Foundations of Databases

Datalog

Free University of Bozen – Bolzano, 2004–2005

Thomas Eiter

Institut für Informationssysteme

Arbeitsbereich Wissensbasierte Systeme (184/3)

Technische Universität Wien

http://www.kr.tuwien.ac.at/staff/eiter

(Some slides by Wolfgang Faber)

Motivation

1

- Relational Calculus and Relational Algebra were considered to be "*the*" database languages for long time
- Codd: A query language is "complete," if it yields precisely Relational Calculus
- However, Relational Calculus misses an important feature: *recursion*
- Example: A metro database with relation links: line, station, nextstation

What stations are reachable from station "Odeon"?

Can we go from Odeon to Tuileries?

etc

- Such queries can provably be not expressed in Relational Calculus
- This motivated a logic-programming extension to conjunctive queries: *datalog*

Example: Metro database instance

links	line	station	nextstation
	4	St.Germain	Odeon
	4	Odeon	St.Michel
	4	St. Michel Chatelet	
	1	Chatelet	Louvres
	1	LouvresPalais RoyalPalais-RoyalTuileriesTuileriesConcorde	
	1		
	1		

Datalog program for first query:

$\mathtt{reach}(\mathtt{X}, \mathtt{X})$	\leftarrow	$\mathtt{links}(\mathtt{L}, \mathtt{X}, \mathtt{Y})$
$\mathtt{reach}(\mathtt{X}, \mathtt{X})$	\leftarrow	$\mathtt{links}(\mathtt{L}, \mathtt{Y}, \mathtt{X})$
$\mathtt{reach}(\mathtt{X}, \mathtt{Y})$	\leftarrow	links(L, X, Z), reach(Z, Y)
$\mathtt{answer}(\mathtt{X})$	\leftarrow	links(`Odeon', X)

Note: recursive definition

Intuitively, a rule "fires" if the part right of \leftarrow is true, and the atom left of \leftarrow is concluded.

Datalog Language

- datalog is akin to logic programming
- The basic language (considered next) has many extensions
- Different approaches for defining the semantics exist:

Model-theoretic approach:

View rules as logical sentences, which state the query result

Operational (fixpoint) approach:

Obtain query result by applying an inference procedure, until a fixpoint is reached.

Proof-theoretic approach:

Obtain proofs of facts in the query result, following a proof calculus (based on resolution)

3

Datalog versus Logic Programming

- As stated above, Datalog is akin to logic programming, in particular to Prolog
- There are important differences, though:
 - There are no functions symbols in datalog. Consequently, no potentially infinite data structures such as lists are supported
 - Datalog has a purely declarative semantics. In a datalog program,
 - * the order of clauses is irrelevant
 - * the order of atoms in a rule body is irrelevant
 - Datalog programs adhere to the active domain semantics (like Safe Relational Calculus, Relational Algebra)
 - Datalog distinguishes between databases relations ("*extensional database*", *edb*) and derived relations ("*intensional database*", *idb*)

Datalog Syntax

Consider here the simplest version of datalog ("plain datalog", or "datalog").

Defn. A datalog rule r is an expression of the form

$$R_1(\vec{x}_1) \leftarrow R_2(\vec{x}_2), \dots, R_n(\vec{x}_n) \tag{1}$$

where $n \geq 1$ and

- R_1, \ldots, R_n are relations names
- $\vec{x}_1, \ldots, \vec{x}_n$ are vectors of variables and constants (from dom)
- Every variable in \vec{x}_1 must occur in $\vec{x}_2, \ldots, \vec{x}_n$ ("safety")
- the head of r is $R(\vec{x}_1)$, denoted H(r).
- the body of r is $\{R_2(\vec{x}_2), \ldots, R_n(\vec{x}_n)\}$, denoted B(r).
- Remark: The rule atom "←" is often also written as ": –"

Defn. A datalog program is a finite set of datalog rules.

Datalog Syntax /2

Let P be a datalog program.

- $\bullet\,$ An extensional relation of P is a relation occurring only in rule bodies of P
- An *intensional relation* of P is a relation occurring in the head of some rule in P
- The extensional schema of P, edb(P), consists of all extensional relations of P
- The intensional schema of P, idb(P), consists of all intensional relations of P
- the schema of P, sch(P), is the union of edb(P) and idb(P).

