
Foundations of Databases

Recursion in Relational Algebra and Calculus

Free University of Bozen – Bolzano, 2004–2005

Thomas Eiter

Institut für Informationssysteme

Arbeitsbereich Wissensbasierte Systeme (184/3)

Technische Universität Wien

http://www.kr.tuwien.ac.at/staff/eiter

(Some slides by Wolfgang Faber)



Foundations of Databases 1

Adding Recursion to Relational Algebra and Calculus

• Datalog can been seen as an extension of conjunctive queries with disjunction

an recursion

• Logically, datalog thus offers ∧, ∨, ∃, and recursion (but no ¬)

• Issue: Extend Relational Algebra resp. Relational Calculus with recursion

• Relational Algebra: variable assignments and looping construct

• Relational Calculus: recursion by fixpoint operators

Recursion in Relational Algebra and Calculus



Foundations of Databases 2

Recursion in Relational Algebra

• Problem: Relational Algebra has only unnamed results (expressions).

• Solution: Introduce relation variables R, which may be assigned (the value of)

expressions Expr, which have the same sort (resp. arity):

R := Expr

• The variable R may occur in Expr itself:

T := R ∪ (π1,4 (σ2=3 (R × T )))

• Add imperative control structures (sequence, loop)

Recursion in Relational Algebra and Calculus



Foundations of Databases 3

The While language

The While language extends relational algebra

• A While program is a finite sequence of assignments and while statements.

• A While statement has the form

while change do

begin

<loop body>

end

where <loop body> is recursively a While program, and nesting of loops is finite

Recursion in Relational Algebra and Calculus



Foundations of Databases 4

Semantics of While

A While program P is evaluated on a database instance I from inst(R) as follows:

• Each relation R ∈ R is initialized to I(R).

• Each relation S /∈ R is initialized to ∅.

• Process the statements in sequential order.

• For an assignment R := Expr, the result of evaluating Expr on the current

relation values is assigned to R

• The body of a While statement is executed as long as some relation value

changes

• The result of the computation, P (I), is the final result assigned to a designated

output (query) relation, if the computation terminated (otherwise, undefined)

Recursion in Relational Algebra and Calculus



Foundations of Databases 5

Example

A While program for the transitive closure of a graph G: From, To:

T := G;

while change do

begin

T := T ∪ πFrom,To(ρA←To(G) 1 ρA←From(G))

end

• The program terminates for each (finite) input I

• T contains the transitive closure of graph encoded by I

Recursion in Relational Algebra and Calculus



Foundations of Databases 6

• Problem: Program P might not terminate

• Example (G: From, To):

D := ρA←From(πFrom(G)] ∪ ρA←To(πTo(G));

while change do

begin

G := (ρFrom←A(D) × ρFrom←A(D)) \ G;

end

• Theorem. Whether a given While program P terminates on every I is

undecidable

• Note: Whether P terminates on a given I is decidable (exact complexity later)

Recursion in Relational Algebra and Calculus



Foundations of Databases 7

While+ Programs

• Avoid termination problem by change in the semantics: Assignments are

“inflationary”

R+ =Expr

add the value of Expr to R

• The resulting language is called While+

• Proposition. For each input database I, P (I) is well-defined

• Variants of While, While+: instead of “while change do”:

– “while Expr 6= ∅ do” in While

– “while Expr1 6= Expr2 do” in While+

do permit the same expressiveness.

Recursion in Relational Algebra and Calculus



Foundations of Databases 8

Recursion in Relational Calculus

• First Way: Assignments and loops as in Relational Algebra

• Proviso here: Active domain semantics for relational calculus

• More logic-oriented construct: Fixpoint-Operator

• Example: Transitive closure of graph G

ϕ(T ) = G(x, y) ∨ T (x, y) ∨ ∃z(T (x, z) ∧ G(z, y))

Free variables: x, y; T is a relational variable

Define the value of T , given a valuation of G, as the limit of the sequence

{Ji}i≥0

J0 := ∅,

Ji := ϕ(Ji−1), i > 0.

Recursion in Relational Algebra and Calculus



Foundations of Databases 9

• For each input G, the limit exists and equals Jk, for some k ≥ 0

• Jk is a fixpoint of the operator defined by ϕ(·) on the valuations of T on the

active domain (wrt. G)

• This fixpoint is denoted by µT (ϕ(T ))

• The variable T and the variables x, y are bound to µT

• In general, µT (ϕ) may not be defined:

ϕ(T ) = (x = 0 ∧ ¬T (0) ∧ ¬T (1)) ∨ (x = 0 ∧ T (1)) ∨ (x = 1 ∧ T (0))

Recursion in Relational Algebra and Calculus



Foundations of Databases 10

Partial Fixpoint Operator

• Let R be a database schema, let T be a fresh n-ary relation, and let S be the

schema R ∪ {T}.

• Let ϕ(T ) be a formula using T and relations in R, with n free variables.

• Given I ∈ inst(R), µT (ϕ(T )) denotes the limit of the sequence {Ji}i≥0, if it

exists,

J0 := ∅,

Ji := ϕ(Ji−1), i > 0.

where ϕ(Ji−1) denotes the result of evaluating ϕ on the database instance

Ji−1 ∈ inst(S) such that

– Ji−1(R) = I(R) for each R ∈ R, and

– Ji−1(T ) = Ji−1.

Recursion in Relational Algebra and Calculus



Foundations of Databases 11

Partial Fixpoint Logic

• µT (ϕ) denotes a new n-ary relation (if defined), which can be used in more

complex formulas.

