Foundations of Databases

Exercises – Datalog with Negation

March 29, 2005

- 1. Show that for the \mathbf{T}_P operator extended to negation, it holds for every datalog program P that $\mathbf{K} \in inst(sch(P))$ is a model of Σ_P if and only if $\mathbf{T}_P(\mathbf{K}) \subseteq \mathbf{K}$.
- 2. Show that for datalog[¬] programs P, a minimal fixpoint of \mathbf{T}_P is not necessarily a minimal model of Σ_P and conversely, a minimal model of Σ_P is not necessarily a minimal fixpoint of \mathbf{T}_P .
- 3. Exhibit a datalog program P which uses negation at least once such that \mathbf{T}_P is monotonic.
- 4. Show that it is decidable whether for a given datalog[¬] program P the operator \mathbf{T}_P is monotonic.
- 5. Exhibit a datalog program P and an instance $\mathbf{K} \in inst(sch(P))$ such that \mathbf{K} is a model of Σ_P but not a fixpoint of \mathbf{T}_P .
- 6. Consider a database for metro and bus stations, with two relations metro:station, next_station and bus:station, next_station. Write stratifiable datalog[¬] programs to answer the following queries:
 - (a) Find the pairs (a, b) of stations such that one can go from a to b by metro but not by bus.
 - (b) Find the pairs (a, b) of stations such that there is a pure bus route from a to b. A pure bus route is a path a = s₀, s₁,..., s_n = b, n > 0, such that each (s_i, s_{i+1}) is in bus and there is no path from s_i to s_{i+1} by metro only.
 - (c) Find the pairs (a, b) of stations such b can be reached from a by some combination of metro and/or bus, but not by metro or bus alone.

- 7. Consider an extension of the database in the previous exercise, where both relations have an additional attribute duration, such that tuples (a, b, d) represent that going from a to the next station b takes d minutes. Write a stratified datalog program, using a built-in predicate < on durations, which computes in a 3-ary relation long_reach all tuples (a, b, d) such that b is directly reached from a in time d but not shorter, and d is extremal (maximal) over all b, i.e., the shortest time to reach b from anywhere else is largest.</p>
- 8. Show that for each stratifiable datalog[¬] program P and $\mathbf{I} \in inst(edb(P), P_{strat}(\mathbf{I})$ is a fixpoint of \mathbf{T}_P whose restriction to edb(P) coincides with **I**. Extra: Show that $P_{strat}(\mathbf{I})$ is in fact a minimal such fixpoint.
- 9. Describe a datalog[¬] program which computes under inflationary semantics the complement of the transitive closure of a directed graph G = (V, N), whose arcs N are given by a binary relation **arc** and the nodes V are implicit by N.
- 10. Give an example of a datalog[¬] program such that for some input \mathbf{I} , $P_{inf}(\mathbf{I})$ is not a minimal fixpoint of \mathbf{T}_P^+ containing \mathbf{I} . Can this be sharpened to a program P such that for no input \mathbf{I} , $P_{inf}(\mathbf{I})$ is a minimal fixpoint of \mathbf{T}_P^+ containing \mathbf{I} ?