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Abstract. We consider the problem of measuring the similarity or distance between
two finite sets of points in a metric space, and computing the measure. This problem
has applications in, e.g., computational geometry, philosophy of science, updating or
changing theories, and machine learning. We review some of the distance functions
proposed in the literature, among them the minimum distance link measure, the surjec-
tion measure, and the fair surjection measure, and supply polynomial time algorithms
for the computation of these measures. Furthermore, we introduce the minimum link
measure, a new distance function which is more appealing than the other distance
functions mentioned. We also present a polynomial time algorithm for computing this
new measure.

We further address the issue of defining a metric on point sets. We present the
metric infimum method that constructs a metric from any distance functions on point
sets. In particular, the metric infimum of the minimum link measure is a quite intuitive.
The computation of this measure is shown to be in NP for a broad class of instances;
it is NP-hard for a natural problem class.

1 Introduction

A functiond : B x B — R* is ametricon a nonempty seB, if for all z,y,z € B
we have

1 d(xz,y) =0 if and only if z = y;
2 d(z,y) = d(y, x)
3 d(z, 2) < d(z,y) +d(y, 2).

The functiond is adistance functioron B, if it satisfies (1) and (2).

In this paper we consider the following questions. (1) How can a distance function
(or even metric)A on B be extended to a distance function or a metiion the
collection of all nonempty (finite) subsets Bf? The extension condition we require
is that for singletonsd agrees withA, that is,d({z}, {y}) = A(z,y) for all z and
y from B. (2) Algorithms for computing such extensions, which run in polynomial
time if possible.
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Questions of this type arise in several areas, such as cluster analysis [2, 20],
computational geometry [1], philosophy of science [17, 18, 13, 15], updating and
revising theories [6, 25], arbitration between theories [19], and machine learning
[12, 11, 26].

The best-known metric between subsets of a metric space is the Hausdorff metric,
defined as

dn(S1, S2) max{gnegf min Ale, f), max min Ale, f)}-

This metric is trivially computable in polynomial time, and it has some quite attractive
properties. Unfortunately, it is not very well suited for some applications. The reason
is that the Hausdorff distance does not take into account the overall structure of the
point sets (see Fig. 1).

Several alternative distance functions between subsets have been proposed in phi-
losophy of science [13], for the objective of measuring the distance between theories
in a logical language’”s’. Here, the points of the metric space are the interpreta-
tions of £, whose distance is measured by some mef;ic¢or propositional#, the
Hamming distance between interpretations (i.e., the number of atoms on which they
are different) is a natural choice. Each theory4f is identified with the set of its
models, which thus is a set of points in the metric spatiis way, measuring the
distance between two theories is abstracted to measuring the distance between two
sets of points in a metric space. In the particular case where one theory describes
categorically TRUTH (i.e., the true state of affairs), the distance value is taken for
a gquantitative extent of the truthlikeness of the other theory. Notice that measuring
theory distance in this setting has suggestive applications for theory revision (change
a theory into the closest possible one that meets the revision) and arbitration between
theories.

An example can be drawn from the court domain (cf. [19]). Suppose that in a
trial two testimonies (which can be represented as theories) are very similar while a
third is much different. Given that the withesses are independent of each other, the
belief of the jury in the reliability of the third testimony will naturally decrease with
growing distance to the other testimonies.

Another use of such distance functions between subsets is in the new area of
knowledge discovery in databases [5, 16], where one often has to choose between or
form clusters from different rules discovered from the data. The rules can be identified
with the data points to which they apply, and then rule distance can be computed by
using a distance function for subsets [21].

Particularly appealing among the distance functions between point sets that have
been proposed in philosophy of science are the minimum distance medguréhe
surjection measurels, and the fair surjection measuigs. Intuitively, these measures
compute the amount of distance covered when each point of one set is mapped to a
point of the other set under some restrictions. Undlgy, each point of the one set
is mapped to the point of the other set that is closest to it; for the surjection distance
ds, one considers all surjections from one set to the other and computes the length
of the elements in the surjection; for the fair surjection distadjgeone additionally
requires that the surjection has to be fair in the sense that it distributes the points as
evenly as possible.

1 Theories are thus not necessarily categorical, and reflect incomplete information about certain facts;
they may leave open several possibilities for the true state of affairs, which is considered to be among
the models.
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While the properties and relationships of these measures have been considered,
their computation was left open. In particular, it was unclear for some of these mea-
sures whether they can be computed efficiently if this is possible for the underlying
distance function on points.

Another interesting issue is an appealing distance function on sets of points which
satisfies the triangle inequality, i.e., a metric on the sets of points. Note that the
distance measures,q, ds, anddis do not satisfy the triangle inequality.

The main results of this paper can be shortly summarized as follows.

— We propose a new measure, tlirsk measured,, which is motivated by some
intuitive problems with the other measures.

— We show that the measurdgyg, ds, dts, andd; can be computed in polynomial
time under very general assumptions. While this is trivialdgg, the algorithms
for the other measures use sophisticated matching and network flow techniques.

— We introduce the metric infimum method, a general construction that produces
for a given distance functiod on sets of points a refinemedt of d which is a
metric and hence satisfies the triangle inequality. The intuition in the construction
is to consider in computing the distance between two Setand S, all possible
sequences of intermediate sets and take the minimum distance obtainable by using
such a sequence. We show that applieditq, ds, dis and d), this construction
produces only two different metrics.

— We present an algorithm for computing the refined link measgirevhich makes
use of standard graph algorithms. This algorithm is not polynomial; we show,
however, that a polynomial algorithm is not likely to exist by proving that com-
puting d’ is NP-hard. On the other hand, our results imply that for a broad class
of instances, computing;’ is NP-easy, i.e., possible in polynomial time with an
oracle for some problem in NP (cf. [8]), and hence not much harder than the
NP-complete problems.

The rest of the paper is organized as follows. After introducing some notation at
the end of the introduction, we review in Sect.2 measures for the distance of point
sets derived from measures of theory distance from [13, 22, 14]. Furthermore, in this
section we define the new minimum link measudreand compatre it to the distance
measuredng, ds, anddss. In Sect. 3 we analyze the structural propertiedHfis, and
dy, which are employed by our algorithms. Section 4 is devoted to the computation
of the distance measurés.q, ds, dts, andd,, for which we describe polynomial time
algorithms. In Sect.5 we provide the metric infimum method and study properties
of the metric produced from a distance function. In Sect.6 we consider computing
the d’ measure and show NP-completeness of the associated decision problem. The
concluding Sect. 7 states some open problems and issues for further work.

We start by defining some notation. We assume tBais finite; however, the
constructions can be carried out also for infinBeunder some conditions. We shall
discuss this issue in Sect.7. Elements Bfare referred to as points. The set of
all nonempty subsets aB is denoted by>;(B). We use a special notation for the
minimum distance of an elementfrom a sets:

Am/('ra S) = minyes A(I, y)

We call each poiny € S such thatA(z,y) = A,,(z, S) a closest point ofS for x.
We further denote by: a functiony : B x &#(B) — B that for all z and nonempty
S yields a closest point of for z, i.e.
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w(x, S) =y, such thaty € S and A(x,y) = A,.(x, 5).

We assume that the reader knows about basic concepts of graph theory (cf. [3, 24])
and NP-completeness (cf. [8]).

Let the union of a family of graphs{G; = (V;, E;) : 1 < i < n} be the graph
(U, Vi, U; E7). The union isdisjoint if V; N V; =0, 1 <i < j < n. In case that
the G; are weighted, i.eG; = (V;, E;, w;), the union (J, V;, U, E;, U, w;) is only
defined if the weight functiot ), w; is well-defined.