Note:

- Sometimes, extensional and intensional relations are explicitly specified.
 Intensional relations may then also occur only in rule bodies (but are of no use then)
- In a logic programming view, the term "predicate" is used as synonym for "relation (name)".

6

Metro Example

Datalog program P on metro database scheme $\mathcal{M} = \{\texttt{links} : \texttt{line}, \texttt{station}, \texttt{nextstation}\}:$

$$\begin{aligned} \texttt{reach}(\texttt{X},\texttt{X}) &\leftarrow \texttt{links}(\texttt{L},\texttt{X},\texttt{Y}) \\ \texttt{reach}(\texttt{X},\texttt{X}) &\leftarrow \texttt{links}(\texttt{L},\texttt{Y},\texttt{X}) \\ \texttt{reach}(\texttt{X},\texttt{Y}) &\leftarrow \texttt{links}(\texttt{L},\texttt{X},\texttt{Z}),\texttt{reach}(\texttt{Z},\texttt{Y}) \\ \texttt{answer}(\texttt{X}) &\leftarrow \texttt{links}(\texttt{`Odeon'},\texttt{X}) \end{aligned}$$

Here,

Datalog

Datalog Syntax /3

- The set of constants occurring in a datalog program P, is denoted by adom(P).
- Given a database instance I, adom(P, I) denotes $adom(P) \cup adom(I)$, i.e., the set of constants occurring in P and I
- $adom(P, \mathbf{I})$ is the *active domain* of P with respect to \mathbf{I} .

Defn. Given a valuation $\nu : var(r) \cup \mathbf{dom} \to \mathbf{dom}$ for a rule r of form (1), the instantiation of r with ν , denoted $\nu(r)$, is the rule

$$R_1(\nu(\vec{x}_1)) \leftarrow R_2(\nu(\vec{x}_2)), \dots, R_n(\nu(\vec{x}_n))$$

which results by replacing each variable x with $\nu(x)$.

Metro Example

- For datalog program P above, adom(P) = { Odeon }
- Database instance I:

links	line	station	nextstation	
	4	St.Germain	Odeon	
	4	Odeon St.Michel St. Michel Chatelet		
	4			
	1	Chatelet Louvres		
	1	Louvres Palais-Roya Palais-Royal Tuileries		
	1			
	1	Tuileries	Concorde	

 $adom(I) = \{$ 4, 1, St.Germain, Odeon, St.Michel, Chatelet, Louvres, Palais-Royal, Tuileries, Concorde $\}$.

• $adom(P, \mathbf{I}) = adom(\mathbf{I}).$

Metro Example /2

• The rule

 $reach(St.Germain, Odeon) \leftarrow links(Louvres, St.Germain, Concorde),$ reach(Concorde, Odeon)

is an instance of the rule

 $reach(X, Y) \leftarrow links(L, X, Z), reach(Z, Y)$

of P:

take $\nu(X)$ = St.Germain, $\nu(L)$ = Louvres, $\nu(Y)$ =Odeon, $\nu(Z)$ =Concorde

Datalog: Model-Theoretic Semantics

- Key Idea: View program as a set of first-order sentences
- The database instance constituting the result satisfies the sentences (is a *model* of the sentences)
- There can be many models
- The *intended answer* is specified by particular models
- These particular models are selected by "external" conditions

Logical Theory Σ_P

• Associate with each datalog rule r of form

$$R_1(\vec{x}_1) \leftarrow R_2(\vec{x}_2), \dots, R_n(\vec{x}_n)$$

the logical sentence $\sigma(r)$:

$$\forall x_1, \cdots \forall x_m \left(R_2(\vec{x}_2) \land \cdots \land R_n(\vec{x}_n) \to R_1(\vec{x}_1) \right)$$

where x_1, \ldots, x_m are the variables in r.

• Associate with P the set of sentences $\Sigma_P = \{ \sigma(r) \mid r \in P \}.$

Defn. Let P be a datalog program and I an instance of edb(P). Then,

- A model of P is an instance of sch(P) which satisfies Σ_P .
- The semantics of P on input I, denoted P(I), is the least model of P (unique minimal model wrt set inclusion ⊆) containing I, if it exists.

