Foundations of Databases

Datalog with Negation

Free University of Bozen – Bolzano, 2004–2005

Thomas Eiter

Institut für Informationssysteme

Arbeitsbereich Wissensbasierte Systeme (184/3)

Technische Universität Wien

http://www.kr.tuwien.ac.at/staff/eiter

(revised 2)

The Issue

1

- In While⁽⁺⁾ and CALC⁽⁺⁾- μ , we have negation (¬) as operator
- Thus, queries like complement of a relation, complement of transitive closure can be easily expressed in these languages
- These queries can not be expressed in datalog (monotonicity)
- Desired: Extension of datalog with negation

Example: $ready(D) \leftarrow device(D), \neg busy(D)$

Giving a semantics is not straightforward because of possible cyclic definitions
 Example:

$$single(X) \leftarrow man(X), \neg husband(X)$$

 $husband(X) \leftarrow man(X), \neg single(X)$

Datalog[¬] Syntax

Defn. A datalog \neg program P is a finite set of datalog \neg rules r of the form

$$A \leftarrow B_1, \dots, B_n \tag{1}$$

where $n\geq 0$ and

- A is an atom $R_0(\vec{x}_0)$
- Each B_i is an atom $R_i(\vec{x}_i)$ or a negated atom $\neg R_i(\vec{x}_i)$
- $\vec{x}_0, \ldots, \vec{x}_n$ are vectors of variables and constants (from dom)
- Every variable in $\vec{x}_0, \ldots, \vec{x}_n$ must occur in some atom $B_i = R_i(\vec{x}_i)$ ("safety")
- the head of r is A, denoted H(r).
- the body of r is $\{B_1, \ldots, B_n\}$, denoted B(r), and $B^+(r) = \{R(\vec{x}) \mid \exists i B_i = R(\vec{x})\}, B^-(r) = \{R(\vec{x}) \mid \exists i B_i = \neg R(\vec{x})\},\$

P has extensional and intensional relations, edb(P) resp. idb(P), like a datalog program.

Remarks: - "¬" is as in LP often denoted by "not" (e.g., in DLV)

- Equality (=) and inequality (\neq , as \neg =) are usually available as built-ins, but usage must be "safe"

Datalog Semantics – The Problem

- Idea: Naturally extend the minimal-model semantics of datalog (equivalently, the least fixpoint-semantics) to negation
- Generalize to this aim the immediate consequence operator

$$\mathbf{T}_P(\mathbf{K}) : inst(sch(P)) \to inst(sch(P))$$

Defn. Given a datalog program P and $\mathbf{K} \in inst(sch(P))$, a fact $R(\vec{t})$ is an *immediate* consequence for \mathbf{K} and P, if either

- $R \in edb(P)$ and $R(\vec{t}) \in \mathbf{K}$, or
- there exists some ground instance \boldsymbol{r} of a rule in \boldsymbol{P} such that
 - $* H(r) = R(\vec{t}),$
 - $* \ B^+(r) \subseteq {f K}$, and
 - $* \ B^-(r) \cap \mathbf{K} = \emptyset.$

(That is, evaluate " \neg " w.r.t. K)

Problems with Least Fixpoints

- Natural trial: Define the semantics of datalog \neg in terms of least fixpoint of \mathbf{T}_P .
- However, this suffers from several problems:
 - 1. \mathbf{T}_P may not have a fixpoint:

$$P_1 = \{ known(a) \leftarrow \neg known(a) \}$$

2. T_P may not have a least (i.e., single minimal) fixpoint:

$$P_{2} = \{ single(X) \leftarrow man(X), \neg husband(X) \\ husband(X) \leftarrow man(X), \neg single(X) \}$$

 $\mathbf{I} = \{man(dilbert)\}$

3. The least fixpoint of \mathbf{T}_P including \mathbf{I} may not be constructible by fixpoint iteration (i.e., not as limit $\mathbf{T}_P^{\omega}(\mathbf{I})$ of $\{\mathbf{T}_P^i(\mathbf{I})\}_{i\geq 0}$):

 $P_3 = P_2 \cup \{husband(X) \leftarrow \neg husband(X), single(X)\}$ $\mathbf{I} = \{man(dilbert)\}) \text{ as above}$

Note: Operator \mathbf{T}_P is not monotonic!

Problems with Minimal Models

There are similar problems for model-theoretic semantics

• We can associate with P naturally a first-order theory Σ_P as in the negation-free case (write rules as implications):

$$R(\vec{x}) \leftarrow (\neg) R_1(\vec{x}_1), \dots, (\neg) R_n(\vec{x}_n)$$

$$\rightsquigarrow$$
$$\forall \vec{x} \forall \vec{x}_1 \cdots \forall \vec{x}_n (((\neg) R_1(\vec{x}_1) \land \cdots \land (\neg) R_n(\vec{x}_n)) \supset R(\vec{x}))$$

- Still, $\mathbf{K} \in inst(sch(P))$ is a model of Σ_P iff $\mathbf{T}_P(\mathbf{K}) \subseteq \mathbf{K}$ (and models are not necessarily fixpoints)
- However, multiple minimal models of Σ_P containing \mathbf{I} might exist (dilbert example).

Solution Approaches

Different kinds of proposals have been made to handle the problems above

- Give up single fixpoint / model semantics: Consider alternative fixpoints (models), and define results by *intersection*, called *certain semantics*.
 Most well-known: Stable model semantics (Gelfond & Lifschitz, 1988;1991).
 Still suffers from 1.
- **Constrain the syntax of programs:** Consider only fragment where negation can be "naturally" evaluated to a single minimal model.

Most well-known: semantics for stratified programs (Apt, Blair & Walker, 1988), perfect model semantics (Przymusinski, 1987).

• Give up 2-valued semantics: Facts might be true, false or *unknown*

Adapt and refine the notion of immediate consequence.

Most well-known: Well-founded semantics (Ross, van Gelder & Schlipf, 1991). Resolves all problems 1-3

• Give up fixpoint / minimality condition: Operational definition of result.

