Foundations of Databases

Exercises – Recursion in Relational Algebra and Calculus

March 15, 2005

- 1. Write a While⁺ program which computes all nodes in a directed graph which do not lie on a directed cycle of even length. Do the same for undirected graphs.
- 2. Show that the variants of While, While⁺, where instead of *"while change do"*, we have
 - *"while Expr* $\neq \emptyset$ *do"* in While
 - "while $Expr_1 \neq Expr_2$ do" in While⁺

have the same expressiveness as the original languages.

- 3. As for the proof of While⁺ = CALC+ μ^+ , discuss how a While⁺ program can be expressed by a CALC+ μ^+ query.
- 4. Recall the definition of $\mu_T(\phi(T))$. Exhibit a formula $\phi(T)$ which has a unique minimal fixpoint on all inputs, and $\mu_T(\phi(T))$ terminates on all inputs but does not evaluate to the minimal fixpoint on any of them.
- 5. Express the queries in Ex. (1) in CALC+ μ^+ .
- 6. Simultaneous Induction: In the language CALC- μ , the fixpoint operator is applied to one relation at a time, i.e., we have $\mu_T(\phi(T))$ for some relation variable T. An extension of the language is that several relations can be simultaneously considered (similar as with the \mathbf{T}_P operator, which is applied to all *idb* relations simultaneously). Thus, a generalized fixpoint operator could be of form

$$\mu_{T_1,\ldots,T_k}(\pi_1(T_1,\ldots,T_k),\ldots,\pi_k(T_1,\ldots,T_k))(T_i)$$

which "accesses" the result for T_i when the fixpoint is built for T_1, \ldots, T_k using the formulas ϕ_1, \ldots, ϕ_k .

For example, we could have k = 2 and $\phi_1(T_1, T_2)(x, y) = G(x, y) \lor T_1(x, y) \land T_2(x), \phi_2(x) = \exists y G(x, y) \land T(y) \leftrightarrow T_2(x).$

- (a) Write the formula which states that a belongs to the fixpoint for relation T_2
- (b) How are ordinary fixpoint operators expressed as special case?
- (c) Write a semantics definition for the generalized operator.
- (d) Is the language with the generalized fixpoint operator more expressive?
- 7. Describe a While⁺ program P and an input database \mathbf{I} for it, such that computing $P(\mathbf{I})$ using iteration requires exponential time (in the size of P and \mathbf{I}). Do the same for CALC- μ^+ .