Foundations of Databases
Recursion in Relational Algebra and Calculus

Free University of Bozen — Bolzano, 2004-2005

Thomas Eiter

Institut fur Informationssysteme
Arbeitsbereich Wissensbasierte Systeme (184/3)
Technische Universitat Wien
http://www.kr.tuwien.ac.at/staff/eiter

(Some slides by Wolfgang Faber)



Foundations of Databases

Adding Recursion to Relational Algebra and Calculus

e Datalog can been seen as an extension of conjunctive queries with disjunction

an recursion
e Logically, datalog thus offers A, VV, 3, and recursion (but no —)
e Issue: Extend Relational Algebra resp. Relational Calculus with recursion
e Relational Algebra: variable assignments and looping construct

e Relational Calculus: recursion by fixpoint operators

Recursion in Relational Algebra and Calculus



Foundations of Databases

Recursion in Relational Algebra

e Problem: Relational Algebra has only unnamed results (expressions).

e Solution: Introduce relation variables 1R, which may be assigned (the value of)

expressions F xpr, which have the same sort (resp. arity):
R := Expr
e The variable R may occur in Expr itself:

T :=RU (m4 (02=3 (RxT)))

e Add imperative control structures (sequence, loop)

Recursion in Relational Algebra and Calculus



Foundations of Databases

The While language

The While language extends relational algebra
e A While program is a finite sequence of assignments and while statements.

e A While statement has the form

while change do
begin
<loop body>

end

where <loop body> is recursively a While program, and nesting of loops is finite

Recursion in Relational Algebra and Calculus



Foundations of Databases

Semantics of While

A While program P is evaluated on a database instance I from inst(R) as follows:

Each relation R € R is initialized to I( R).
Each relation S ¢ R is initialized to ().
Process the statements in sequential order.

For an assignment R := Expr, the result of evaluating £2xpr on the current

relation values is assigned to R

The body of a While statement is executed as long as some relation value

changes

The result of the computation, P (1), is the final result assigned to a designated

output (query) relation, if the computation terminated (otherwise, undefined)

Recursion in Relational Algebra and Calculus



Foundations of Databases

A While program for the transitive closure of agraph G: From,

T:=G;
while change do

begin

r=r1TU 7TF'r'0m,T0<)0A<—T0(G) X )OA<—From(G))

end

e The program terminates for each (finite) input 1

e [’ contains the transitive closure of graph encoded by I

Recursion in Relational Algebra and Calculus

Example

To:



Foundations of Databases

e Problem: Program P might not terminate
e Example (G: From, To):

D = PA—From (WFrom(G)] U ;OA<—TO<7TT0(G));
while change do

begin

G = (Pme<—A(D) X pFT0m<—A(D)) \ G;
end

e Theorem. Whether a given While program P terminates on every I is

undecidable

e Note: Whether P terminates on a given I is decidable (exact complexity later)

Recursion in Relational Algebra and Calculus



Foundations of Databases

While™ Programs

e Avoid termination problem by change in the semantics: Assignments are

“inflationary”

R+ =FExpr
add the value of Exprto R
e The resulting language is called While ™
e Proposition. For each input database I, P([) is well-defined

e Variants of While, While™: instead of “while change do™
— “while Expr # () do” in While
— “while Expry # Expry do” in While™

do permit the same expressiveness.

Recursion in Relational Algebra and Calculus



Foundations of Databases

Recursion in Relational Calculus

e First Way: Assignments and loops as in Relational Algebra
e Proviso here: Active domain semantics for relational calculus
e More logic-oriented construct: Fixpoint-Operator

e Example: Transitive closure of graph G
o(T) = G(z,y) VT(z,y) vV Iz(T(z,2) AN G(2,9))

Free variables: x, y; 1" is a relational variable

Define the value of I’, given a valuation of (7, as the limit of the sequence
{Ji}i>o

Jo = 0,
Ji = o(Ji-1), 1>0.

Recursion in Relational Algebra and Calculus



Foundations of Databases

e For each input (G, the limit exists and equals J}, for some k > 0

e J;. is a fixpoint of the operator defined by ¢ (-) on the valuations of 7" on the

active domain (wrt. ()
e This fixpoint is denoted by 7 ((T))
e The variable 1" and the variables x, y are bound to 7

e In general, 17 () may not be defined:

o(T) = (z=0A-TO)A-T1)V(z=0AT1))V (z =1AT(0))

Recursion in Relational Algebra and Calculus



Foundations of Databases 10

Partial Fixpoint Operator

e Let R be a database schema, let 1" be a fresh n-ary relation, and let S be the
schema R U {T'}.

e Let (1) be a formula using T’ and relations in R, with n free variables.

e GivenI € inst(R), ur (@ (1)) denotes the limit of the sequence {J; }i>o, if it

exists,
Jo = 0,
Ji = p(Ji—1), i>0.
where (J;_1) denotes the result of evaluating ¢ on the database instance
Ji_1 € inst(S) such that
- J;,_1(R) =I(R) foreach R € R, and
- Ji 1 (T) = Jia.