Most well-known: Inflationary semantics (Abiteboul & Vianu, 1988)

Semi-Positive Datalog

"Easy" case: Datalog \neg programs where negation is applied only to edb relations.

- Such programs are called *semi-positive*
- For a semi-positive program, the operator \mathbf{T}_P is monotonic if the *edb*-part is fixed, i.e., $\mathbf{I}|edb(P) = \mathbf{J}|edb(P)$ implies $\mathbf{T}_P(\mathbf{I}) \subseteq \mathbf{T}_P(\mathbf{J})$

Theorem. Let P be a semi-positive datalog program and $I \in inst(sch(P))$. Then,

- 1. \mathbf{T}_P has a unique minimal fixpoint \mathbf{J} such that $\mathbf{I}|edb(P) = \mathbf{J}|edb(P)$. $\mathbf{T}_P(\mathbf{I}) \subseteq \mathbf{T}_P(\mathbf{J})$
- 2. Σ_P has a unique minimal model **J** such that $\mathbf{I}|edb(P) = \mathbf{J}|edb(P)$.

Example

Semi-positive datalog can express the transitive closure of the complement of a graph G:

$$neg_tc(x,y) \leftarrow \neg G(x,y)$$
$$neg_tc(x,y) \leftarrow \neg G(x,z), neg_tc(z,y)$$

Stratified Semantics

- Intuition: For evaluating the body of a rule instance r containing $\neg R(\vec{t})$, the value of the "negated" relation $R(\vec{t})$ should be known.
 - 1. Evaluate first R
 - 2. if $R(\vec{t})$ is false, then $\neg R(\vec{t})$ is true,
 - 3. if $R(\vec{t})$ is true, then $\neg R(\vec{t})$ is false and the rule is not applicable.

• Example:

$$boring(chess) \leftarrow \neg interesting(chess)$$

 $interesting(X) \leftarrow difficult(X)$

For $I = \{\}$, compute result $\{boring(chess)\}$.

• Note: this introduces *procedurality* (violates declarativity)!

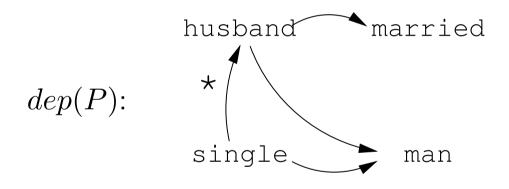
Dependency graph for Datalog[¬] programs

Associate with each datalog program P a directed graph DEP(P) = (N, E), called *Dependency Graph*, as follows:

- N = sch(P), i.e., the nodes are the relations.
- $E = \{ \langle R, R' \rangle \mid \exists r \in P : H(r) = R \land R' \in B(r) \}$, i.e., arcs $R \to R'$ from the relations in rule heads to the relations in the body.
- Mark each arc $R \to R'$ with "*", if $R(\vec{x})$ is in the head of a rule in P whose body contains $\neg R'(\vec{y})$.

Remark: edb relations are often omitted in the dependency graph

Example



Stratification Principle

If $R = R_0 \rightarrow R_1 \rightarrow R_2 \rightarrow \cdots \rightarrow R_{n-1} \rightarrow R_n = R'$ such that some $R_i \rightarrow R_{i+1}$ is marked with "*", then R' must be evaluated prior to R.

Stratification

Defn. A *stratification* of a datalog program P is a partitioning

$$\Sigma = \bigcup_{i \ge 1}^{n} P_i$$

of sch(P) into nonempty, pairwise disjoint sets P_i such that

(a) if $R \in P_i$, $R' \in P_j$, and $R \to R'$ is in DEP(P), then $i \ge j$;

(b) if $R \in P_i$, $R' \in P_j$, and $R \to R'$ is in DEP(P) marked with "*," then i > j.

 P_1, \ldots, P_n are called the *strata* of P w.r.t. Σ .

Defn. A datalog program P is called *stratified*, if it has some stratification Σ .

Evaluation Order

A stratification Σ gives an *evaluation order* for the relations in P, given $\mathbf{I} \in inst(edb(P))$:

1. First evaluate the relations in P_1 (which is \neg -free).

 \Rightarrow All relations R in heads of P_1 are defined. This yields $J_1 \in inst(sch(P_1))$.

2. Evaluate P_2 considering relations in edb(P) and P_1 as $edb(P_1)$, where $\neg R(\vec{t})$ is true if $R(\vec{t})$ is false in $\mathbf{I} \cup \mathbf{J}_1$;

 \Rightarrow All relations R in heads of P_2 are defined. This yields $\mathbf{J}_2 \in inst(sch(P_2))$.

- 3. Evaluate P_i considering relations in edb(P) and P_1, \ldots, P_{i-1} as $edb(P_i)$, where $\neg R(\vec{t})$ is true if $R(\vec{t})$ is false in $\mathbf{I} \cup \mathbf{J}_1 \cup \cdots \cup \mathbf{J}_{i-1}$;
- 4. The result of evaluating P on \mathbf{I} w.r.t. Σ , denoted $P_{\Sigma}(\mathbf{I})$, is given by $\mathbf{I} \cup \mathbf{J}_1 \cup \cdots \cup \mathbf{J}_n$;

Datalog with Negation

. . .

Example

$$P = \{ husband(X) \leftarrow man(X), married(X) \\ single(X) \leftarrow man(X), \neg husband(X) \}$$

Stratification Σ :

$$P_1 = \{man, married\}, P_2 = \{husband\}, P_3 = \{single\}$$

 $\mathbf{I} = \{man(dilbert)\}:$

- 1. Evaluate $P_1: J_1 = \{\}$
- 2. Evaluate P_2 : $J_2 = \{\}$
- 3. Evaluate P_3 : $J_3 = \{single(dilbert)\}$
- 4. Hence, $P_{\Sigma}(\mathbf{I}) = \{man(dilbert)\}, single(dilbert)\}$

Formal Definition of Stratified Semantics

Let P be a stratified Datalog program with stratification $\Sigma = \bigcup_{i=1}^{n} P_i$.

