Foundations of Databases

Recursion in Relational Algebra and Calculus

Free University of Bozen – Bolzano, 2004–2005

Thomas Eiter

Institut für Informationssysteme

Arbeitsbereich Wissensbasierte Systeme (184/3)

Technische Universität Wien

http://www.kr.tuwien.ac.at/staff/eiter

(Some slides by Wolfgang Faber)

Adding Recursion to Relational Algebra and Calculus

1

- Datalog can been seen as an extension of conjunctive queries with disjunction an recursion
- Logically, datalog thus offers \land , \lor , \exists , and recursion (but no \neg)
- Issue: Extend Relational Algebra resp. Relational Calculus with recursion
- Relational Algebra: variable assignments and looping construct
- Relational Calculus: recursion by fixpoint operators

Recursion in Relational Algebra

- **Problem**: Relational Algebra has only unnamed results (expressions).
- Solution: Introduce relation variables *R*, which may be assigned (the value of) expressions *Expr*, which have the same sort (resp. arity):

$$R := Expr$$

• The variable R may occur in Expr itself:

$$T := R \cup (\pi_{1,4} (\sigma_{2=3} (R \times T)))$$

• Add imperative control structures (sequence, loop)

The While language

The While language extends relational algebra

- A While program is a finite sequence of assignments and while statements.
- A While statement has the form

while change do

begin

 $<\!\!\textit{loop body}\!>$

end

where <*loop body*> is recursively a While program, and nesting of loops is finite

Semantics of While

A While program P is evaluated on a database instance I from $inst(\mathbf{R})$ as follows:

- Each relation $R \in \mathbf{R}$ is initialized to $\mathbf{I}(R)$.
- Each relation $S \notin \mathbf{R}$ is initialized to \emptyset .
- Process the statements in sequential order.
- For an assignment R := Expr, the result of evaluating Expr on the current relation values is assigned to R
- The body of a While statement is executed as long as some relation value changes
- The result of the computation, P(I), is the final result assigned to a designated output (query) relation, if the computation terminated (otherwise, undefined)

Example

A While program for the transitive closure of a graph G: From, To:

$$\begin{split} & \textit{T} \coloneqq \textit{G}; \\ & \textit{while change do} \\ & \textit{begin} \\ & \textit{T} \coloneqq \textit{T} \cup \pi_{From,To}(\rho_{A\leftarrow To}(G) \bowtie \rho_{A\leftarrow From}(G)) \\ & \textit{end} \end{split}$$

- The program terminates for each (finite) input ${f I}$
- T contains the transitive closure of graph encoded by ${\bf I}$

- **Problem:** Program *P* might not terminate
- Example (G: From, To):

$$\begin{split} & \textit{D} \coloneqq \rho_{A \leftarrow From}(\pi_{From}(G)] \cup \rho_{A \leftarrow To}(\pi_{To}(G)); \\ & \textit{while change do} \\ & \textit{begin} \\ & \textit{G} \coloneqq (\rho_{From \leftarrow A}(D) \times \rho_{From \leftarrow A}(D)) \setminus G; \\ & \textit{end} \end{split}$$

- Theorem. Whether a given While program P terminates on every ${\bf I}$ is undecidable
- Note: Whether P terminates on a given \mathbf{I} is decidable (exact complexity later)

While⁺ Programs

 Avoid termination problem by change in the semantics: Assignments are "inflationary"

$$R + = Expr$$

add the value of Expr to R

- The resulting language is called While⁺
- **Proposition.** For each input database I, P(I) is well-defined
- Variants of While, While⁺: instead of *"while change do"*:
 - *"while Expr* $\neq \emptyset$ *do"* in While
 - "while $Expr_1 \neq Expr_2$ do" in While⁺

do permit the same expressiveness.