Example

• • •

For program P and \mathbf{I} , the least model is:

links	line	station	nextstation	reach		
	4	St.Germain	Odeon		St.Germain	St.Germain
	4	Odeon	St.Michel		Odeon	Odeon
	4	St. Michel	Chatelet			•
	1	Chatelet	Louvres		Concorde	Concorde
	1	Louvres	Palais-Royal		St.Germain	Odeon
	1	Palais-Royal	Tuileries		St.Germain	St.Michel
	1	Tuileries	Concorde		St.Germain	Chatelet
	•				St.Germain	Louvres

answer	
	Odeon
	St.Michel
	Chatelet
	Louvres
	Palais-Royal
	Tuileries
	Concorde

Questions

- Is the semantics $P(\mathbf{I})$ well-defined for each input database \mathbf{I} ?
- How to compute $P(\mathbf{I})$?

Observation: For any ${f I}$, program P has some model containing ${f I}$

- Let ${f B}(P,{f I})$ be the instance of sch(P) such that
 - for each $R \in edb(P),$ $\mathbf{B}(P,\mathbf{I})(R) = \mathbf{I}(R)$
 - for each $R \in idb(P)$, $\mathbf{B}(P, \mathbf{I})(R) = adom(P, \mathbf{I})^{arity(R)}$
- Then, $\mathbf{B}(P, \mathbf{I})$ is a model of P containing \mathbf{I} .
- $\Rightarrow P(\mathbf{I})$ is a subset of $\mathbf{B}(P, \mathbf{I})$.
- Naive algorithm: explore all subsets of $\mathbf{B}(P, \mathbf{I})$.

Elementary Properties of $P(\mathbf{I})$

Theorem. Let P be a datalog program and I a database instance of edb(P). Then,

- 1. $\mathbf{M} = \bigcap \mathcal{M}(\mathbf{I})$ is the least model of P, where $\mathcal{M}(\mathbf{I})$ is the set of all models of P containing \mathbf{I} .
- 2. $adom(P(\mathbf{I})) \subseteq adom(P, \mathbf{I})$, i.e., no new values appear
- 3. For each $R \in edb(P)$, $P(\mathbf{I})(R) = \mathbf{I}(R)$.

Consequence:

- $\bullet~P(\mathbf{I})$ is well-defined, for each \mathbf{I}
- A query $Q(\vec{x})$ defined by a distinguished "output" relation $q \in idb(P)$ has always finite result
- Effective methods exist to compute $Q(\mathbf{I})$

Why choosing the least model?

Two reasons to choose the least model containing I:

- 1. The Closed World Assumption:
 - If a fact $R(\vec{c})$ is not true in all models of a database **I**, then infer that $R(\vec{c})$ is false.
 - This amounts to considering I as complete
 - This is customary in database practice
- 2. The relationship to Logic Programming:
 - Datalog should desirably match Logic Programming (seamless integration)
 - Logic Programming builds on the minimal model semantics

Relating Datalog to Logic Programming

- A logic program has no distinction between edb and idb.
- A datalog program P and an instance ${\bf I}$ of edb(P) can be mapped to a logic program ${\cal P}(P,{\bf I})$ given by

$$\mathcal{P}(P,\mathbf{I}) = P \cup \{R(\vec{t}) \mid R \in edb(P), \vec{t} \in \mathbf{I}(R)\}.$$

• As a logical theory, this amounts to

$$\Sigma_{P,\mathbf{I}} = \Sigma_P \cup \{ R(\vec{t}) \mid R \in edb(P), \vec{t} \in \mathbf{I}(R) \}.$$

The semantics of \$\mathcal{P} = \mathcal{P}(P, I)\$ is defined in terms of Herbrand interpretations of the language induced by \$\mathcal{P}\$:

The domain of discourse are the constants occurring in \mathcal{P} .

Each constant occurring in \mathcal{P} is interpreted by itself.

Herbrand Interpretations of Logic Programs

Given a rule r, let Const(r) be the set of all constants in r.