We denote bydeg(v, G) the degree of vertex in the graphG. A graphG is
called aline iff it is a tree (i.e. a connected acyclic graph) on 2 vertices, énid
called astar iff it is a tree on> 2 vertices and exactly one vertexhas degree- 1,
which is called thecenterof the star.

In our examples, we use as the baseB3et finite fragment of the integral plane
with, unless stated otherwise, the Manhattan metric, which is defined by

An((21, y1), (2, 92)) = |21 — 22| + |y1 — ¥2|.

2 Distance measures for point sets

In this section, we review some of the distance functions which have been proposed
in the literature. A comparative analysis of these measures, from the viewpoint of

philosophy of science, can be found in [13]. We further propose a new distance

function which overcomes weaknesses of previously suggested distance functions in
some situations.

Hausdorff distance (dn) The Hausdorff distancei;, can be defined using th4,,
notation as
dn(51, 52) = maX{rTé%XAm(ev S2), ”é%XAm(e, S1)}.

This function defines a distance function &§(B), which is a metric ifA is a metric
([4]). The problem of computing the Hausdorff distance between geometric entities
has been considered in the area of computational geometry (see, e.g., [9]).

The problem withd}, is that it is very sensitive to extreme points in the sgts
and S, (see Fig. 1.)

In fact, for every pair of set§; and.S, there are pointg; € S; andx, € S, such
that d, (51, S2) = dn({z1}, {22}) = A(z1, x2). We are looking for a distance measure
that attempts to combine information about the distances between the eleméhts of
and S,. Therefore we do not considdy, in the sequel.

Sum of minimum distances {mg) The sum of minimum distancésnction ding [13]
is defined by

dmd(Sla SZ) = ;— (Z A’m,(€7 S2) + Z A'rn(ea Sl)) .

e€S1 e€Ss

This function takes into account the distances between each element and the other
set.
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Fig. 1. Sets{a, b, ¢,d, e} and{a} are equally distant fror§ f} according to the Hausdorff metric

Surjection distance (s) Oddie [14] suggested defining the distance between two
sets by considering surjections that map the larger set to the smaller set. This leads
to the following distance function:

ds(S1, S») = min Ales, e2),
s(51,52) i Z (e1,€2)

(e1,e2)€n

where the minimum is taken over all surjectiopgrom the larger of the setS; and
S5 to the smaller.

Fair surjection distance (dss) In order to overcome certain unsatisfactory behavior
of the surjection measuré;, Oddie introduced a variant of the surjection measure,
in which admissible surjections must be fair. A surjectiphetweenS; to 5> is fair,

if 7 maps the elements &, as evenly as possible onto the elementsSgfi.e.,
[[n~ @) — [n~ ()| | < 1 for all 2,y € Sz, wheren~(z) = {w : n(w) = z}. Thus,

dis(S1,S2) =min - > | Afes, e2),

(e1,e2)€n’

where the minimum is taken over all surjections.

Link distance (d;) We propose an alternative distance measure between two sets.
Given two setsS1, S2 C B, alinking betweenS; and .S, is a relationR C S; x S,
satisfying

(2) for all e; € Sy there exists, € S, such that €, e2) € R, and

(2) for all e; € S, there exists; € S; such that €1, e;) € R.
The minimum link distancel, between subsetS; and S, is defined by

di(S1, 52) = min > Ales,e),
(e1,e2)ER

where the minimum is taken over all relatioRssuch thatR is a linking betweers;
and S».

2 Oddie [14] actually considered only the version normalized by the size of the larger set.
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For convenience, we adopt the following convention. For any binary relation
R C B x B, thecost ofR, ¢(R), is ¢(R) = Z(el’e JeR A(es, e2). Notice that the cost
of a surjection, a fair surjection, and a linking between satand .S, is implicit by
this definition.

Example 2.1Consider the set§; = {a, b, ¢,e} and S, = {¢,d} in Fig. 2.

Fig. 2. Examples of the distance measures; the distance framb is the unit distance

The distance functiongng, ds, dis andd, evaluate as follows.

dma(S1.52) = ((0+1)+(0+1+1+2)2=5/2
ds(S1,S2) = 5; the surjectiom = {(a,c), (b,¢), (e, ), (c,d) }
is optimal ande(n) =2+1+1+1=5.
dis(S1,S2) = 6; the fair surjectiom’ = {(a, ¢), (b,d), (e,¢), (c,d) }
is optimal ande(’) =2+2+1+1=6.
d(S1,52) = 5; thelinkingL = {(a,c), (b,¢), (e,¢), (c,d)}

is optimal ande(L) =1+1+1+2=5. O

The following proposition is easily derived from the definitions.

Proposition 2.1 Assume that\ is a distance function of8. Thendg, ds, dis, andd;
are distance functions o&j(B). O

For a discussion of the relationships and propertieg.@f ds, anddss, the reader
is referred to [13]. As mentioned above, these functions have been considered for
measuring the distance between logical theories. However, they have also applications
in other contexts.

The minimum distance measure is appealing in many cases. For example, suppose
the distance between two countries with respect to travelling should be determined.
For this purpose, the (possibly normalized) result of dhg function, evaluated on
setsSy, S, of representative cities of the countries seems well apt; it amounts to the
least cost of getting from a city in one country to a closest city in the other country,
and takes account of each possible starting point. The intercity distAntay be
measured in different ways, e.g. in terms of the geographical distance, or by the
cheapest ticket (in this casg, may not be a metric). An example for an application
of the surjection distance measures in the plane is given below.

We argue that the minimum link measure is more appealing than the other mea-
sures in some scenarios. A situation in whighs intuitively more appealing thad;
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Y,

Fig. 3. Situation favoring the minimum link measudg over ds and dss

LA ),

L[] L ]
o o o

(a) (®) (0

Fig. 4a—c.Situation favoring the minimum link measudg over dgmg

or dis is sketched in Fig. 3, wherB is the plane and) is the euclidean distance be-
tween points’ (Notice thatds anddss take the same value as each surjection between
S1 and S; is trivially fair.)

Each pair of the minimum linking betwees$y and S, is represented by a line
between dots. The small value @f seems to represent the intuitive distance between
the point sets better than the larger valuedgf(resp.dis). Note that the value of
ds (resp.dss) increases if the distance between the left and the right group of three
vertices increases, while the valuedfremains the same; this behavior seems to be
more intuitive.

Comparingd, to dmq, We find that the latter acts in a sereeally (or pointwise,
since the distance between sgtsandS; is basically the sum of the distances of each
point in the one set to the other set. On the other hdndgctsglobally (or setwise,
since it aims at minimizing the total distance value rather than the distance value of
each point. In particular, it is possible that an optimal linkibdetweenS; and 5S>
contains a pairdj, ep) such thatA(es, e2) > A, (e1, S2) and A(eq, e2) > A, (e2, S1)

(see Fig. 4b). In some situations, setwise distance is more appropriate than pointwise.

For example, assume that point sets are the sites of organizations, and that an
organization is interested in a working exchange program with another organization
such that mutual connections between sites are established, involving all sites of
both organizations. For example, organizations might be associations of universities
from the same country. Here, th measure is more appropriate for measuring the
geographical distance between the organizations tha.theneasure. An example is
given in Fig. 4. For the situation inu}, d; anddg amount to the connections between
sites as shown inb] and ¢), respectively. The solution inb can be considered
preferable; it seems to correspond more closely with the intuition.