- Let P_i^* be the set of rules from P whose relations in the head are in P_i , and set $edb(P_1^*) = edb(P)$, $edb(P_i^*) = rels(\bigcup_{j=1}^{i-1} P_j^*) \cup edb(P)$, i > 1.
- For every $\mathbf{I} \in inst(edb(P))$, let $\mathbf{I}_0^{\Sigma} = \mathbf{I}$ and define

. . .

. . .

$$\mathbf{I}_{1}^{\Sigma} = \mathbf{T}_{P_{1}^{*}}^{\omega}(\mathbf{I}_{0}^{\Sigma}) = lfp(\mathbf{T}_{P_{1}^{*}}(\mathbf{I}_{0}^{\Sigma})) \supseteq \mathbf{I}_{0}^{\Sigma}$$
$$\mathbf{I}_{2}^{\Sigma} = \mathbf{I}_{0}^{\omega}(\mathbf{I}_{2}^{\Sigma}) = lfp(\mathbf{T}_{P_{1}^{*}}(\mathbf{I}_{0}^{\Sigma})) \supseteq \mathbf{I}_{0}^{\Sigma}$$

$$\mathbf{I}_{2}^{\Sigma} = \mathbf{T}_{P_{2}^{*}}^{\omega}(\mathbf{I}_{1}^{\Sigma}) = lfp(\mathbf{T}_{P_{2}^{*}}(\mathbf{I}_{1}^{\Sigma})) \supseteq \mathbf{I}_{1}^{\Sigma}$$

$$\mathbf{I}_{i}^{\Sigma} = \mathbf{T}_{P_{i}^{*}}^{\omega}(\mathbf{I}_{i-1}^{\Sigma}) = lfp(\mathbf{T}_{P_{i}^{*}}(\mathbf{I}_{i-1}^{\Sigma})) \supseteq \mathbf{I}_{i-1}^{\Sigma}$$

$$\mathbf{I}_{n}^{\Sigma} = \mathbf{T}_{P_{n}^{*}}^{\omega}(\mathbf{I}_{n-1}^{\Sigma}) = lfp(\mathbf{T}_{P_{n}^{*}}(\mathbf{I}_{n-1}^{\Sigma})) \supseteq \mathbf{I}_{n-1}^{\Sigma}$$

where $\mathbf{T}_Q^{\omega}(\mathbf{J}) = \lim \{\mathbf{T}_Q^i(\mathbf{J})\}_{i \ge 0}$ with $\mathbf{T}_Q^0(\mathbf{J}) = \mathbf{J}$ and $\mathbf{T}_Q^{i+1} = \mathbf{T}_Q(\mathbf{T}_Q^i(\mathbf{J}))$, and $lfp(\mathbf{T}_Q(\mathbf{J}))$ is the least fixpoint \mathbf{K} of \mathbf{T}_Q such that $\mathbf{K}|edb(Q) = \mathbf{J}|edb(Q)$.

• Denote $P_{\Sigma}(\mathbf{I}) = \mathbf{I}_n^{\Sigma}$

Proposition. For every $i \in \{1, \ldots, n\}$,

- $lfp(\mathbf{T}_{P_i^*}(\mathbf{I}_{i-1}^{\Sigma}))$ exists,
- $lfp(\mathbf{T}_{P_i^*}(\mathbf{I}_{i-1}^{\Sigma})) = \mathbf{T}_{P_i^*}^{\omega}(\mathbf{I}_{i-1}^{\Sigma})$ holds,
- $\mathbf{I}_{i-1}^{\Sigma} \subseteq \mathbf{I}_{i}^{\Sigma}$.

Therefore, $P_{\Sigma}(\mathbf{I})$ is always well-defined.

Stratified semantics singles out a model, and in fact a minimal model.

Theorem. $P_{\Sigma}(\mathbf{I})$ is a minimal model \mathbf{K} of P such that $\mathbf{K}|edb(P) = \mathbf{I}$.

Dilbert Example cont'd

$$P = \{ husband(X) \leftarrow man(X), married(X) \\ single(X) \leftarrow man(X), \neg husband(X) \}$$

 $edb(P) = \{man\}$

Stratification Σ : $P_1 = \{man, married\}, P_2 = \{husband\}, P_3 = \{single\}$

1.
$$P_1 = \{\}$$

2. $P_2 = \{husband(X) \leftarrow man(X), married(X)\}$
3. $P_3 = \{single(X) \leftarrow man(X), \neg husband(X)\}$

 $I = \{man(dilbert)\}:$ 1. $I_1^{\Sigma} = \{man(dilbert)\}$ 2. $I_2^{\Sigma} = \{man(dilbert)\}$ 3. $I_3^{\Sigma} = \{man(dilbert), single(dilbert)\}$

Hence, $P_{\Sigma}(\mathbf{I}) = \{man(dilbert), single(dilbert)\}$

Stratification Theorem

- The stratification $\boldsymbol{\Sigma}$ above is not unique.
- Alternative stratification Σ' :

 $P_1 = \{man, married, husband\}, P_2 = \{single\}$

• Evaluation with respect to Σ' yields same result!

The choice of a particular stratification is irrelevant:

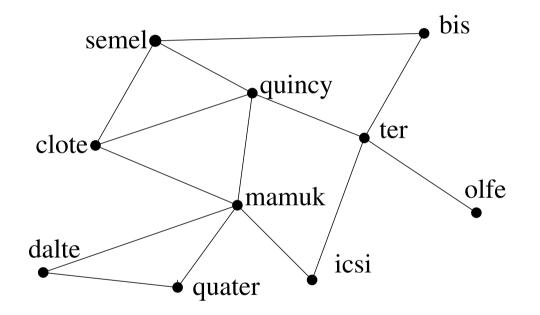
Stratification Theorem. Let P be a stratifiable datalog program. Then, for any stratifications Σ and Σ' and $\mathbf{I} \in inst(sch(P)), P_{\Sigma}(\mathbf{I}) = P_{\Sigma'}(\mathbf{I}).$

- Thus, syntactic stratification yields semantically a canonical way of evaluation.
- The result $P_{str}(\mathbf{I})$ is called the *perfect model* or *stratified model* of P for **I**.