Recursion in Relational Algebra and Calculus



Foundations of Databases

Partial Fixpoint Logic

° ,LLT(gp) denotes a new n-ary relation (if defined), which can be used in more

complex formulas.
e Examples: Let p(T) = G(x,y) VT (x,y)V Iz(T(x,2) NG(2,y))
pr(e(T))(a,z),  —pr(e(T))(z,y)

e Partial fixpoint logic, CALC+ L, is the extension of Relational Calculus with 1

e Formulas are built from atoms by applying the RC operators (A, VV, 3, =) and the

(. operator.
e If (T) has n free variables, T" has arity n, and e1, . . . , e,, are variables or
constants, then ur(p(T))(e1, - .., ey) is a formula

e Note: Nestings of p are possible.

Recursion in Relational Algebra and Calculus

11



Foundations of Databases

Partial Fixpoint Queries

e CALC+u queries (aka partial fixpoint queries) are expressions () of the form

{e1,...,en | v}

where the free variables x1, . . ., x,, of ¢ are the variables occurring in the list

of constants and variables €1, ..., €.

e The query result of ) in input I, denoted )(I), is undefined, whenever the

evaluation of (4 in a subformula of ¢ is undefined; otherwise, it is the set of all

valuations v for ey, ..

true (wrt. I).

Recursion in Relational Algebra and Calculus

., en suchthat (v (x1),...,v(xy)) is defined and

12



Foundations of Databases

Examples

o(T) = G(z,y) vV T(2,y) vV 3I2(T(z, 2) A G(2,9))
e all nodes reachable from a:
1@ pr(e(T))(a, )}
e Complement of transitive closure

{2,y : ~pr(e(T))(z,y)}

e Nodes that do not lie on a directed cycle:

12 (G, y) vV Gy, ) A—pr(e(T))(z,2) )

Recursion in Relational Algebra and Calculus



Foundations of Databases

Inflationary Fixpoint Queries

e Problem similar as with While queries: Undefineness

e Similar remedy: compute fixpoints in inflationary manner

Replace in definition of p7 (i (1))
J; = gO(Ji_l), 1 > 0.

Ji = Jic1Up(Ji1), ©>0.

Equivalently, replace ¢ (T") by T'(Z) V ¢(T'), where X are the free
variables of ¢ (7T').

e The resulting operator is denoted 1. ((T')).

e The emerging set of queries are the CALC+,LL+ queries or (inflationary fixpoint

queries, aka fixpoint queries)

Recursion in Relational Algebra and Calculus

14



Foundations of Databases

Fixpoint logic: Examples

e Transitive closure query:

{z.y | pp(G(z,y) vV 3(T(z, 2) A G(2,9)))(2,9)}

Note: “T’(x, y)” is implicitly added by the semantics.

e Same-Generation query (R = {Par, Person}):

{z,y | pp((Person(z) Az = y)V

Recursion in Relational Algebra and Calculus

Ju, v(Par(z,u) NT(u,v) A Par(y,v)))(x,y)}

15



Foundations of Databases 16

While(t) vs CALC+4(*)

Theorem. Suppose that in Relational Algebra expressions special constant relations

Ry :={{a)}, for each a € dom, may be used. Then,
1. While™ = CALC+u™

2. While = CALC+u

e This can be shown by structural simulations: encode While (1) programs in

CALC+,LL(+) (using active domain semantics)
e Vice versa, evaluate CALC+4(1) expressions with While(*) programs
e Relation constants R, are needed to produce constant query output

Example: CALC+u ™t query {z | x = a}.

Recursion in Relational Algebra and Calculus



Foundations of Databases

Normal Forms

e Nested recursion in CALC+,LL(+) resp. in While{™) does not add expressivity

e Each CALC+,LL(+) query is equivalent to a query of the form

(| u5” (p(D) (D))
where (T') contains no ()
e In fact, o(T") can be an existential formula
e Analogous normal forms hold for While(T) programs
e Proof: via equivalence to extensions of datalog with negation

e Open Issue: CALC+t = CALC-u™

Recursion in Relational Algebra and Calculus



Foundations of Databases 18

Recursion in SQL

e Problem: Same as in Relational Algebra.

e Solution: Name the resulting relation and allow to use it in its definition!
Construct: WITH

WITH RECURSIVE T (X,Y) AS (
SELECT R.X, R.Y
FROM R
UNION
SELECT R.X, T.Y
FROM R, T
WHERE R.Y = T.X

) Query

e Semantics: Also here a fixpoint.

Recursion in Relational Algebra and Calculus



Foundations of Databases

WITH RECURSIVE
EVEN (N) AS

(VALUES (0)
ODD (M) AS

(SELECT N+1

Indirect Recursion in SQL-3

UNION SELECT M+1 FROM ODD),

FROM EVEN)

SELECT * FROM EVEN WHERE N < 10

Recursion in Relational Algebra and Calculus

19



Foundations of Databases

WITH RECURSIVE

Non-linear Recursion in SQL

DESCENDANT (N, V) AS (
SELECT K, E FROM CHILD

UNION

SELECT N1.N, N2.V
FROM DESCENDANT AS N1, DESCENDANT AS N2

WHERE N1.V

= N2.N)

SELECT N FROM DESCENDANT WHERE V = ’'Adam’

Explicitly forbidden in SQL-3, will perhaps be allowed in SQL-4.

Recursion in Relational Algebra and Calculus

20



Foundations of Databases

Bibliography

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems — The Complete Book.
Prentice Hall, 2002.

Recursion in Relational Algebra and Calculus

21