The global operation mode df makes it also appealing for measuring the distance
between logical theories, based on a revision argument. Suppose that as in Sect. 1,
the points of a metric space are interpretations of a logical langudgend that
theories are identified with the sets of their models (i.e., sets of pdiftisg distance
between two theorie$; and .S, can be seen as the “cost” for a believer to change

3 Similar situations can be found for the integral plane and the Manhattan metric.

4 By the assumptions from above, only finitely many interpretations may be in the metric space. For
example, if# is a first-order language over a finite vocabulary, all interpretatiorig o a fixed finite
domain might be included. In particular, a propositiof¥él over a finite set of atoms has only finitely
many interpretations. Such languages are relevant in the area of data and knowledge representation.
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his current view, given by5;, to S». For this purpose, each model # must be
revised to some model if,, and all models ofS; must be covered; it is reasonable
to allow that the same model froh is multiply revised to different models if>
(think of a model inS; which is very close to several models $2; see also Fig. 3),
and that different models if; can be revised to the same modelSn The cost of a
particular revision process is the sum of the distances between each matjehrd

its revisions. Naotice that by inverting each revision sté€pgcan be revised t®; and
thus the cost of revision is symmetric. The least cost for a revision process between
S1 and S, is thus a suggestive value for the distance betwg&eand.S,. However,

this is precisely the value computed by. Notice thatdnq is less appealing for this
application; due to pointwise minimization, this function reflects the cost of revising
one set to a close part of the other set rather than to the whole set.

3 Link graph

We associate with each linking between sets of point§ and S” a graphG(L),
which we call the link graph of.. The link graph is useful for studying structural
properties of linkings.

Assume thatS = {s1,...,s,} and S’ = {s},...,s,,} (note thatS1 N S, # 0 is
possible). LeV; = {v},... o1} andV; = {v2,...,v2} be disjoint sets of vertices. For
every linking L betweenS andS’, G(L) is the undirected bipartite graphi(U V>, E),
where E = {{v},v?} : (s, 5}) € L}.

We note some useful structural properties of the link graph.

Proposition 3.1 For each surjectiom : S — S’, the graphG(») is the disjoint union
of |5’| lines and stars, whose centers are all fréfm

Proof. Each set{v?} U {v} : s; € n7(s})}, where 1< j < m, induces a line or star
in G(n). G(n) is clearly the disjoint union of all these stars and lines

Proposition 3.2 Let L be an optimal linking betweeff and S’. ThenG(L) is the
disjoint union of stars and lines.

Proof. If not, an edge can be removed fra&{L) so that the resulting graph &(L’)
for a linking L’ C L betweenS and.S’, which contradicts optimality of.. O

Thus, for every optimal linking. betweenS and S’, we can imaging=(L) as a
forest of stars and lines. By taking the metrcinto account, the following properties
of the stars in this forest can be derived.

For a disjoint union=(L) of a forest of stars and lines, denote d3y(L) the set of
all centers of the stars @f(L). For example, in Fig. 5 we havet(L) = {v, vi, v2}.

It can be easily seen that for an optimal linkihgeach centet: of a star inG(L)
is connected only to verticeg such thatr corresponds to a closest point 8f(resp.
S’) for y.

Proposition 3.3 Let L be an optimal linking betweesi and S” and let{v?, vf} be an
edge ofG(L). If v} € est(L), then A(si, s5) = Am(s}, S), and if UJZ- € cst(L), then
A(si, 85) = Am(si, 57).

An analogous proposition holds on optimal surjections.
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1 1 1 1 1 1
vy v v3 on Vg Vg
‘\‘ '/./\:\: [ ]
[ ] [ ] [ ]
2 2 2 2 2 2 2 2
v vy U3 Uy Vg Vg vy Vg

Fig. 5. G(L) that is the disjoint union of stars and lines.

Proposition 3.4 If  : S — S’ is an optimal surjection betweesi and S’, then for
eachi andj, 1 <i <n, 1< j < m, such that{v}, v} is an edge of7(n) but not a
line, we haveA(s;, s%) = Ay (si, S').

4 Computing the distance measures

In this section, we investigate computing the distance functions from the previous
section. While it is clear that under suitable assumptions computifagis simple

and efficient, this is not obvious fak, dts, andd;. It turns out that all these distance
functions are computable in polynomial time, however.

4.1 Assumptions, graph matchings, and network flows

We need some assumptions for distance computation first. The input for computing
d(S, S’) consists of the set§ = {s1,...,s,} C BandS ={s},...,s,,} € B, such
thatn > m > 1. Furthermore, we assume that the distance functioon B takes
rational values and can be computed in polynomial ttme.

Our algorithms make use of graph matching and network flow techniques. A
matchingof an undirected weighted gragh= (V, E, w) is a set of edges/ C E such
that for each pair of distinet, ¢/ € M, it holds thatene’ = §); the matchingV/ is called
perfectiff (JM = V. The weight w(M) of M is w(M) = ., w(e). It is well-
known that a perfect matching of minimum weight (hence, by our assumptions, also
its weight) in G can computed in polynomial time (cf. [10]). Specialized algorithms
have been developed for bipartite graphs and for other graph classes.

Proposition 4.1 (cf. [10, p.93,Theorem 14))et G = (V1 U V5, E, w) be a bipartite
weighted graph with nonnegative weights from the reals. Then, a perfect matehing
in G of minimal weight (if it exists) can be computed in time

o( [Va|-|E|-log| V4] )
max (1 log( E|/|VAl)) /-

A network N = (V, E, cap, ¢) is a directed weighted grapW(F, ¢) where each
edgee € E has assigned a capacityp(e) € R*; the second weight functionassigns
a costc(e) to each edge. Let s andt be specified vertices fror. An s-t-flow (or
simply flow, if s andt¢ are understood) oV is a functionf : E U {(z,y) : (y,z) €
E} — R* such that

O

5 This assumption is stricter than necessary, but avoids problems arising if the valdesrefpossibly
difficult to compare to a number or among each other (cf. [7]).
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(i) foreach f,y) € E, 0< f(z,y) < cap(z,y) and f(y,z) = — f(z,y), and
(i7) for eachz # s,t we haved , \p f(x.y) =3, »yer (2, 7).

The first condition states that the flow on an edge is legal and that on a “loop
(z,y), (y, ), the flow must be zero. The second condition states that what flows in,
flows out of every node distinct from andt. The value|f| of flow f is defined as
|f1= 22 mer f(s,2), and the cost(f) of f is defined as(f) = >_. . w(e)f(e).

A maximum flow is any flows such thaf f| is a maximum over all flow values,
and a minimum cost flow of value is any flow f such that|f| = v and ¢(f) is
minimum over the costs of all flows of value Theintegrality theorem for minimum
cost flowsstates the following.

Theorem 4.2 ([24, p. 593) If all capacities in a networkN = (V, E, cap, c¢) are
integers, then there exists a maximum flow which is integral and has minimum cost
(over all maximum flows).

4.2 Computing the surjection distande

First we consider computings for S = {s1,...,s,} and S’ = {s},...,s,,}. We
show that computingls(S, S’) can be reduced to computing the cost of a minimum
weight perfect matching in a graph in polynomial time.

Construct fromS and.S” an complete bipartite weighted gragh= (X UY, E, w)
as follows. Letk = n — m. Let X = {x;,...,2,} andY = U UV, whereU =
{u,...,un} andV = {vy,..., v }. The weight functionw is defined as follows.

(e) = A(siysy)  fore={mju;}, 1<i<n1<j<m;
wie) = A (s, S fore={z;,v;}, 1<i<n,1<j<k.

The link graphG(n) of an optimal surjection is a collection of stars and lines. The
auxiliary verticesy; allow us to obtain from&(n) a graph with a perfect matching:
from each star of7(n), all vertices except one are linked to an auxiliary node.