Remark: Prolog features SLDNF – SLD resolution with (finite) negation as failure

Example: Railroad Network

Determine whether safe connections between locations in a railroad network



- Cutpoint c for a and b: if c fails, there is no connection between a and b
- Safe connection between *a* and *b*: no cutpoints between *a* and *b* exist
- E.g., ter is a cutpoint for olfe and semel, while quincy is not.

Relations:

link(X, Y): direct connection from station X to Y (edb facts) linked(A, B): symmetric closure of link. connected(A, B): there is path between A and B (one or more links) cutpoint(X, A, B): each path from A to B goes through station X circumvent(X, A, B): there is a path between A and B not passing X $has_icut_point(A, B)$: there is at least one cutpoint between A and B. $safely_connected(A, B)$: A and B are connected with no cutpoint. station(X): X is a railway station.

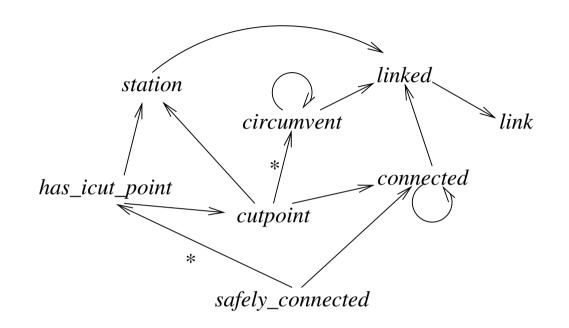
Railroad program P:

- R_1 : linked(A, B): -link(A, B).
- R_2 : linked(A, B) : -link(B, A).
- R_3 : connected(A, B): -linked(A, B).
- R_4 : connected(A, B): -connected(A, C), linked(C, B).
- $R_5: \ cutpoint(X, A, B) :- connected(A, B), station(X), \\\neg circumvent(X, A, B).$
- R_6 : circumvent(X, A, B): -linked(A, B), $X \neq A$, station(X), $X \neq B$.
- R_7 : circumvent(X, A, B): -circumvent(X, A, C), circumvent(X, C, B).
- R_8 : has_icut_point(A, B) : cutpoint(X, A, B), $X \neq A, X \neq B$.
- $R_9: safely_connected(A, B): connected(A, B), \\ \neg has_icut_point(A, B).$

 R_{10} : station(X) : -linked(X, Y).

Remark: Inequality (\neq) is used here as built-in. It can be easily defined in stratified manner.

DEP(P):



Stratification Σ :

$$P_{1} = \{link, linked, station, circumvent, connected\}$$
$$P_{2} = \{cutpoint, has_icut_point\}$$
$$P_{3} = \{safely_connected\}$$

 $\mathbf{I}(link) = \{ \langle semel, bis \rangle, \langle bis, ter \rangle, \langle ter, olfe \rangle, \langle ter, icsi \rangle, \langle ter, quincy \rangle, \langle ter, disconding \rangle \}$

 $\langle quincy, semel \rangle, \langle quincy, clote \rangle, \langle quincy, mamuk \rangle, \dots, \langle dalte, quater \rangle$

Evaluation $P_{\Sigma}(\mathbf{I})$:

- 1. $P_1 = \{link, linked, station, circumvent, connected\}:$
 - $\mathbf{J}_1 = linked(semel, bis), linked(bis, ter), linked(ter, olfe), \dots, connected(semel, olfe), \dots, circumvent(quincy, semel, bis), \dots$

2.
$$P_2 = \{cutpoint, has_icut_point\}$$
:

 $\mathbf{J}_2 = cutpoint(ter, semel, olfe), has_icut_point(semel, olfe) \dots$

3. $P_3 = \{safely_connected\}:$

 $\mathbf{J}_3 = safely_connected(semel, bis), safely_connected(semel, ter)$ But, $safely_connected(semel, olfe) \notin \mathbf{J}_3$

Algorithm STRATIFY

Input: A datalog \neg program P.

Output: A stratification Σ for P, or "no" if none exists.

- 1. Construct the directed graph G := DEP(P) (= $\langle N, E \rangle$) with markers "*";
- 2. For each pair $R, R' \in N$ do

if R reaches R' via some path containing a marked arc

then begin
$$E:=E\cup\{R o R'\}$$
; mark $R o R'$ with "*" end;

- 3. i := 1;
- 4. Identify the set K of all vertices p in G s.t. no marked $R \to R'$ is in E.
- 5. If $K = \emptyset$ and G has vertices left, then output "no"

else begin output K as stratum P_i ;

Remove all vertices in K and corresponding arcs from G.

end;

6. If G has vertices left then begin i := i + 1; goto step 4 end else stop.

Runs in polynomial time!

Inflationary Semantics for Datalog

Idea: A adopt a production-oriented view of datalog[¬], similar as in rule-base expert systems

- A rule should be applied (fired) if the premises (=body literals) are satisfied with respect to the current state
- Rather than applying one rule at a time (as in expert systems), fire *all* applicable rules in parallel
- New facts may fire other rules
- Repeat application of rules, until no more new facts are generated.
- This amounts to the least fixpoint of the inflationary version of ${f T}_P({f K}).$

For any datalog program P, let $\mathbf{T}_P^+ : inst(sch(P)) \to inst(sch(P))$ denote the inflationary variant of \mathbf{T}_P :

$$\mathbf{T}_P^+(\mathbf{K}) = \mathbf{K} \cup \mathbf{T}_P(\mathbf{K})$$

Defn. Given a datalog program P and $\mathbf{I} \in inst(edb(P))$, the inflationary semantics of P w.r.t. \mathbf{I} , denoted $P_{inf}(\mathbf{I})$, is the limit of the sequence $\{\mathbf{T}_{P}^{+i}(\mathbf{I})\}_{i\geq 0}$, where $\mathbf{T}_{P}^{+0}(\mathbf{I}) = \mathbf{I}$ and $\mathbf{T}_{P}^{+i+1}(\mathbf{I}) = \mathbf{T}_{P}^{+}(\mathbf{T}_{P}^{+i}(\mathbf{I}))$.

