete Book*. Prentice Hall, 2002.