Figure 6 shows an example of the construction, where {si, sz, s3}, S’ =
{s1,s5}, and the distance functiom\ is assumed to yield the following values:
A(s1,8]) = 1, A(s2,81) = 2, A(ssz,s7) = 6, A(s1,s5) = 5, A(sz,s5) = 7 and
A(ss, sb) = 3. Notice that for a minimum weight perfect matchidg of G, we
havew(M) = 6.

T Z2 z3
A(s,s') st s2 83
sh 1 2 6
sh 5 7 3

uy u2 v1

Fig. 6. GraphG for S = {s1,s2,s3} and S’ = {s/, s,}. The bold edges constitute a minimum weight
perfect matching ot%

Lemma 4.3 Let M be an arbitrary minimum weight perfect matching@fand letr
be an optimal surjection betweehand S’. Thenw(M) = ¢(n).
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Proof. We show first thatv(M) < ¢(n). From an optimal surjection we get a perfect
matchingM’ of G such thatw(M') < ¢(n) as follows. We take all edgese f(;), u; }
such thatf(j) is the least index of any,, in n—l(s;-), and all edgeqz,,,v;} for an
arbitrary enumerationr,,, x4, . .., x4, Of the remainingz vertices.A’ consists of
the following edges:

k

(@) {zsq),u;} for everyj with 1 < j < m, wheref(j) =min{i :s; € n—l(s;-)};
(23) {zg,,v;} foreveryiwith 1 < i < k, where{z,,,..., x5} = X—{zsq), ..., Tsm)}-

It is not hard to see that/’ is indeed a perfect matching i@. Sincew(z;,v;) <
w(z;, uy), for all ¢,7,l with 1 < ¢ <n, 1< 35 <m, and 1< < k, we have that
w(M") < ¢(n); hence, it follows thatv(M) < c(n).

On the other handy(M) > ¢(n) holds. Indeed, from a matching we can define
a surjection;’ : S — S’ as follows. Let for alli with 1 < i < n be

(1) = 8%y ?f {zi,u;} € M;
' wu(s;, S, if {z;,v} € M for somel.

It is easy to see that is well-defined and indeed a surjection, and i{at) = w(M).
Hence, it follows thatv(M) > ¢(n); the result follows. O

Theorem 4.4 The distance functiods is computable in polynomial time.

Proof. Consider setsS and S’. The graphG for S and S’ is clearly constructible

in polynomial time. Since a minimum weight perfect matchiigin G' can be con-

structed in polynomial time, by our assumptian&/) can be computed in polynomial
time. Hence the result follows.Ol

Remark: Since the grap& is bipartite, a minimum weight perfect matching in
G can be computed in tim@(n®) (cf. Proposition 4.1{V;| = n, |E| = n?).

4.3 Computing the fair surjection distandg

Next we show thatlis can be efficiently computed by solving a network flow problem.
Given setsS = {s1,...,s,} and S’ = {s1,...,s,,} with 1 < m < n, we

construct a networkV = (V, E, cap, c) as follows. LetV = X UY U {s,t}, where

X ={z1,...,x,} andY ={y1,...,yn} are disjoint. The set of edgds consists of

four groups of edges with capacitycap(e) and coste(e) as follows. Letcg = [n/m].

(@) (s, x;), for everyi with 1 < i < n, for which cap(s, z;) = 1 ande(s, z;) =0

(#5) (xs,y;), for everys andj with 1 <7 <n, 1 < j < m, for which cap(z;, y;) =1
andc(z;,y;) = A(sq, s/

(7i7) (y;, 1), for everyi Wltf/1 1 < i < m, for which cap(y;,t) = co and c(y;,t) =0
and

(iv) (s,y;), for everyi with 1 < ¢ < m, for which cap(s,y;) = 1 andc(s, y;) = 2

where (2 is an arbitrary real number greater th@i’j A(x;,y;). Figure 7 shows an
example of the construction, whefs S’, and A are as above.

The intuition behindV is as follows. MappingS to S’ corresponds to forwarding
from every vertexz; one unit of flow coming from the sourceto one of the vertices
y;, from which it is transported to the sink The capacity of the edge fromy to ¢
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Fig. 7. Network N for S = {s1,s2,s3}, S’ = {s1,s5}. The flow f assigningcap(e) to the bold edges
and 0 to all others is a minimum cost maximum flow

is restricted so that no more units can be transported than elementsSfican be
mapped tas;. by a fair surjection. The edges fromto they; vertices assure that at
least as many units reag)j from the x; vertices as elements frosi must at least
be mapped tgy; in any fair surjection. Each such edge can transport one unit of
flow, but only at the extremely high co§2. Thus, as few units as necessary will be
transported via such edges in a maximum flow.

It is straightforward to check that for any and S’, a maximums-t flow in N
has valuecom = n + k, where

I = 0, if n=4-m, for some integei > 0
“ 1 m—(nmodm), otherwise

In a maximum flow of minimum cost exactly units are transported from directly

to they; vertices and all other units via the vertices, such that the flow corresponds
to an optimal fair surjection betwee$ and.S’. Since all capacities are integers, the
integrality theorem for minimum cost flows asserts that an integral maxistiffow

f of minimum cost onV exists. Clearly, each € F with cap(e) = 1 has inf value

0 or 1, i.e.,cap(e). It can be easily seen that jfevery other edge also has value
0 or cap(e).

For an example, consider Fig.7. Thekez= 1. The cost of the flowf is ¢(f) =
6+12. On the other handy = { (s1, 1), (s2, s7), (s3, s5) } is an optimal fair surjection
betweenS and S’ with ¢(n) = 6.

The next lemma states that the construction works correctly.

Lemma 4.5 Let f be a maximuns-¢ flow of minimum cost oV and letn be an
optimal fair surjection betweef and S’. Thenc(f) = c(n) + k2.

Proof. First observe that a surjection betweenS and S’ is fair if and only if
[n/m) < [n~X(s})| < [n/m] for everyj, 1< j <m.

We show thate(f) > c(n) + k£2. By the integrality theorem for minimum cost
flows, we can assume thgtis integral. As easily seerf, assigns 1 to exactly edges
from (s, 1), --., (s,ym), to all edges {, z;), where 1< ¢ < n, and to exactly one
of the edges«;, y1), ... ,(zi, ym) fOr everyi with 1 < i < m; let (z;, yqq)) be this
edge.
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Define the mapping : S — S’ by ((s;) = sy;), for everyi with 1 <i < n. We
show that( is a fair surjection betweef and S’. Assume this does not hold. Then,
there must exist g with 1 < j < m, such thatf assigns 1 to fewer thary — 1
edges from%1,y;), . . ..(zn, y,;) and O to the others. The flow vallig| = com implies
that co units reachy;, i.e. Z(w]_)eE f(z,y;) = co. Note thaty; is reachable by an
edge only fromzq, ..., z, ands. Since each of these edges has capacity 1, it follows
that no more tharp — 1 units reachy;, which is a contradiction. Thug is a fair
surjection. It is easy to check thaff) = ¢(¢) + k12.

Sincen is an optimal fair surjection, we thus have théf) > c(n) + k£2.

Now we show that(f) < ¢(n) + kf2. We construct from a fair surjectiopa flow
fn on networkN as follows.

co, If e =(y;,t) where 1< j <m;
1, if e=(s,z;) where 1< i <n,
fa(e) = or e = (s, y;) where 1< j < m is such thafn~(s})| < co,
or e = (x4, Yn(s,)) Where 1< ¢ < n;
0, otherwise

Clearly, f,, is ans-t flow of value com and hence maximum. As readily checked,
c(fy) = c(n) + kS2. Thus we get that(f) < c(n) + kf2. The result follows. O

Theorem 4.6 The functiondss is computable in polynomial time.