Recursion in Relational Calculus

- First Way: Assignments and loops as in Relational Algebra
- Proviso here: Active domain semantics for relational calculus
- More logic-oriented construct: Fixpoint-Operator
- Example: Transitive closure of graph G

$$\varphi(T) = G(x, y) \lor T(x, y) \lor \exists z (T(x, z) \land G(z, y))$$

Free variables: x, y; T is a relational variable

Define the value of T, given a valuation of G, as the limit of the sequence $\{J_i\}_{i\geq 0}$

$$J_0 := \emptyset,$$

$$J_i := \varphi(J_{i-1}), \quad i > 0.$$

- For each input G, the limit exists and equals J_k , for some $k \ge 0$
- J_k is a *fixpoint* of the operator defined by $\varphi(\cdot)$ on the valuations of T on the active domain (wrt. G)
- This fixpoint is denoted by $\mu_T(\varphi(T))$
- The variable T and the variables x, y are bound to μ_T
- In general, $\mu_T(\varphi)$ may not be defined:

 $\varphi(T) = (x = 0 \land \neg T(0) \land \neg T(1)) \lor (x = 0 \land T(1)) \lor (x = 1 \land T(0))$

Partial Fixpoint Operator

- Let \mathbf{R} be a database schema, let T be a fresh n-ary relation, and let \mathbf{S} be the schema $\mathbf{R} \cup \{T\}$.
- Let $\varphi(T)$ be a formula using T and relations in ${f R}$, with n free variables.
- Given $\mathbf{I} \in inst(\mathbf{R})$, $\mu_T(\varphi(T))$ denotes the limit of the sequence $\{J_i\}_{i\geq 0}$, if it exists,

$$J_0 := \emptyset,$$

$$J_i := \varphi(J_{i-1}), \quad i > 0.$$

where $\varphi(J_{i-1})$ denotes the result of evaluating φ on the database instance $\mathbf{J}_{i-1} \in inst(\mathbf{S})$ such that

-
$$\mathbf{J}_{i-1}(R) = \mathbf{I}(R)$$
 for each $R \in \mathbf{R}$, and
- $\mathbf{J}_{i-1}(T) = J_{i-1}$.

Recursion in Relational Algebra and Calculus

Partial Fixpoint Logic

- $\mu_T(\varphi)$ denotes a new *n*-ary relation (if defined), which can be used in more complex formulas.
- Examples: Let $\varphi(T) = G(x, y) \lor T(x, y) \lor \exists z (T(x, z) \land G(z, y))$ $\mu_T(\varphi(T))(a, x), \quad \neg \mu_T(\varphi(T))(x, y)$
- Partial fixpoint logic, CALC+ μ , is the extension of Relational Calculus with μ
- Formulas are built from atoms by applying the RC operators ($\land, \lor, \exists, \neg$) and the μ operator.
- If $\varphi(T)$ has n free variables, T has arity n, and e_1, \ldots, e_n are variables or constants, then $\mu_T(\varphi(T))(e_1, \ldots, e_n)$ is a formula
- Note: Nestings of μ_T are possible.

Partial Fixpoint Queries

• CALC+ μ queries (aka *partial fixpoint queries*) are expressions Q of the form

 $\{e_1,\ldots,e_n\mid\varphi\}$

where the free variables x_1, \ldots, x_m of φ are the variables occurring in the list of constants and variables e_1, \ldots, e_n .

• The query result of Q in input \mathbf{I} , denoted $Q(\mathbf{I})$, is undefined, whenever the evaluation of μ in a subformula of φ is undefined; otherwise, it is the set of all valuations ν for e_1, \ldots, e_n such that $\varphi(\nu(x_1), \ldots, \nu(x_m))$ is defined and true (wrt. \mathbf{I}).

Examples

$$\varphi(T) = G(x, y) \lor T(x, y) \lor \exists z (T(x, z) \land G(z, y))$$

• all nodes reachable from *a*:

$$\{x: \mu_T(\varphi(T))(a, x)\}\$$

• Complement of transitive closure

$$\{x, y: \neg \mu_T(\varphi(T))(x, y)\}$$

• Nodes that do not lie on a directed cycle:

$$\{x: \exists y(G(x,y) \lor G(y,x)) \land \neg \mu_T(\varphi(T))(x,x)\}$$

Foundations of Databases

Inflationary Fixpoint Queries

- Problem similar as with While queries: Undefineness
- Similar remedy: compute fixpoints in inflationary manner

Replace in definition of $\mu_T(arphi(T))$

$$J_i := \varphi(J_{i-1}), \quad i > 0.$$

by

$$J_i := J_{i-1} \cup \varphi(J_{i-1}), \quad i > 0.$$

Equivalently, replace $\varphi(T)$ by $T(\vec{x}) \lor \varphi(T)$, where \vec{x} are the free variables of $\varphi(T)$.