Defn. For a (function-free) logic program \mathcal{P} , define

• the Herbrand universe of \mathcal{P} , by

$$\mathbf{HU}(\mathcal{P}) = \bigcup_{r \in \mathcal{P}} Const(r)$$

• the Herbrand base of \mathcal{P} , by

 $\mathbf{HB}(\mathcal{P}) = \{ R(x_1, \dots, x_n) \mid R \text{ is a relation (predicate) in } \mathcal{P}, \\ x_1, \dots, x_n \in \mathbf{HU}(\mathcal{P}), ar(R) = n \}$

Example

```
\mathcal{P} = \{ arc(a, b). \}
          arc(b, c).
          reachable(a).
          reachable(Y) \leftarrow arc(X, Y), reachable(X).
         HU(\mathcal{P}) = \{a, b, c\}
         \mathbf{HB}(\mathcal{P}) = \{ \operatorname{arc}(a, a), \operatorname{arc}(a, b), \operatorname{arc}(a, c), 
                              arc(b, a), arc(b, b), arc(b, c),
                              \operatorname{arc}(c, a), \operatorname{arc}(c, b), \operatorname{arc}(c, c),
                              reachable(a), reachable(b), reachable(c)}
```

Grounding

- A rule r' is a ground instance of a rule r with respect to $HU(\mathcal{P})$, if $r' = \nu(r)$ for a valuation ν such that $\nu(x) \in HU(\mathcal{P})$ for each $x \in var(r)$.
- The grounding of a rule r with respect to $HU(\mathcal{P})$, denoted $Ground_{\mathcal{P}}(r)$, is the set of all ground instances of r wrt $HU(\mathcal{P})$.
- $\bullet\,$ The grounding of a logic program ${\cal P}$ is

$$Ground(\mathcal{P}) = \bigcup_{r \in \mathcal{P}} Ground_{\mathcal{P}}(r)$$

Example

 $Ground(\mathcal{P}) = \{ arc(a, b). arc(b, c). reachable(a). \}$ $reachable(a) \leftarrow arc(a, a), reachable(a).$ $reachable(b) \leftarrow arc(a, b), reachable(a).$ $reachable(c) \leftarrow arc(a, c), reachable(a).$ $reachable(a) \leftarrow arc(b, a), reachable(b).$ $reachable(b) \leftarrow arc(b, b), reachable(b).$ $reachable(c) \leftarrow arc(b, c), reachable(b).$ $reachable(a) \leftarrow arc(c, a), reachable(c).$ $reachable(b) \leftarrow arc(c, b), reachable(c).$ $reachable(c) \leftarrow arc(c, c), reachable(c). \}$

Herbrand Models

- A (Herbrand-) interpretation I of \mathcal{P} : is any subset $I \subseteq \mathbf{HB}(\mathcal{P})$
- A (Herbrand-) model of \mathcal{P} is any $M \subseteq \mathbf{HB}(\mathcal{P})$ such that

 $\forall r \in Ground(\mathcal{P}) : (H(r) \subseteq M) \lor (B(r) \not\subseteq M)$

Equivalently:

$$\forall r \in Ground(\mathcal{P}) : (B(r) \subseteq M) \to (H(r) \subseteq M)$$

Example

Herbrand models of program \mathcal{P} above:

•
$$M_1 = \{ arc(a, b), arc(b, c), reachable(a), reachable(b), reachable(c) \}$$

- $M_2 = \mathbf{HB}(\mathcal{P})$
- Every interpretation M such that $M_1 \subseteq M \subseteq M_2$ (and no others)

Logic Programming Semantics

- Theorem. $HB(\mathcal{P})$ is always a model of \mathcal{P} .
- Theorem. Each logic program \mathcal{P} has the least (wrt \subseteq) model, denoted $MM(\mathcal{P})$.

The model $MM(\mathcal{P})$ is the semantics of \mathcal{P} .

• Theorem (Datalog \leftrightarrow Logic Programming). Let P be a datalog program and I be an instance of edb(P). Then,

$$P(\mathbf{I}) = MM(\mathcal{P}(P, \mathbf{I}))$$

Implications

- Results and techniques for logic programming can be exploited for datalog
 E.g.,
 - proof procedures for logic programming (e.g., SLD resolution) can be used to datalog (with some caveats)
 - Datalog can be reduced by "grounding" to propositional logic programs (utilized e.g. by the systems DLV and Smodels)

Fixpoint Semantics

Different view:

"If we assume that all facts in ${\bf I}$ are true, which other facts must be true by firing rules in P?"

Approach:

- Define an *immediate consequence operator* $T_P(K)$ on db instances.
- Start with $\mathbf{K} = \mathbf{I}$.
- Apply \mathbf{T}_P : $\mathbf{K}_{new} := \mathbf{T}_P(\mathbf{K}) = \mathbf{K} \cup$ new facts.
- Iterate until nothing new can be produced.
- The result yields the semantics.

