Foundations of Databases

Exercises – Relational Query Languages /2, Query Optimization

March 1, 2005

1. Express the queries on the Database schema $C = \{ Account, Movie, Schedule \}, where$

Account: number, branch, customerId Movie: title, director, actor Schedule: theater, title

in relational calculus:

- (a) Find titles of current movies
- (b) Find theaters showing movies directed by Polanski
- (c) Find theaters showing movies featuring Nicholson
- (d) Find all directors who acted themselves
- (e) Find directors whose movies are playing in all theaters
- (f) Find theaters that only show movies featuring Nicholson

If a query is domain-independent, the query should be safe-range.

- 2. Exhibit a relational algebra query which is not monotonic.
- 3. Exhibit a relational algebra query which is not satisfiable.
- Prove proposition if a query Q in relational calculus is domain independent, then for each d ⊆ dom and database instance I such that Q_d(I) is defined, Q_d(I) = Q_{nat}(I) = Q_{adom}(I)
- 5. Map the relational calculus queries in Ex. (1) to relational algebra.

- 6. Detail the mapping from relational calculus under Active Domain Semantics to relational algebra (in the named or unnamed setting), such that each $F(x_1, \ldots, x_n)$ in relational calculus is translated into an expression E_F that produces a relation with n attributes.
- 7. Find all equivalences and containments among the following conjunctive queries:

- 8. For each conjunctive query Q_i in Ex. 7,
 - (a) convert Q_i into a tableau
 - (b) minimize Q_i
- 9. Suppose a finite set S of equality and inequality atoms is given.
 - (a) Describe a procedure for inferring all equalities $t_1 = t_2$ and inequalities $t_1 \neq t_2$, where t_1 and t_2 are variables or constants, which logically follow from S.

For example, X = Y follows from $S = \{X = a, a = Y\}$.

(b) Describe an axiom system for inferring all equalities and inequalities from S, in the style of the Armstrong axiom system for functional dependencies. The axioms should be of the form

$$\frac{A_1,\ldots,A_n}{B}, \qquad n \ge 0$$

where the A_i and B are equality and inequality axioms.

- (c) How difficult (in complexity terms) is it to decide whether an (in)quality atom A follows from S, given S and A for input?
- 10. Let us consider unions of conjunctive queries: $Q_1 = Q_{1,1} \cup Q_{1,2} \cup \cdots \cup Q_{1,n_1}$ and $Q_2 = Q_{2,1} \cup Q_{2,2} \cup \cdots \cup Q_{2,n_2}$, where each $Q_{i,j}$ is of the form

$$Q_{i,j}(x_1,\ldots,x_n) := \langle Body \rangle$$

and $\langle Body \rangle$ consists of atoms over a relation R. Then it holds that Q_1 is contained in Q_2 ($Q_1 \subseteq Q_2$), if and only if for each $Q_{1,i}$ $i \in \{1, \ldots, n_1\}$ there exists some $j \in \{1, \ldots, n_2\}$ such that $Q_{1,i} \subseteq Q_{2,j}$ holds.

- (a) Argue why this is true
- (b) Using this criterion, examine whether $Q_1 \cup Q_3$ is contained in (resp., equivalent to) $Q_2 \cup Q_4$ from Ex. (7)
- 11. A union of conjunctive queries $Q = Q_1 \cup \cdots \cup Q_n$ might be optimized by removing "redundant" elements Q_i . Describe a procedure for minimization, and apply it to the query $Q_1 \cup Q_2 \cup Q_3 \cup Q_4$ from Ex. (7)
- 12. Do the same as in Ex. (8), but assume that the relation R : A, B satisfies the functional dependency $A \to B$.