• Examples: Let ϕ(T ) = G(x, y) ∨ T (x, y) ∨ ∃z(T (x, z) ∧ G(z, y))

µT (ϕ(T ))(a, x), ¬µT (ϕ(T ))(x, y)

• Partial fixpoint logic, CALC+µ, is the extension of Relational Calculus with µ

• Formulas are built from atoms by applying the RC operators (∧,∨, ∃,¬) and the

µ operator.

• If ϕ(T ) has n free variables, T has arity n, and e1, . . . , en are variables or

constants, then µT (ϕ(T ))(e1, . . . , en) is a formula

• Note: Nestings of µT are possible.

Recursion in Relational Algebra and Calculus



Foundations of Databases 12

Partial Fixpoint Queries

• CALC+µ queries (aka partial fixpoint queries) are expressions Q of the form

{e1, . . . , en | ϕ}

where the free variables x1, . . . , xm of ϕ are the variables occurring in the list

of constants and variables e1, . . . , en.

• The query result of Q in input I, denoted Q(I), is undefined, whenever the

evaluation of µ in a subformula of ϕ is undefined; otherwise, it is the set of all

valuations ν for e1, . . . , en such that ϕ(ν(x1), . . . , ν(xm)) is defined and

true (wrt. I).

Recursion in Relational Algebra and Calculus



Foundations of Databases 13

Examples

ϕ(T ) = G(x, y) ∨ T (x, y) ∨ ∃z(T (x, z) ∧ G(z, y))

• all nodes reachable from a:

{x : µT (ϕ(T ))(a, x)}

• Complement of transitive closure

{x, y : ¬µT (ϕ(T ))(x, y)}

• Nodes that do not lie on a directed cycle:

{x : ∃y(G(x, y) ∨ G(y, x)) ∧ ¬µT (ϕ(T ))(x, x)}

Recursion in Relational Algebra and Calculus



Foundations of Databases 14

Inflationary Fixpoint Queries

• Problem similar as with While queries: Undefineness

• Similar remedy: compute fixpoints in inflationary manner

Replace in definition of µT (ϕ(T ))

Ji := ϕ(Ji−1), i > 0.

by

Ji := Ji−1 ∪ ϕ(Ji−1), i > 0.

Equivalently, replace ϕ(T ) by T (~x) ∨ ϕ(T ), where ~x are the free

variables of ϕ(T ).

• The resulting operator is denoted µ+
T (ϕ(T )).

• The emerging set of queries are the CALC+µ+ queries or (inflationary fixpoint

queries, aka fixpoint queries)

Recursion in Relational Algebra and Calculus



Foundations of Databases 15

Fixpoint logic: Examples

• Transitive closure query:

{x, y | µ+
T (G(x, y) ∨ ∃z(T (x, z) ∧ G(z, y)))(x, y)}

Note: “T (x, y)” is implicitly added by the semantics.

• Same-Generation query (R = {Par, Person}):

{x, y | µ+
T ((Person(x) ∧ x = y)∨

∃u, v(Par(x, u) ∧ T (u, v) ∧ Par(y, v)))(x, y)}

Recursion in Relational Algebra and Calculus



Foundations of Databases 16

While(+) vs CALC+µ
(+)

Theorem. Suppose that in Relational Algebra expressions special constant relations

Ra := {〈a〉}, for each a ∈ dom, may be used. Then,

1. While+ = CALC+µ+

2. While = CALC+µ

• This can be shown by structural simulations: encode While(+) programs in

CALC+µ(+) (using active domain semantics)

• Vice versa, evaluate CALC+µ(+) expressions with While(+) programs

• Relation constants Ra are needed to produce constant query output

Example: CALC+µ+ query {x | x = a}.

Recursion in Relational Algebra and Calculus



Foundations of Databases 17

Normal Forms

• Nested recursion in CALC+µ(+) resp. in While(+) does not add expressivity

• Each CALC+µ(+) query is equivalent to a query of the form

{~x | µ
(+)
T (ϕ(T ))(~t)}

where ϕ(T ) contains no µ(+)

• In fact, ϕ(T ) can be an existential formula

• Analogous normal forms hold for While(+) programs

• Proof: via equivalence to extensions of datalog with negation

• Open Issue: CALC+µ = CALC-µ+

Recursion in Relational Algebra and Calculus



Foundations of Databases 18

Recursion in SQL

• Problem: Same as in Relational Algebra.

• Solution: Name the resulting relation and allow to use it in its definition!

Construct: WITH

WITH RECURSIVE T(X,Y) AS (

SELECT R.X, R.Y

FROM R

UNION

SELECT R.X, T.Y

FROM R, T

WHERE R.Y = T.X

) Query

• Semantics: Also here a fixpoint.

Recursion in Relational Algebra and Calculus



Foundations of Databases 19

Indirect Recursion in SQL-3

WITH RECURSIVE

EVEN (N) AS

(VALUES (0) UNION SELECT M+1 FROM ODD),

ODD (M) AS

(SELECT N+1 FROM EVEN)

SELECT * FROM EVEN WHERE N < 10

Recursion in Relational Algebra and Calculus



Foundations of Databases 20

Non-linear Recursion in SQL

WITH RECURSIVE

DESCENDANT (N, V) AS (

SELECT K, E FROM CHILD

UNION

SELECT N1.N, N2.V

FROM DESCENDANT AS N1, DESCENDANT AS N2

WHERE N1.V = N2.N)

SELECT N FROM DESCENDANT WHERE V = ’Adam’

Explicitly forbidden in SQL-3, will perhaps be allowed in SQL-4.

Recursion in Relational Algebra and Calculus



Foundations of Databases 21

Bibliography

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems – The Complete Book.

Prentice Hall, 2002.

Recursion in Relational Algebra and Calculus