Proof. Consider set$ and.S’. The networkN can be easily constructed frofhand
S’ in polynomial time. Since all capacities are integer, a minimum integtaflow
of valuev = cgm on N is computable in time

O(ven(logny)/ max{loglen /nn),1}), nx =|V],en = |E|
[10, p. 92, Theorem 13]. The result followsO

4.4 Computing the link distancg

It remains to show that the link distance functidnis computable in polynomial
time. As in the case ofs, we reduce this problem to a perfect matching problem.
Let againS = {s1,..., s, andS’ = {s7,..., s, }. We define a complete bipartite
weighted graphG = (AU B, E, w) as follows: A ={ay,...,an}t, B={b1,...,bm},
and for each edge = {a;,b;} of G, w(e) = A(s;, s}). Intuitively, G is a graph in
which eachs; € S (resp.s; € S') is connected to every; (resp.s;) at the cost of
the distanceA(s;, s}). Let G’ be a zero-weight copy dF, i.e.,G' = (A'UB’, ', w’)
is a complete bipartite weighted graph whete= {d},...,al}, B’ = {b},...,0,},
(AuB)N(A'UB’) =0, andw’(e) = 0 for each edge. From G and G’ we define
the graphG” by taking the union of7 and G’ and connecting every; andb; to a
andb’;, respectively, by weight equal to its nearest neighbafirThat is,

G// - (V// E// w//)

where
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V" = AUAUBUBRB,
E" = EUE/U{{ai,a'i}, {bj,b;-}:aiEA,bj EB},
w(e), fore € E;
W'(e) = w'(e), for e € E;

Ap(si, S, fore={a;,al}, 1<i<mn;
Ap(s;, S), fore={b;,b}, 1<j<m.

Figure 8 shows an example of the constructi&ns’, and A are as above. The set of

Fig. 8. The graphG” for S = {s1, s2, 53}, S’ = {s], s5}. The bold edges constitute a minimum weight
perfect matching

edges outlined in bold face constitute a perfect matcdih@f minimum weight; M
has valuew(M) = 6. Notice that the link measure betwegrand S’ amounts to the
same value: the linkind, = {(s1, 1), (s2, s1), (s3, s5)} is an optimal linking between
S and S’ with costc(L) = 6.

Lemma 4.7 Let L be an optimal linking betweefi and S’, and letA be a minimum
weight perfect matching i6?”’. Thenc(L) = w(M).

Proof. We first show thatw(M) < ¢(L). We get fromL a perfect matchingl/’ in
G" whose weight is equal to the cost &fas follows. Let the centers of the stars
of G(L) becst(L) ={y1,-..,yr}, and letzq, ..., x, be arbitrary vertices frond(L)
such thatz; is connected by an edge tg, for all i = 1,..., k. Then, define thai/’
consists of the following edges:

(i) {ai,b;} and{aj, b}, for all edges{v}, v7} of G(L) suchthaby, v? & {x1,..., 21}
(#) {as,al}, for everyi =1 ... n such thaw! € {z1,...,24};

(iii) {b;,b’}, for everyj =1,...,m such that? € {z1,...,z;}.

By Proposition 3.2(G(L) is the disjoint union of stars and lines. Hence, it is not hard
to see that\/’ is a perfect matching iG"’. Moreover, by the construction @ and
the definition ofM’, it follows immediately from Proposition 3.3 that(M') = c(L).
It follows thatw(M) < ¢(L).

Now we show that alsa (M) > ¢(L). From M we can get a linkingl’ between
S and S’ whose cost is equal te(M) as follows. Define thaf.’ contains all pairs
(vi,v5), for eachi = 1,...,n andj = 1...,m, such that one of the following
conditions is satisfied:

(1) {ai,b;} € M;
(#9) {ai,a;} € M ands) = pu(s;, S") (s from S” is closest tos;);
(#79) {b;,b;} € M ands; = u(s’;, S).
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Since M is a perfect matching i, it is easy to see that’ is indeed a linking
betweenS and S’, and thatc(L’) = w(M). Hence, it follows that(L) < w(M). The
result follows. O

We remark that a modified version of the graH provides another possibility
for computing the surjection measure. In fact, if all edges v} are removed from
G", then the perfect matchings in the resulting grdpH correspond to surjections
betweenS and S’, and the cost of a minimum weight perfect matching{ equals
the cost of an optimal surjection betwesSnand S’. However,G"’ is more complex
than the graphz in Sect. 4.2, on which a perfect matching algorithm is expected to
perform better in general.

Theorem 4.8 The distance functiod, is computable in polynomial time.

Proof. Consider setsS and S’. The graphG” for S and S” can be constructed
in polynomial time. A minimum cost perfect matching (®’ can be computed in
polynomial time, cf. [10]; hence the result followsO

The graphG” is bipartite by the partition of the vertex sets constituted4dsy B’
and A’ U B. Therefore, a minimum cost perfect matchingGfi can be computed in
time

0] (n.m.(n +m)-log(n +m)-(1/ max(1 log 2n-1:::;+ m)))

(cf. Proposition 4.1{V1| =n +m, |E| = 2nm + n +m).

Let us remark at the end of this section that in casds a metric onB, the
efficiency of the proposed algorithms might be improved by using metric matching
techniques (cf. [23]). The network flow and matching problems constructed in this
section involve additional vertices to which the underlying metric spaatoes not
extend; thus, the constructions would have to be suitably adapted. Notice that the
main goal of this section is showing that certain distance functions are computable in
polynomial time and not intractable. We confined ourselves for this purpose to using
standard methods.

5 From distance functions to metrics

In certain contexts, it is natural or desired that a measure of distance between point
sets is a metric, i.e., it satisfies the postulates of a distance function and in addition
the triangle inequality.

For example, suppose that the amount of work that has to be done to change a set
into another should be reflected in the interdistance value attached to these point sets;
for a concrete instance, assume that the points are strings. In this case, the triangle
inequality is a reasonable postulate for a suitable distance measure, since changing a
set S into a setS, is not more expensive than the sum of changigto S3 and
changingSs into S,.

Each of the distance functions between two sets defined in the previous section,
dmd, ds, dis, @andd,, fails to satisfy the triangle inequality, as shown by the following
example.
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ae

be °
d

ce

Fig. 9. Violations of the triangle inequalitySy = {a, ¢}, S2 = {d}, S3 = {b})

Example 5.1Consider 51 = {a,c}, S» = {d}, and S3 = {b} in Fig.9. Then
dmd(Sl,Sz) = 6/2 = 3, dmd(Sl,Sg) = 3/2 and dmd(SQ,,Sg) = 2/2 = 1; hence,
dmd(S1, S3) + dmd(S3, S2) = 5/2 < dmd(S1, S2), i.e., the triangle inequality fails. The
same applies to the other distance functidps for everya € {s, fs,1}, for which
we haveda(Sl, 52) =4, da(S]_, 53) =2, andda(Sg, Sz) =15 O

In this section we describe a simple construction that produces from a distance
function a metric which has certain appealing properties. More precisely, given an
arbitrary distance function : Z4(B)?> — R*, where B is finite, the construction
produces a metrid“ on &4(B). For the distance functiongyq, ds, dis, andd, the
respective metrics coincide on singletons with the mettrion B.