26

Immediate Consequence Operator

Let P be a datalog program and \mathbf{K} be a database instance of sch(P).

A fact $R(\vec{t})$ is an *immediate* consequence for ${f K}$ and P, if either

- $R \in edb(P)$ and $R(\vec{t}) \in \mathbf{K}$, or
- there exists some ground instance r of a rule in P such that $Head(r) = R(\vec{t})$ and $Body(r) \subseteq \mathbf{K}$.

Defn. The *immediate consequence operator* of a datalog program P, is the mapping

$$\mathbf{T}_P : inst(sch(P)) \to inst(sch(P))$$

such that

 $\mathbf{T}_{P}(\mathbf{K}) = \{ A \mid A \text{ is an immediate consequence for } P \text{ and } \mathbf{K} \}.$

Datalog

Example

 $P = \{ \text{ reachable}(a) \\ \text{ reachable}(Y) \leftarrow \operatorname{arc}(X, Y), \text{ reachable}(X) \}$ where $edb(P) = \{ \operatorname{arc} \}$ and $idb(P) = \{ \text{reachable} \}$. $\mathbf{K}_1 = \{ \operatorname{arc}(a, b), \operatorname{arc}(b, c) \} \\ \mathbf{K}_2 = \{ \operatorname{arc}(a, b), \operatorname{arc}(b, c), \text{ reachable}(b) \} \\ \mathbf{K}_3 = \{ \operatorname{arc}(a, b), \operatorname{arc}(b, c), \text{ reachable}(a), \text{ reachable}(b), \text{ reachable}(c) \}$

Then,

Thus, \mathbf{K}_3 is a *fixpoint* of \mathbf{T}_P (i.e., $\mathbf{T}_P(\mathbf{K}) = \mathbf{K}$).

Properties

Lemma. For every datalog program P,

- 1. the operator \mathbf{T}_P is monotonic, i.e., $\mathbf{K} \subseteq \mathbf{K}'$ implies $\mathbf{T}_P(\mathbf{K}) \subseteq \mathbf{T}_P(\mathbf{K}')$;
- 2. $\mathbf{K} \in inst(sch(P))$ is a model of $\Sigma_P \Leftrightarrow \mathbf{T}_P(\mathbf{K}) \subseteq \mathbf{K}$;
- 3. If $\mathbf{T}_{P}(\mathbf{K}) = \mathbf{K}$ then \mathbf{K} is a model of Σ_{P} .

Note: The converse of 3. fails in general.

Datalog Semantics via Least Fixpoint

The semantics of P on database instance \mathbf{I} of edb(I) is a special fixpoint:

Theorem. Let P be a datalog program and \mathbf{I} be a database instance. Then

- \mathbf{T}_P has a least (wrt \subseteq) fixpoint containing \mathbf{I} , denoted $lfp(P, \mathbf{I})$.
- $lfp(P, \mathbf{I}) = P(\mathbf{I}) = MM(\mathcal{P}(P, \mathbf{I})).$

Advantage: Constructive definition of $P(\mathbf{I})$ by *fixpoint iteration*

Fixpoint Iteration

Given datalog program P and database instance I.

Define sequence $\{\mathbf{I}_i\}_{i\geq 0}$ by

$$\mathbf{I}_0 = \mathbf{I}$$
$$\mathbf{I}_i = \mathbf{T}_P(\mathbf{I}_{i-1}), \quad i > 0$$

- By monotoncity of \mathbf{T}_P , $\mathbf{I}_0 \subseteq \mathbf{I}_1 \subseteq \mathbf{I}_2 \subseteq \cdots \subseteq \mathbf{I}_i \subseteq \mathbf{I}_{i+1} \subseteq \cdots$
- For each $i \ge 0$, $\mathbf{I}_i \subseteq \mathbf{B}(P, \mathbf{I})$
- Hence, for some integer $n \leq |\mathbf{B}(P, \mathbf{I})|$, $\mathbf{I}_{n+1} = \mathbf{I}_n$ (=: $\mathbf{T}_P^{\omega}(\mathbf{I})$)
- It holds that $\mathbf{T}_P^\omega(\mathbf{I}) = lfp(P,\mathbf{I}) = P(\mathbf{I})$