Notice:

- $P_{inf}(\mathbf{I})$ is well-defined for each program P and input database \mathbf{I} .
- $P_{inf}(\mathbf{I})$ is a model of P containing \mathbf{I} , but not necessarily a minimal model.
- $P_{inf}(\mathbf{I})$ is the not necessarily a minimal fixpoint of \mathbf{T}_P^+ containing \mathbf{I} .

Example

$$P = \{q(b) \leftarrow \neg p(a), \quad r(c) \leftarrow \neg q(b) \quad p(a) \leftarrow r(c), \neg p(b)\}$$

Consider $\mathbf{T}_P^{+i}(\mathbf{I}), i \geq 0$, for $\mathbf{I} = \emptyset$:

- $\mathbf{T}_P^{+0}(\mathbf{I}) = \mathbf{I} = \{\}.$
- The first two rules are applicable, as $\neg p(a)$, $\neg q(b)$ are satisfied wrt. \mathbf{I}_0 .
- $\mathbf{T}_{P}^{+1}(\mathbf{I}) = \{q(b), r(c)\}.$
- The third rule is now applicable, as r(c), $\neg p(b)$ are satisfied wrt. \mathbf{I}_1 .
- $\mathbf{T}_{P}^{+2}(\mathbf{I}) = \{q(b), r(c), p(a)\}.$
- No new facts can be obtained, as all rules have been applied.
- Hence, $P_{inf}(\mathbf{I}) = \mathbf{T}_P^{+2}(\mathbf{I}).$

Note that $P_{inf}(\mathbf{I})$ is not a minimal model of P containing I.

Example: One-Step-Behind Technique

Undirected graph $G = \langle V, E \rangle$, distance $d : V^2 \longrightarrow \{0, 1, 2, ...\} \cup \infty$ $(d(x, y) = \text{length of shortest path between } x, y; \infty \text{ if no path exists})$

 $\text{Define} \quad shorter(x,y,x',y') \leftrightarrow_{d\!f} dist(x,y) < dist(x',y') < \infty \\$

Program $P \quad (edb(P) = \{v, e\},$ where e is symmetric):

$$\begin{aligned} t(x,x) &\leftarrow v(x) \\ t(x,y) &\leftarrow t(x,z), e(z,y) \\ t1(x,y) &\leftarrow t(x,y) \\ shorter(x_1,y_1,x_2,y_2) &\leftarrow t1(x_1,y_1), t(x_2,y_2), \neg t1(x_2,y_2) \end{aligned}$$

t1(x,y) is "one step behind" t(x,y)

$$i \ge 0:$$
 $t(x,y) \in \mathbf{T}_P^{+i}(\mathbf{I}) \Leftrightarrow dist(x,y) \le i-1,$
 $t1(x,y) \in \mathbf{T}_P^{+i}(\mathbf{I}) \Leftrightarrow dist(x,y) \le i-2$

Inflationary vs Stratified Semantics

- Inflationary Semantics is well-defined for *all* datalog programs, not only for stratified programs. It was used e.g. in the FLORID system.
- For semi-positive programs, inflationary and stratified semantics coincide.
- Datalog[¬] queries under stratified semantics are subsumed by inflationary semantics:

Theorem. For every stratified datalog program P with "output" relation R, there exists a datalog program P' such that edb(P') = edb(P) and for all $\mathbf{I} \in inst(edb(P))$, $P'_{inf}(\mathbf{I})(R) = P_{strat}(\mathbf{I})(R)$.

• The converse fails, i.e., there are datalog[¬] queries *P* under inflationary semantics non-equivalent to any datalog[¬] query under stratified semantics (Kolaitis, 1991).

Intuitive reason: Stratified semantics has a static, fixed number of negation layers, while inflationary semantics allows dynamically many.

Stable Models Semantics

- **Idea**: Try to construct a (minimal) fixpoint by iteration from input If the construction succeeds, the result is the semantics.
- Problem: Application of rules might be compromised.
 Example:

$$P = \{ p(a) \leftarrow \neg p(a), \qquad q(b) \leftarrow p(a), \qquad p(a) \leftarrow q(b) \}$$

(edb(P)) is void, thus I is immaterial and omitted)

- \mathbf{T}_P has the least fixpoint $\{p(a), q(b)\}$
- It is iteratively constructed $\mathbf{T}_P^\omega = \{p(a), q(b)\}$
- p(a) is included into \mathbf{T}_P^1 by the first rule, since $p(a) \notin \mathbf{T}_P^0 = \emptyset$.
- This compromises the rule application, and p(a) is not "foundedly" derived!

– Note:
$$\mathbf{T}_P^+ = \{p(a), q(b)\}$$

Fixed Evaluation of Negation

- **Reason:** T_P is not monotonic.
- **Solution:** Keep negation throughout fixpoint-iteration fixed.

Evaluation negation w.r.t. a fixed candidate fixpoint model J.