Call any finite sequenc® = (P, P, ..., P,,), wherem > 2 andP; C B, for all
1 with 1 < i < m, apath betweer; and P,,; the length of the path ism. We use
P(S,S) to denote the set of all paths betwegrand S’. The concatenation of paths
P=(P,...,Py,) and P’ = (P,,...,P,) is the pathPP’' = (P4, ..., P,). The cost
cq(P) of P under a distance functios is defined bycy(P) = Z?il_ld(Pi, Pi). A
path P € P(S,S’) is calledoptimal underd (or d-optimal) iff c4(P) = min{cq(P’) :

P’ e P(S,S")}.
Define the functiond” : 4(B)?> — R* by

d“(8, ") = min{cq(P) : P € P(S, )}

We observe thatl¥ has the following appealing properties. Let the functighs
S(B) x F(B) — R* (R* are the nonnegative reals) be partially orderedfby g
iff f(S1,52) < g(S1,52) for all Sy, Ss.

Theorem 5.1 Letd be a distance function o&(B), whereB is finite. Then,

(a) dv defines a metric on/(B).
(b) d“ is the unique maximum of the distance functighs =4(B)?> — R* which
satisfy

(5,5) = min(d(S, §'), min(f (S, 5") + f(5", ) 1)

(c) d“ is the unique maximum metric functign =4(B)?> — R* with f < d.

Proof. It is easy to see that” is symmetric and thai“(S,S’) =0 iff S =5’, hence
d“ is a distance function. Moreover, from the definition &f it follows that the
triangle inequality holds; hence (a) follows.

It is easy to see that“ satisfies Equation 1. We show th&tS, S’) < d“(S, S")
by induction on the length of the shortetbptimal path fi,..., P,) € P(S,S").

6 More complex examples show the failure of the triangle inequality for the versions of the measures
from normalization by the size of the larger set.
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If m =2, thend“(S,5’) = d(S,S’) and f(S,S") < d¥(S,S") holds. If m > 2, then
d“(S,S’) =d(S, P,) +d“(P,S"), hence by the induction hypothesis and Equation 1,
d“(S,5") > f(S,P) + f(P,S") > f(S,S5"), and the statement holds. Consequently,
f < d¥ andd¥ is a uniqgue maximum of the distance functions satisfying (1); thus
(b) holds.

It remains to consider (c). Assumg is a metric such thaif < d and that
d“(S,S") < f(S,S’) for someS and S’. Now d¥(S,S’) = ZZfl d(P;, Piy1) for
somed-optimal path P4, ..., P,,) € P(S,S5’). By the triangle inequalityf(S, S") <
St (P, Piva) and by assumptioff(P;, Pivi) < d(P;, Pie) for 1 < i < m, thus
we getf(S,S5’) < d“(S,S’), a contradiction. O

In the light of Theorem 5.1(c), we refer t¥ as themetric infimumof d.

Recall that our motivation was to extend a distance functioon B to #4(B) so
that A({z}, {y}) = A(z, y). Thus, if we want this distance function to be a metrc,
must be a metric o. If this is the case, then each of the metric infima of the distance
functionsdmq, ds, dis, @andd, in Sect. 2 satisfies the properdy ({z}, {y}) = A(z, y).

Proposition 5.2 Letd andd, be distance functions owj(B) such thatl, < d and for

all z,y € B,d({z},{y}) = Alz,y) andd; ({z}, {y}) = Az, y). Thend“({z}, {y}) =
A(zx,y) forall z,y € B.”

Proof. From d, < d it follows easily thatdy < d“. Sinced“({z}, {y}) = A(z,y),
we haveA(z,y) < d“({z}, {y}). On the other hand, sina&{z}, {y}) = A(z,y), it
follows (cf. Theorem 5.1(b)) that*({z}, {y}) < A(z,y). The result follows. O

Corollary 5.3 Assume that the distance functigh satisfies the triangle inequality,
i.e., A is a metric onB. Then, for eachv € {md, s, fs,l}, we haved“({z},{y}) =
Az, y) for all x,y € B.

Proof. Choose the Hausdorff distandg for d, (note thatdy’ = dyn) andd,, ford. O

Let us have a closer look at the properties of differénimeasures. Interestingly,
the metric infima of the distance functiods, dss, d; collapse to a single function.

Theorem 5.4 dy = d¥, = dy.

Proof. Clearly, df < dy < d%,. (Every surjection betweety’ and S’ is a linking
betweenS and S’).

Notice that in order to showly < dg, it suffices to show that for als =
{51, sn} @and 8" = {s],...,s7,,} where 1< m < n anddg(S, S") = d5(S, S"),
there exists a pat? = (P, ..., Py,) € P(S,S’) such thatey_ (P) < dg(S, S").

The claimd? < dy is shown as follows. Lef. be an optimal linking betweefi
and S’ such thate(L) = d7(S, S’). The idea is that a linking can be represented by
two surjections. We define fromh the surjections)s : S — R andng : S’ — R 10
an intermediate seR. This set contains elements §fand S’ corresponding to the
centers of stars of/(L) and the endpoints i, of lines of G(L), i.e.,

R ={s; : v} € cst(L)NVy or deg(v}, G(L)) = 1} U {s; : sz_ € cst(L) N Va}.

7 This proposition can be generalized by replaci@:}, {y}) = Az, y) andd¥ ({z}, {y}) = Az, y)’
with the weaker conditiond({z}, {y}) < A(z,y) andd¥({z}, {y}) > A(z,y)".
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The surjectionns will map the elements of' that belong to a line of7(L) or to
a S’-star of G(L) to the unique element they are linked By Similarly, ns: maps
members ofS’ that belong to lines of-stars ofG(L) to the unique elemenkt links
them with. Formally, for alk andj with 1 < i <n, 1< j <m,

s, if v} isin a star ofG(L) with centerv?,
ns(s;) = or if {v},v2} is a line of G(L);

s;, otherwise

sk, if v%is in a star ofG(L) with centeruy,
ns(sh) = { or if {vy,v%} is a line of G(L);

s, otherwise

Thenns andngs are surjections which satisfy(ng) + c(ns:) = ¢(L). Consequently,
cq, (S, R, S") < (L) = dy'(S,S"). It follows thatdy < dy.

The fact thatd}, < d7 can be shown similarly. The intuition is that a surjection
can be decomposed into a sequence of surjections between sets whose cardinality
differs only by one. Such surjections will be necessarily fair. Assumertha — S’
is an optimal fair surjection betwee$i and S’ and thatds(S, S”) = d¥(S,S’). We
show by induction on the numbér of stars and lines o7(L), that there exists a
pathP = (Py,...,P.) € P(S,S5) such that O< |P;| — |Pi+1| < 1,1< i < r, and
cay(P) < ds(S, §).