This can be readily implemented by an algorithm

Example

$$\begin{split} P &= \{ \texttt{reachable}(\texttt{a}) \\ \texttt{reachable}(\texttt{Y}) \leftarrow \texttt{arc}(\texttt{X},\texttt{Y}),\texttt{reachable}(\texttt{X}) \} \\ \texttt{I} &= \{\texttt{arc}(\texttt{a},\texttt{b}),\,\texttt{arc}(\texttt{b},\texttt{c})\} \end{split}$$

Then,

$$\begin{split} \mathbf{I}_0 &= \{ \operatorname{arc}(\mathbf{a}, \mathbf{b}), \operatorname{arc}(\mathbf{b}, \mathbf{c}) \} \\ \mathbf{I}_1 &= \mathbf{T}_P^1(\mathbf{I}) &= \{ \operatorname{arc}(\mathbf{a}, \mathbf{b}), \operatorname{arc}(\mathbf{b}, \mathbf{c}), \operatorname{reachable}(\mathbf{a}) \} \\ \mathbf{I}_2 &= \mathbf{T}_P^2(\mathbf{I}) &= \{ \operatorname{arc}(\mathbf{a}, \mathbf{b}), \operatorname{arc}(\mathbf{b}, \mathbf{c}), \operatorname{reachable}(\mathbf{a}), \operatorname{reachable}(\mathbf{b}) \} \\ \mathbf{I}_3 &= \mathbf{T}_P^3(\mathbf{I}) &= \{ \operatorname{arc}(\mathbf{a}, \mathbf{b}), \operatorname{arc}(\mathbf{b}, \mathbf{c}), \operatorname{reachable}(\mathbf{a}), \operatorname{reachable}(\mathbf{b}), \operatorname{reachable}(\mathbf{c}) \} \\ \mathbf{I}_4 &= \mathbf{T}_P^4(\mathbf{I}) &= \{ \operatorname{arc}(\mathbf{a}, \mathbf{b}), \operatorname{arc}(\mathbf{b}, \mathbf{c}), \operatorname{reachable}(\mathbf{a}), \operatorname{reachable}(\mathbf{b}), \operatorname{reachable}(\mathbf{c}) \} \\ &= \mathbf{T}_P^3(\mathbf{I}) \end{split}$$

Thus, $\mathbf{T}_P^{\omega}(\mathbf{I}) = lfp(P, \mathbf{I}) = \mathbf{I}_3.$

Excursion: Fixpoint Theory

- Evaluating a datalog program P on ${\bf I}$ amounts to evaluation the logic program $\mathcal{P}(P,{\bf I})$
- For logic programs, fixpoint semantics is defined by appeal to fixpoint theory
- This provides another possibility to define semantics of datalog programs

33

Excursion: Fixpoint Theory /2

- A complete lattice is a partially ordered set (U, ≤) such that each subset
 V ⊆ U has a least upper bound sup(V) and a greatest lower bound inf(V), respectively.
- An operator $T: U \to U$ is
 - monotone, if for every $x, y \in U$ it holds that $x \leq y \Rightarrow T(x) \leq T(y)$,
 - continuous, if $T(sup(V)) = sup(\{T(x) \mid x \in V\})$ for every $V \subseteq U$.

Notice: continuous operators are monotone

Monotone and continuous operators have nice fixpoint properties

Fixpoint Theorems of Knaster-Tarski and Kleene

Theorem (Knaster-Tarksi). Every monotone operator T on a complete lattice (U, \leq) has a least fixpoint lfp(T), and $lfp(T) = inf(\{x \in U \mid T(x) \leq x\})$.

A stronger theorem holds for continuous operators.

Theorem (Kleene). Every continuous operator T on a complete lattice (U, \leq) has a least fixpoint, and $lfp(T) = sup(\{T^i \mid i \geq 0\})$, where $T^0 = inf(U)$ and $T^{i+1} = T(T^i)$, for all $i \geq 0$.

Notation: $T^{\infty} = sup(\{T^i \mid i \ge 0\}).$

- Finite convergence: $T^k = T^{k-1}$ for some $k \Rightarrow T^{\infty} = T^k$
- A weaker form of Kleene's theorem holds for all monotone operators (transfinite sequence T^i).