• Introduce for datalog program and $\mathbf{J} \in inst(sch(P))$ a new immediate consequence operator $\mathbf{T}_{P,\mathbf{J}}$:

Immediate Consequences under Fixed Negation

Defn. Given a datalog program P and $\mathbf{J}, \mathbf{K} \in inst(sch(P))$, a fact $R(\vec{t})$ is an *immediate* consequence for \mathbf{K} and P under negation \mathbf{J} , if either

- $R \in edb(P)$ and $R(\vec{t}) \in \mathbf{K}$, or
- there exists some ground instance r of a rule in P such that
 - $H(r) = R(\vec{t}),$
 - $B^+(r) \subseteq \mathbf{K}$, and
 - $B^{-}(r) \cap \mathbf{J} = \emptyset.$

(That is, evaluate "¬" under J instead of K)

Defn. For any datalog \neg program P and $\mathbf{J}, \mathbf{K} \in inst(sch(P))$, let $\mathbf{T}_{P,\mathbf{J}}(\mathbf{K}) = \{A \mid A \text{ is an immediate consequence for } \mathbf{K} \text{ and } P \text{ under negation } \mathbf{J}\}$ Notice:

- $\mathbf{T}_{P}(\mathbf{K})$ coincides with $\mathbf{T}_{P,\mathbf{K}}(\mathbf{K})$
- $\mathbf{T}_{P,\mathbf{J}}$ is a monotonic operator, hence has for each $\mathbf{K} \in inst(sch(P))$ a least fixpoint containing \mathbf{K} , denoted $lfp(\mathbf{T}_{P,\mathbf{J}}(\mathbf{K}))$
- $lfp(\mathbf{T}_{P,\mathbf{J}}(\mathbf{I}))$ coincides with \mathbf{I} on edb(P) and is the limit $\mathbf{T}_{P,\mathbf{J}}^{\omega}$ of the sequence

 $\{\mathbf{T}^i_{P,\mathbf{J}}(\mathbf{I})\}_{i\geq 0}$

where $\mathbf{T}_{P,\mathbf{J}}^0(\mathbf{I}) = \mathbf{I}$ and $\mathbf{T}_{P,\mathbf{J}}^{i+1}(\mathbf{I}) = \mathbf{T}_{P,\mathbf{J}}(\mathbf{T}_{P,\mathbf{J}}^i(\mathbf{I})).$

Stable Models

Using $T_{P,J}$, stable models are defined by requiring that J is reproduced by the program:

Defn. Let P be a datalog program P and $\mathbf{I} \in inst(edb(P))$. Then, a stable model for P and \mathbf{I} is any $\mathbf{J} \in inst(sch(P))$ such that

1.
$$\mathbf{J}|edb(P) = \mathbf{I}$$
, and

2. $\mathbf{J} = lfp(\mathbf{T}_{P,\mathbf{J}}(\mathbf{I})).$

Notice: Monotonicity of $\mathbf{T}_{P,\mathbf{J}}$ ensures that at no point in the construction of $lfp(\mathbf{T}_{P,\mathbf{J}})(\mathbf{I})$ using fixpoint iteration from \mathbf{I} , the application of a rule can be compromised later.

Example

$$P = \{ p(a) \leftarrow \neg p(a), \qquad q(b) \leftarrow p(a), \qquad p(a) \leftarrow q(b) \}$$

 $(edb(P) \text{ is void, thus } \mathbf{I} \text{ is immaterial and omitted})$

• Take $\mathbf{J} = \{p(a), q(b)\}$. Then

-
$$\mathbf{T}_{P,\mathbf{J}}^0 = \emptyset$$

- $\mathbf{T}_{P,\mathbf{J}}^1 = \emptyset$

- Thus $lfp(\mathbf{T}_{P,\mathbf{J}}) = \emptyset \neq \mathbf{J}.$
- Hence, the fixpoint ${f J}$ of ${f T}_P$ is refuted.
- For P, no stable model exists; thus, it may be regarded as "inconsistent".

Nondeterminism

• **Problem**: A datalog program may have multiple stable models:

$$P = \{ single(X) \leftarrow man(X), \neg husband(X) \\ husband(X) \leftarrow man(X), \neg single(X) \}$$

 $\mathbf{I} = \{man(dilbert)\}$

- $\mathbf{J}_1 = \{man(dilbert), single(dilbert)\}$ is a stable model: - $\mathbf{T}_{P,\mathbf{J}_1}^0(\mathbf{I}) = \{man(dilbert)\}$ - $\mathbf{T}_{P,\mathbf{J}_1}^1(\mathbf{I}) = \{man(dilbert), single(dilbert)\}$ (apply 2nd rule) - $\mathbf{T}_{P,\mathbf{J}_1}^2(\mathbf{I}) = \{man(dilbert), single(dilbert)\} = \mathbf{T}_{P,\mathbf{J}_1}^{\omega}(\mathbf{I})$
- Similarly, $\mathbf{J}_1 = \{man(dilbert), husband(dilbert)\}$ is a stable model (symmetry)

38

Stable Model Semantics – Definition

• **Solution**: Define stable semantics of *P* as the intersection of all stable models (*certain semantics*):

Denote for a datalog program P and $\mathbf{I} \in inst(edb(P))$ by $SM(P, \mathbf{I})$ the set of all stable models for \mathbf{I} and P.

Defn. The stable models semantics of a datalog program P for $\mathbf{I} \in inst(edb(P))$, denoted $P_{sm}(\mathbf{I})$, is given by

$$P_{sm}(\mathbf{I}) = \begin{cases} \bigcap SM(P, \mathbf{I}), & \text{if } SM(P, \mathbf{I}) \neq \emptyset, \\ \mathbf{B}(P, \mathbf{I}), & \text{otherwise.} \end{cases}$$

Examples

$$P = \{ single(X) \leftarrow man(X), \neg husband(X) \\ husband(X) \leftarrow man(X), \neg single(X) \}$$
$$P_{sm}(\{man(dilbert)\}) = \{man(dilbert)\}$$

$$P = \{ p(a) \leftarrow \neg p(a), \qquad q(b) \leftarrow p(a), \qquad p(a) \leftarrow q(b) \}$$

$$P_{sm}(\emptyset) = \{p(a), p(b), q(a), q(b)\} = \mathbf{B}(P, \mathbf{I}).$$

Some Properties

- Proposition. Each $J \in SM(P, \mathbf{I})$ is a minimal model \mathbf{K} of P such that $\mathbf{K}|edb(P) = \mathbf{I}$.
- Proposition. Each $J \in SM(P, \mathbf{I})$ is a minimal fixpoint \mathbf{K} of \mathbf{T}_P such that $\mathbf{K}|edb(P) = \mathbf{I}$.
- Theorem. If P is a stratified program, than for every $\mathbf{I} \in edb(P)$, $P_{sm}(\mathbf{I}) = P_{strat}(\mathbf{I}).$

Thus, stable model semantics extends stratified semantics to a larger class of programs

• Evaluation of stable semantics is intractable: Deciding whether $R(\vec{c}) \in P_{sm}(\mathbf{I})$ for given $R(\vec{c})$ and \mathbf{I} (while P is fixed) is coNP-complete.