If £ =1, thenm = 1, i.e. G(n) consists merely of one line or one star. The
sequence) = (Q1, . .., Qn+1), WhereQ = S and@; = Q;—1 — {s;—1} U {s1}, for all
1 with 2 < ¢ < n + 1, satisfies the properties &f. Indeed,Q € P(S, S’), and clearly
0<|Qi] — |Qina| <1, foralli, 1< i < n.Definen; : Q; — Qi1, 1<i <n, by

_J &, ifz=s;
niz) = { z, fxe@;—{s}

Eachr; is a fair surjection, and_'-, c(1;) = c(n); hence,cq, (Q) < ds(S, S’). Thus
the statement holds fdr = 1.
Now consider the casé > 1. Let S; = S —n~*(s}) and S; = " — {s}}.
We construct a sequence of fair surjections that will ultimately lihland S’ by
first decomposing an optimal surjection 9f1(S;) to {s;} into a sequence of fair
surjections (by the induction hypothesis). This sequence is extended to a sequence of
fair surjections betwees and.S; U {s}}. The induction assumption is again applied,
and we get a sequence of fair surjections fr8pu {s}} to S’. Formally, denote by
n[X] the restriction ofy to X. We note first that

ds(n(s1), {s1}) = &< (0~ (s, {51}) = clnln~*(sD)])
and
ds(S1, S1) = d3(S1, S1) = c(n[S1l)

must hold by the assumptiods(S,S’) = d¥(S,S’). Let P = (P,...,P)) €
P(n~Y(s)), {s1}) and P" = (Pi’,...,Pt") € P(51,57) of the properties assured by
the induction hypothesis on*(s7), {s1} and Sy, S, respectively. Let

Q/ = (S]_UP{,...,S]_UPQ),

Q" (P U{s1},..., P U{st)).
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Note thatS, U P{ = S and S1 U P, = P/’ U {s1}. Hence,Q = Q'Q" is a path in
P(S,S") and
ca(@) = ca (@) +ca(Q")
< ds(n”H(s), {51)) + ds(S1, S1)
ctnlnHsDD + c(lSa]) = ds(S, ).
Clearly () also satisfies the remaining property Bfin the statement fo and S".

Hence, the statement holds 6hS’. It follows thatds, < d¥.
The proposition follows fromi;’ < d¥ < d;’s an d;’s <dye <dy. O

N

One can find instances for whialy # 4= ,, however. For an example, consider
the setsS; = {00}, S, = {01, 11}, S; = {11}, S, = {01} in Fig. 10. Here it is assumed
that B consists of the four binary strings 00, 01, 10, and 11 whose distdriseheir
Hamming distance.

10

11
° . /@Q
5 ® @y
00 01

Fig. 10. Example showing thad , 7 d}’

Then, dy’(S1, S2) = d’(S1, S3) = 2. However, for the minimum distance measure
we haved, ,(S1,53) = 2, butd® ,(S1,52) < 3/2, since one can go from> to Sy
by first going toS, and then taS;; we havednq(S2, S4) = 1/2. This example shows
that the behavior of thd;’ measure is more natural than that of tfj¢, measure (at
least in some situations). For this reason, we consider in the next section only the
computation of thel; measure.

6 Computing the d;’ measure

Now let us consider the computational properties ofdfieneasure. A simple result
is that under some general assumptions on the computational propertiearaf B,
the ¢’ measure is computable.

Proposition 6.1 Assume that\ is computable and tha® is computable, i.e., all points
of B can be effectively generated in finite time. Tlknis computable.

Proof. Computed;’ by cycling through all paths of length at mosfRand take the
minimum of their costs. O

Computingdy’ appears to be more complex than computingWe will show in
this section that computing’ is NP-hard for a simple — and quite natural — instance.
However, the associated recognition problem is in NP under very general conditions,
which entails that computingy’ is not much harder than the NP-complete problems.
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6.1 Steiner forests and paths between sets

We need additional concepts. L&t be a nonempty subset d®. A weighted tree
T = (V, E,w) such thatV C B andw coincides withA is a Steiner tree forS if
S C V; T is calledoptimal iff the weightw(T") is minimum over the weights of all
Steiner trees fof.

We generalize Steiner trees as followsSkeiner forest forS;, S, C B is a family
7 ={T; : 1< i<k} of pairwise disjoint weighted tre€g; = (V;, F;, w;) such that
Vi € B andw; coincides withA for all ¢ with 1 <4 <k, andS1 US> C |J,; Vi and
S;NV; #0, fori=1,2and allj with 1 < j < k. The weightw(.7) of .7 is defined
as the weight of the graph that is the union of all treeszin .7 is optimal iff its
weight is minimum over all Steiner forests 84 and S5.

Note that if.7 = {T'}, then.”7 is a Steiner forest fo§ and .S’ iff T is a Steiner
tree for S U S’. In particular, if S’ = {z} andz € S, then.7 is optimal iff T is
optimal. The following holds for an optimal Steiner forest in the general case.

Proposition 6.2 Let.”7 be an optimal Steiner forest fé, S’. Then eacll” = (V, E) €
.7 is an optimal Steiner tree for N (S U S’).

Concerning the relation between Steiner forests and paths between sets, our first
observation is that the cost of a path between Setnd S’ is an upper bound for
the weight of an optimal Steiner forest f6rand S"’.

Lemma 6.3 Let P = (P,..., P,) € P(S,S’) be ad,-optimal path and letZZ be an
optimal Steiner forest fo6, S’. Thenw(7) < ¢q4 (P).

Proof. (Sketch) Take an arbitrary sequente. .., L,,_1 of linkings L; betweenP;

an P, and consider the undirected graphwhose edges correspond to the links
in all L;. Each connected component@hcontains one point frony and one from
S’. Thus any forest of spanning trees for the connected compone6tssia Steiner
forest for S, .S’. It follows w(7) < ¢q4(P). O

Conversely, our next considerations show that the weight of an optimal Steiner
forest for.S, S’ is an upper bound for the cost of any path betw&eand S’ under
d,. Consequently, the cost of&-optimal path betweers and S’ equals the weight
of an optimal Steiner forest fa§, S”.

6.2 Computing a path from a Steiner Tree

Given a Steiner tre@ = (V, E,w) for SUS’ C B, S, S’ # 0, such that all its leaves,

i.e. vertices of degree 1 are FU.S’, the algorithmpath in Table 1 constructs a path

P € P(S,S") such that,, (P) < w(T). The intuitive idea is that each step in the path
takes one edge of the Steiner tree. We first do steps that remove each leaf of the tree
that is in.S. Then we select an arbitrary vertexand an edge starting from that, and
produce a next set on the path that in essence takes care of that edge.

Proposition 6.4 path (S, S’,T) computesP = (P4, ..., P,) such thatP € P(S,S’)
andcg (P) < w(T).

Proof. (Sketch) It is not hard to see that the fivghile terminates (since the number
of edges inT' decreases in each iteration), and one can show that upon termination
T is a tree such that all its leaves areSh After this, we clearly haveP,, # 0. The
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Table 1. Algorithm for computing fromT" a path betweei$ and .S’

Algorithm path (S, S*, T)
input: Steiner treel’ = (V, E,w) for SU S’ C B,
S, S’ # 0, whose leaves are if U S’.
output: P =(Py,...,Pp) € P(S,5) with ¢g (P) < w(T).
/* Phase 1: move along edges of leaf nodes xz ¢S *
PL:=S,m:=1,
while T has a leafr ¢ S’ with an edge toy do
begin
P = P \{z) U{y}; m=m+1; /* Link  z to y *
removezx from T,
end; /* All leaves of T are in S’ now */
/* Phase 2: move towards S’, and keep the reached nodes in R *
setR := {z} for anyz € Pn;
while E # § do begin
select anr € R with an edge tay; R := RU{y};
if z ¢ S’ andz is a leaf ofT" then
Pot1 = (P \{z}) U {y}; /* Link =z to y *
else P+ := PU{y}; /* Link =z to =z (cost 0) and y ¥
m:=m+1;, remove edggz,y} from T
end; /* Pp,=5" now *
if m =1 then output(Py, P;) else outpu(Px, ..., Pn);

vertex x selected fromP,, serves as the root node of the remaining tfeewhose
edges are removed one by one in the iterations of the sewsbile. An edge{z,y}
can be removed only i € R, which holds after all edges on the path from the root
to x have been removed. The secontlile terminates, again since the number of
edges inT' decreases in each iteration. Upon terminatify, = S’ holds. Clearly,

m =|E|+ 1. Itis easily checked that = 1 iff S =.5"={v} andT = ({v}, 0, w) for
somew, hencew(T) = 0. If m > 1, then for each with 1 < i < m there exists a
linking L; betweenP; and P,.; such thate(L;) = A(x,y), where{z,y} is the edge
that has been removed frofii when constructing?;+1. Consequentlypath outputs

on inputS, S” a pathP € P(S,S’) such thatey (P) < w(T). O

Lemma 6.5 Let.7 ={T; = (V;, E;,w;) : 1 <14 < k} be an optimal Steiner forest for
S, S’. Then there exists a path € P(S, S’) such thatcy (P) < w(.7).