35

Applying Fixpoint Theory

- For a logic program \mathcal{P} , the power set lattice $(P(\mathbf{HB}(\mathcal{P})), \subseteq)$ over the Herbrand base $\mathbf{HB}(\mathcal{P})$ is a complete lattice.
- We can associate with \mathcal{P} an immediate consequence operator $T_{\mathcal{P}}$ on $\mathbf{HB}(\mathcal{P})$ such that $T_{\mathcal{P}}(I) = \{H(r) \mid r \in Ground(\mathcal{P}), B(r) \subseteq I\}$
- $T_{\mathcal{P}}$ is monotonic (in fact, continuous)
- Thus, $T_{\mathcal{P}}$ has the least fixpoint $lfp(T_{\mathcal{P}})$. It coincides with $T_{\mathcal{P}}^{\infty}$ and $MM(\mathcal{P})$

Theorem. Given a datalog program P and a database instance \mathbf{I} ,

$$P(\mathbf{I}) = lfp(T_{\mathcal{P}(P,\mathbf{I})}) = T_{\mathcal{P}(P\mathbf{I})}^{\infty}$$

Remark: Application of fixpoint theory is primarily of interest for infinite sets

Datalog

Proof-Theoretic Approach

Basic idea: The answer of a datalog program P on \mathbf{I} is given be the set of facts which can be *proved* from P and \mathbf{I} .

Defn. A *proof tree* of a fact A from \mathbf{I} and P is a labeled finite tree T such that

- $\bullet\,$ each vertex of T is labeled by a fact
- $\bullet\,$ the root of T is labeled by A
- $\bullet\,$ each leaf of T is labeled by a fact in ${\bf I}$
- if a non-leaf of T is labeled with A_1 and its children are labeled with A_2, \ldots, A_n , then there exists a ground instance r of a rule in P such that $H(r) = A_1$ and $B(r) = \{A_2, \ldots, A_n\}$

37

Example (Same Generation)

$$\begin{split} P &= \{ \begin{array}{ll} r_1: & \texttt{sgc}(\texttt{X},\texttt{X}) \leftarrow \texttt{person}(\texttt{X}) \\ r_2: & \texttt{sgc}(\texttt{X},\texttt{Y}) \leftarrow \texttt{par}(\texttt{X},\texttt{X1}),\texttt{sgc}(\texttt{X1},\texttt{Y1}),\texttt{par}(\texttt{Y},\texttt{Y1}) \} \\ \end{split}$$
 where $edb(P) = \{\texttt{person},\texttt{par}\} \text{ and } idb(P) = \{\texttt{sgc}\} \end{split}$

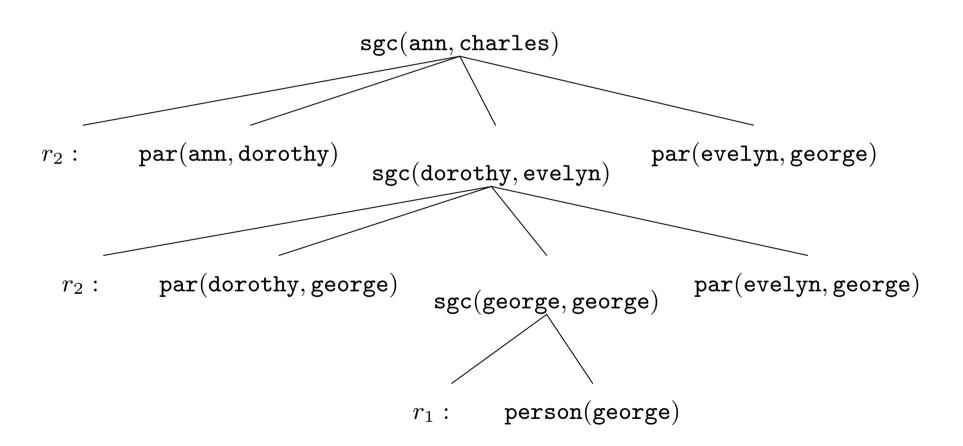
Consider ${\boldsymbol{I}}$ as follows:

$$\begin{split} \mathbf{I}(person) &= \{ & \langle ann \rangle, \, \langle bertrand \rangle, \, \langle charles \rangle, \langle dorothy \rangle, \\ & \langle evelyn \rangle, \langle fred \rangle, \, \langle george \rangle, \, \langle hilary \rangle \} \\ \mathbf{I}(par) &= \{ & \langle dorothy, george \rangle, \, \langle evelyn, george \rangle, \, \langle bertrand, dorothy \rangle, \\ & \langle ann, dorothy \rangle, \, \langle ann, hilary \rangle, \, \langle charles, evelyn \rangle \}. \end{split}$$