Well-Founded Semantics

- **Principle:** Use three truth values: Some facts are true, some false, all others are *unknown*.
- Intuition:
 - Positive literals must be derived by applying rules whose body is true
 - Conclude that a negated atom $\neg A$ is true, if A can not be derived by assuming that all facts which are not true are false.

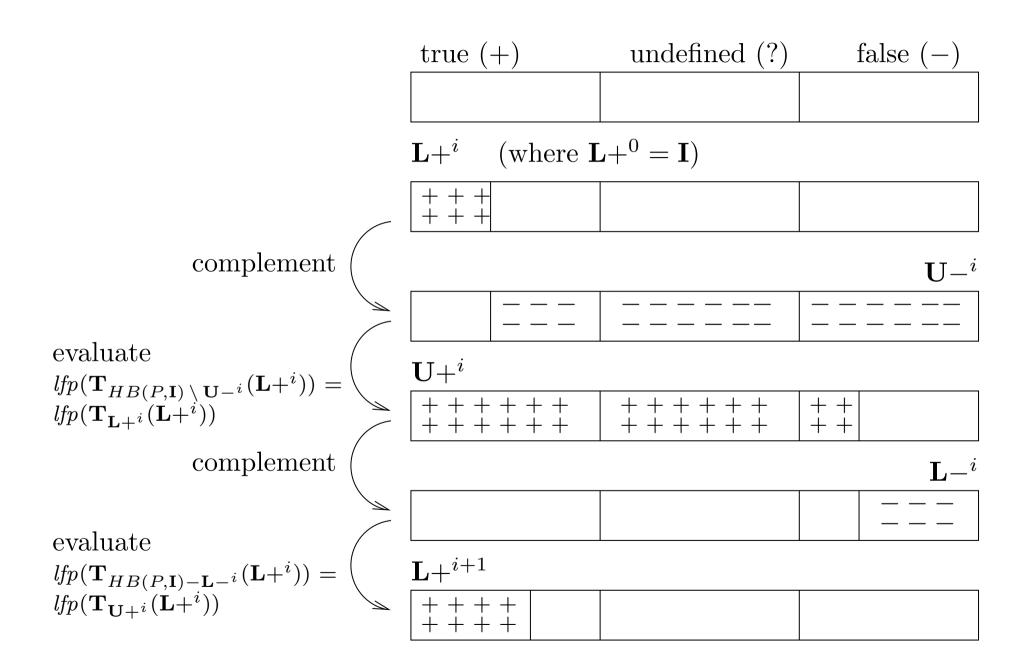
Example:

Program P:
$$q(a) \coloneqq \neg p(a), r(a)$$
 $r(a) \leftarrow \neg u(a)$
 $s(a) \coloneqq \neg t(a)$ $p(a) \leftarrow u(a)$
 $t(a) \coloneqq \neg s(a)$

 $\mathbf{I} = \{\}$

Let $HB(P, \mathbf{I})$ be the set of all possible facts with constants $adom(P, \mathbf{I})$ for input \mathbf{I} .

- 1. I is a *lower bound* of the derivable positive facts J_+ .
- 2. All other facts $HB(P, \mathbf{I}) \setminus \mathbf{I}$ are an *upper bound* of the facts \mathbf{J}_{-} which can't be derived (and thus are safely false), denoted \mathbf{U}_{-} .
- 3. Thus, the consequences for I and P under negation at boundary ($I = HB(P, I) \setminus U$ -) give an *upper bound* U+ for the derivable positive facts.
- 4. All other facts $HB(P, \mathbf{I}) \setminus \mathbf{U}+$ give then a *lower bound* $\mathbf{L}-$ of the facts which can be safely false.
- 5. Thus, the consequences for L+ and P under negation at boundary $(U+ = HB(P, I) \setminus L-)$ are a new *lower bound* for the derivable positive facts, denoted L+
- 6. $I\subseteq L+\Rightarrow$ iterate the process



Formal Definition

Define for P and $\mathbf{J} \in inst(sch(P))$ the operator $\widehat{\mathbf{T}_{P,\mathbf{J}}}$ on inst(sch(P)) by

$$\widehat{\mathbf{T}_{P,\mathbf{J}}}(\mathbf{K}) = lfp(\mathbf{T}_{P,\mathbf{K}}(\mathbf{J}))$$

i.e., the least fixpoint under negation as by ${\bf K},$ which includes ${\bf J}.$

Notice:

- $\widehat{\mathbf{T}_{P,\mathbf{J}}}(\mathbf{K})$ is computable by fixpoint iteration of $\mathbf{T}_{P,\mathbf{K}}$ starting from \mathbf{J} .
- $\widehat{\mathbf{T}_{P,\mathbf{J}}}$ is anti-monotonic, i.e., $\mathbf{K} \subseteq \mathbf{K}'$ implies that $\widehat{\mathbf{T}_{P,\mathbf{J}}}(\mathbf{K}') \subseteq \widehat{\mathbf{T}_{P,\mathbf{J}}}(\mathbf{K})$.
- Therefore, the "square operator" $\widehat{\mathbf{T}_{P,\mathbf{J}}}^2(\mathbf{K}) := \widehat{\mathbf{T}_{P,\mathbf{J}}}(\widehat{\mathbf{T}_{P,\mathbf{J}}}(\mathbf{K}))$ is monotonic (in fact continuous).
- Thus, $\widehat{\mathbf{T}_{P,\mathbf{J}}}^2$ has a least fixpoint, $lfp(\widehat{\mathbf{T}_{P,\mathbf{J}}}^2)$, which can be obtained by fixpoint iteration from \emptyset .