Proof. (Sketch) This can be shown by induction dnFor k£ = 1, this follows from
Proposition 6.4. In the general case, one can construct such a path by first going from
SNV to S’ N Vi while keeping the points id — V7 fixed, after that going from
SNV, to SN VY while keeping the points i5’ N'V; and.S — (V1 U V5) fixed and so

on. The resulting path has cast(P) < w(¥). O

Theorem 6.6 Let .7 be an optimal Steiner forest fa¥, S’ C B. Thenw(%) =
dy (s, s").

Proof. Follows immediately from Lemmas 6.3 and 6.5
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6.3 An algorithm for computing;’ and its complexity

The structural result in Theorem 6.6, combined with Proposition 6.2 is exploited first
by the algorithmdinflink in Table 2. The subroutinsteiner(S, B) called by this
algorithm returns the weight of an optimal Steiner tree Soin B.

Table 2. Algorithm for computingd;’

Algorithm dinflink (S, S")
input: S,S8" C B, with 1< |S| < |57
output: ay(s, s’).
d:=o0; [* upper bound on  dy(S,S’) *
for each partitioning Bi,..., By of SU S’ such thatl < k < |S|
and B;NS#0,B,NS #0for 1<:<kdo

begin I* Zl w(T;) of optimal Steiner trees T; for B; is >dy(S,8) *
w =0
for i =1to k do w := w + steinen(B;, B);
d := min(d, w);
end;
I* d has the cost of an optimal Steiner forest for S, 8" *
output(d);

Proposition 6.7 dinflink computes!’ correctly.

The generation of alBy, . . ., By, for eachk, causes exponential cost dihflink .
However, as we will show, even if there is only one possible choice, computing
can be an NP-hard problerdinflink reflects this by calls ofteiner for NP-hard
instances.

On the other hand, under very general conditions computjnds not “much
harder” than the NP-complete problems, as one can show using the Steiner forest
characterization. Recall that our motivation for definifjywas to extend a distance
measure omB to a metric on=j(B), which is only possible ifA is a metric onB.

In this case, the following holds on optimal Steiner trees.

Lemma 6.8 cf. [7] Let.S C B be a nonempty subset 8f If A is a metric, then there
exists an optimal Steiner tré®’, F, w) for S such thafV| < 2|S| — 2.

Theorem 6.9 Assume that each element Bfcan be represented in polynomial size
and time with respect to the size of the inputdtq and thatA is a metric® Then
decidingdy’ (S, S") < b, whereb is a rational number, is in NP.

Proof. Let.7 = {T; = (V;, E;,w;) : 1 < i < k} be an optimal Steiner forest fét, S’.
Then, k < min(S|,|S’]). SinceT; is an optimal Steiner tree fof; = V; N (S U .5’)
and A is a metric, by Lemma 6.8 we havV¥;| < 2|5;| — 2 for eachi with 1 <7 < k.
Hence, the number of vertices .ix , n,, is bounded by

8 Without this assumption o, the result may not hold. E.g., i consists of all Boolean formulas
(likewise, first-order formulas, or treed) of depth< n on a given vocabulary, then the size dfis
not necessarily polynomial in or the size of other such formulas and ;.
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k k
ny = || JVil <2 (18 -2 =250 8| -2k <2[SUS'| -2
=1 =1

Consequently, from Theorem 6.6 it follows th&t(S, S”) < b iff there exists a Steiner
forest.7 ' for S andS’ on at mostn,, vertices. By our assumptions, the instance size
of 7' is bounded by a polynomial in the input size. Hence, guessfrigcomputing
w(.7 "), and comparing this value tipis possible in polynomial time.

Corollary 6.10 Computingd;’ (S, S’) in the setting of Theorem 6.9 is NP-easy.

Proof. d¢’(S,S’) can be computed with an oracle for decididg(s,S’) < b in
polynomial time, by doing a binary search over the range of possible valtes.

Notice that Theorem 6.9 and Corollary 6.10 generalize from metkits distance
functions under which the instance size of an optimal Steiner forest fand S’ is
bounded by a polynomial in the input size.

It is easy to see that computirfy is NP-hard even for simple cases.

Theorem 6.11 Deciding whethew;’ (S, S”) < b is NP-hard for subsets, S” of the
Euclidean integral plane with Manhattan metric and for integers

Proof. This is shown by a reduction of theEOMETRIC STEINER TREEproblem 6s)
[8] in the integral plane under the Manhattan (rectilinear) mettig;. GST is as
follows: Given a finite setP = {ps,...,p,} of points in the integral plane and an
integera, decide whether there exists unddn, a Steiner tre€l’ for P such that
w(T") < a. This problem is known to be NP-hard in the strong sense, i.e. even if all
numbers are represented in unary notation [8]. It is easy to see that we may assume
that in P only nonnegative coordinate values occur.

Now it suffices to note that there exists a Steiner ffefer P such thatw(T) < b
if and only if (P, {p1}) <b. O

7 Conclusion

We have considered the problem of extending a distance function (or even metric)
between points to a distance function or metric between point sets. We have investi-
gated different approaches for this, and have analyzed the computational complexity
of the resulting functions.

In our analysis, we assumed that the underlying set of p@ritsfinite. However,
in many cases3 might be infinite. Under certain conditions, the results from above
can be extended to this case as well. The functifns ds, dis, andd; work well on
finite subsets o3, but might not converge to a real number if one of the arguments is
infinite; it is not straightforward how to overcome this problem. The funciftrfirom
Sect. 5, appropriately adapted by taking f8r.§’) the infimum of{c,(P) : P(S,S")}
rather than the minimum (which need not exist), yields a metric also for infigite
provided that no sequence of patR$, P?, ... between two different setS and S’
exists whose costgPY), c(P?), ... converge to 0. In particular, Theorem 5.1 remains
true in this case, and the metric infima &f, dis andd; on the finite subsets aB
collapse. An important fact is, however, th#t(S,.S’) may no longer take the cost
of some optimal path betweefrand S’, but rather the limit of the cost values of an
infinite sequence of paths. This makes exact computation difficult if not impossible.
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However, given e.g. that every s€thas for every constarnt> O only finitely many
sets S’ with d(S,S’) < ¢ and thatd(S, S") > « for some constantt > 0 whenever
S and S’ are different, theni (S, S') takes the cost value of an optimal pattiThis
applies e.g. to the integral plane under a number of distance funcfiams finite
point sets from above.) Under this assertion, the computatialt (§, S) reduces to
a finite subsetB’ of B. For example, the computation d@f'(S,.S’) in the integral
plane trivially reduces taB’ which contains only points: that are within distance
d) (S, S") to some pointinSUS’. The algorithms in Sect. 6 can thus be readily applied.
Besides proper extensions of the above distance functions to infinite point sets,
several open problems remain.
We know thatdn, d’, andd?, ;, are not equivalent, but it is not quite clear what the
properties of these metrics really are. Also, it would be interesting to know whether
dy or dv,, can be approximated in polynomial time with reasonable performance

md

bounds.
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