Datalog

Example (Same Generation)/2

Proof tree for $A = \operatorname{sgc}(\operatorname{ann}, \operatorname{charles})$ from I and P:



Proof Tree Construction

Different ways to construct a proof tree for A from P and \mathbf{I} exist

• Bottom Up construction: From leaves to root

Intimately related to fixpoint approach

- Define $S \vdash_P B$ to prove fact B from facts S if $B \in S$ or by a rule in P
- Give $S = \mathbf{I}$ for granted
- Top Down construction: From root to leaves

In logic programming view, consider program $\mathcal{P}(P, \mathbf{I})$.

– This amounts to a set of logical sentences $H_{\mathcal{P}(P,\mathbf{I})}$ of the form

 $\forall x_1 \cdots \forall x_m (R_1(\vec{x}_1) \lor \neg R_2(\vec{x}_2) \lor \neg R_3(\vec{x}_3) \lor \cdots \lor \neg R_n(\vec{x}_n))$

- Prove $A = R(\vec{t})$ via resolution refutation, i.e., that $H_{\mathcal{P}(P,\mathbf{I})} \cup \{\neg A\}$ is unsatisfiable.

40

Datalog and SLD Resolution

- Logic Programming uses SLD resolution
- SLD: Selection Rule Driven Linear Resolution for Definite Clauses
- For datalog programs P on \mathbf{I} , resp. $\mathcal{P}(P, \mathbf{I})$, things are simpler than for general logic programs (no function symbols, unification is easy)
- Also non-ground atoms can be handled (e.g., sgc(ann, X))

Let $SLD(\mathcal{P})$ be the set of ground atoms provable with SLD Resolution from \mathcal{P} .

Theorem. For any datalog program P and database instance I,

$$SLD(\mathcal{P}(P,\mathbf{I})) = P(\mathbf{I}) = \mathbf{T}_{\mathcal{P}(P,\mathbf{I})}^{\infty} = lfp(\mathbf{T}_{\mathcal{P}(P,\mathbf{I})}) = MM(\mathcal{P}(P,\mathbf{I}))$$

SLD Resolution – Termination

- Notice: Selection rule for next rule / atom to be considered for resolution might effect termination
- Prolog's strategy (leftmost atom / first rule) is problematic

Example:

```
\begin{array}{l} \texttt{child_of(karl, franz).} \\ \texttt{child_of(franz, frieda).} \\ \texttt{child_of(frieda, pia).} \\ \texttt{descendent_of(X, Y)} \leftarrow \texttt{child_of(X, Y).} \\ \texttt{descendent_of(X, Y)} \leftarrow \texttt{child_of(X, Z), descendent_of(Z, Y).} \\ \leftarrow \texttt{descendent_of(karl, X).} \end{array}
```

SLD Resolution – Termination /2

```
\begin{array}{l} \texttt{child_of(karl, franz).} \\ \texttt{child_of(franz, frieda).} \\ \texttt{child_of(frieda, pia).} \\ \texttt{descendent_of(X, Y)} \leftarrow \texttt{child_of(X, Y).} \\ \texttt{descendent_of(X, Y)} \leftarrow \texttt{descendent_of(X, Z), child_of(Z, Y).} \\ \leftarrow \texttt{descendent_of(karl, X).} \end{array}
```

SLD Resolution – Termination /3

```
\label{eq:child_of(karl,franz).} child_of(franz,frieda). \\ child_of(frieda,pia). \\ descendent_of(X,Y) \leftarrow child_of(X,Y). \\ descendent_of(X,Y) \leftarrow descendent_of(X,Z), \\ & descendent_of(Z,Y). \\ \end{array}
```

 $\leftarrow \texttt{descendent}_\texttt{of}(\texttt{karl},\texttt{X}).$

44

Bibliography

- [1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
- [2] H. Garcia-Molina, J. D. Ullman, and J. Widom. *Database Systems The Complete Book*.
 Prentice Hall, 2002.