Example

$$\begin{array}{lll} \operatorname{Program} P & q(a) \leftarrow \neg p(a), r(a) & p(a) \leftarrow u(a) & s(a) \leftarrow \neg t(a) \\ & r(a) \leftarrow \neg u(a) & t(a) \leftarrow \neg s(a) \end{array}$$

Fixpoint iteration of $\widehat{\mathbf{T}_{P,\mathbf{I}}}^2$ for $\mathbf{I} = \{\}$:

$$\begin{split} \widehat{\mathbf{T}_{P,\mathbf{I}}}^{0} &= \emptyset \\ \widehat{\mathbf{T}_{P,\mathbf{I}}}^{1} &= lfp(\mathbf{T}_{P,\emptyset}(\mathbf{I})) \\ \widehat{\mathbf{T}_{P,\mathbf{I}}}^{2} &= lfp(\mathbf{T}_{P,\{r(a),s(a),t(a)\}}(\mathbf{I})) \\ \widehat{\mathbf{T}_{P,\mathbf{I}}}^{3} &= lfp(\mathbf{T}_{P,\{r(a),q(a)\}}(\mathbf{I})) \\ \widehat{\mathbf{T}_{P,\mathbf{I}}}^{4} &= lfp(\mathbf{T}_{P,\{r(a),q(a),s(a),t(a)\}}(\mathbf{I})) \\ \widehat{\mathbf{T}_{P,\mathbf{I}}}^{5} &= \widehat{\mathbf{T}_{P,\mathbf{I}}}^{3} \end{split}$$

- Intuitively, the facts r(a) and q(a) are derivable, and thus should be true.
- The facts in $\mathbf{HB}(P, \mathbf{I}) \setminus \widehat{\mathbf{T}_{P, \mathbf{I}}}^3 = \{u(a), p(a)\}$ are then not derivable and should be false.
- The remaining facts s(a) and t(a) are unknown

Well-founded Semantics

Defn. For any datalog program P and input $I \in inst(edb(P))$, a fact $A \in HB(P, \mathbf{I})$ is under well-founded semantics

- true, if $A \in lfp(\widehat{\mathbf{T}_{P,\mathbf{I}}}^2)$,
- false if $A \notin \widehat{\mathbf{T}_{P,\mathbf{I}}}(lfp(\widehat{\mathbf{T}_{P,\mathbf{I}}}^2))$, and
- unknown otherwise.

The positive outcome of program P for \mathbf{I} under well-founded semantics, denoted $P_{wf}(\mathbf{I})$, is $lfp(\widehat{\mathbf{T}_{P,\mathbf{I}}}^2)$.

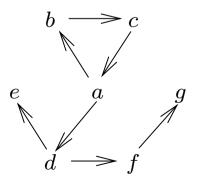
Example: For P and \mathbf{I} above,

$$P_{wf}(\mathbf{I}) = \{r(a), q(a)\}$$

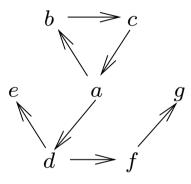
Example: Winning Positions

A two player game on a directed graph $G = \langle V, E \rangle$.

- Players I and II draw alternating.
- The drawing player moves from the current position following some arc to the next position.
- A player loses, if he can't move.



Example: Winning Positions/2



- Wanted: winning positions, i.e., nodes x from which the drawing player has a winning strategy (can play so that he will certainly win)
- $\bullet\,$ In the example, the winning positions are d and f
- Elegant solution in datalog under well-founded semantics:

$$P = \{ win(X) \ \leftarrow \ e(X,Y), \neg win(Y) \}$$

Some Important Properties

- **Proposition.** The well-founded semantics is well-defined for every datalog \neg program P and input database I.
- Theorem. If P is a stratified datalog program, then for every $\mathbf{I} \in inst(edb(P))$ it holds that $A \in HB(P, \mathbf{I})$ is true (resp., false) under well-founded semantics iff $A \in P_{strat}(\mathbf{I})$ (resp., $A \notin P_{strat}(\mathbf{I})$).

Well-founded semantics properly extends stratified semantics and approximates the stable semantics

- Theorem. For every datalog \neg program P and $\mathbf{I} \in inst(edb(P))$, if $A \in \mathbf{HB}(P, \mathbf{I})$ is true (resp., false) under well-founded semantics, then A is true (resp., false) in every stable model of P for \mathbf{I} .
- Evaluation of well-founded semantics is tractable: Deciding whether $R(\vec{c}) \in P_{wf}(\mathbf{I})$ for given $R(\vec{c})$ and \mathbf{I} (while P is fixed) is feasible in polynomial time.

Bibliography

- [1] S. Abiteboul, R. Hull, and V. Vianu. *Foundations of Databases*. Addison-Wesley, 1995.
- K.R. Apt, H.A. Blair, A. Walker, Towards a Theory of Declarative Knowledge, in *Foundations of Deductive Databases and Logic Programming*, J. Minker (ed), pp. 89–148, Morgan Kaufmann, 1988.
- [3] H. Garcia-Molina, J. D. Ullman, and J. Widom. *Database Systems The Complete Book*. Prentice Hall, 2002.
- [4] DLV homepage, since 1996. http://www.dbai.tuwien.ac.at/proj/dlv/.
- [5] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In Logic Programming: Proc. Fifth Intl Conference and Symposium, pp. 1070–1080, 1988. MIT Press.
- [6] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Databases. *New Generation Computing*, 9:365–385, 1991.
- [7] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV System for Knowledge Representation and Reasoning. To appear in ACM Transaction on Computational Logic. Available at http://www.arxiv.org/ps/cs.AI/0211004.
- [8] A. van Gelder, K.A. Ross, J.S. Schlipf, The Well-Founded Semantics for General Logic Programs, Journal of the ACM, 38(3):620–650, 1991.