- The resulting operator is denoted $\mu_T^+(\varphi(T))$.
- The emerging set of queries are the CALC+ μ^+ queries or (*inflationary fixpoint queries*, aka *fixpoint queries*)

Fixpoint logic: Examples

• Transitive closure query:

 $\{x, y \mid \mu_T^+(G(x, y) \lor \exists z (T(x, z) \land G(z, y)))(x, y)\}$

Note: "T(x, y)" is implicitly added by the semantics.

• Same-Generation query ($\mathbf{R} = \{Par, Person\}$):

$$\{x, y \mid \mu_T^+((Person(x) \land x = y) \lor \\ \exists u, v(Par(x, u) \land T(u, v) \land Par(y, v)))(x, y) \}$$

While $^{(+)}$ vs CALC+ $\mu^{(+)}$

Theorem. Suppose that in Relational Algebra expressions special constant relations $R_a := \{\langle a \rangle\}$, for each $a \in \mathbf{dom}$, may be used. Then,

- 1. While⁺ = CALC+ μ^+
- 2. While = CALC+ μ
- This can be shown by structural simulations: encode While⁽⁺⁾ programs in CALC+ $\mu^{(+)}$ (using active domain semantics)
- Vice versa, evaluate CALC+ $\mu^{(+)}$ expressions with While⁽⁺⁾ programs
- Relation constants R_a are needed to produce constant query output Example: CALC+ μ^+ query $\{x \mid x = a\}$.

Normal Forms

- Nested recursion in CALC+ $\mu^{(+)}$ resp. in While⁽⁺⁾ does not add expressivity
- Each CALC+ $\mu^{(+)}$ query is equivalent to a query of the form

 $\{\vec{x} \mid \mu_T^{(+)}(\varphi(T))(\vec{t})\}$

where $\varphi(T)$ contains no $\mu^{(+)}$

- In fact, $\varphi(T)$ can be an *existential* formula
- Analogous normal forms hold for While⁽⁺⁾ programs
- Proof: via equivalence to extensions of datalog with negation
- Open Issue: CALC+ μ = CALC- μ^+

Recursion in SQL

- **Problem**: Same as in Relational Algebra.
- **Solution**: Name the resulting relation and allow to use it in its definition!

```
Construct: WITH

WITH RECURSIVE T(X,Y) AS (

SELECT R.X, R.Y

FROM R

UNION

SELECT R.X, T.Y

FROM R, T

WHERE R.Y = T.X

) Query
```

• Semantics: Also here a fixpoint.

Indirect Recursion in SQL-3

WITH RECURSIVE

EVEN (N) AS

(VALUES (0) UNION SELECT M+1 FROM ODD),

ODD (M) AS

(SELECT N+1 FROM EVEN)

SELECT * FROM EVEN WHERE N < 10

Recursion in Relational Algebra and Calculus

Non-linear Recursion in SQL

```
WITH RECURSIVE

DESCENDANT (N, V) AS (

SELECT K, E FROM CHILD

UNION

SELECT N1.N, N2.V

FROM DESCENDANT AS N1, DESCENDANT AS N2

WHERE N1.V = N2.N)

SELECT N FROM DESCENDANT WHERE V = 'Adam'
```

Explicitly forbidden in SQL-3, will perhaps be allowed in SQL-4.

Recursion in Relational Algebra and Calculus

Bibliography

- [1] S. Abiteboul, R. Hull, and V. Vianu. *Foundations of Databases*. Addison-Wesley, 1995.
- [2] H. Garcia-Molina, J. D. Ullman, and J. Widom. *Database Systems The Complete Book*.
 Prentice Hall, 2002.