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Abstract. We consider the problem of measuring the similarity or distance between
two finite sets of points in a metric space, and computing the measure. This problem
has applications in, e.g., computational geometry, philosophy of science, updating or
changing theories, and machine learning. We review some of the distance functions
proposed in the literature, among them the minimum distance link measure, the surjec-
tion measure, and the fair surjection measure, and supply polynomial time algorithms
for the computation of these measures. Furthermore, we introduce the minimum link
measure, a new distance function which is more appealing than the other distance
functions mentioned. We also present a polynomial time algorithm for computing this
new measure.

We further address the issue of defining a metric on point sets. We present the
metric infimum method that constructs a metric from any distance functions on point
sets. In particular, the metric infimum of the minimum link measure is a quite intuitive.
The computation of this measure is shown to be in NP for a broad class of instances;
it is NP-hard for a natural problem class.

1 Introduction

A function d : B × B → <+ is a metric on a nonempty setB, if for all x, y, z ∈ B
we have

1 d(x, y) = 0 if and only if x = y;
2 d(x, y) = d(y, x)
3 d(x, z) ≤ d(x, y) + d(y, z).

The functiond is a distance functionon B, if it satisfies (1) and (2).
In this paper we consider the following questions. (1) How can a distance function

(or even metric)∆ on B be extended to a distance function or a metricd on the
collection of all nonempty (finite) subsets ofB? The extension condition we require
is that for singletons,d agrees with∆, that is,d({x}, {y}) = ∆(x, y) for all x and
y from B. (2) Algorithms for computing such extensions, which run in polynomial
time if possible.
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Questions of this type arise in several areas, such as cluster analysis [2, 20],
computational geometry [1], philosophy of science [17, 18, 13, 15], updating and
revising theories [6, 25], arbitration between theories [19], and machine learning
[12, 11, 26].

The best-known metric between subsets of a metric space is the Hausdorff metric,
defined as

dh(S1, S2) = max{max
e∈S1

min
f∈S2

∆(e, f ),max
e∈S2

min
f∈S1

∆(e, f )}.

This metric is trivially computable in polynomial time, and it has some quite attractive
properties. Unfortunately, it is not very well suited for some applications. The reason
is that the Hausdorff distance does not take into account the overall structure of the
point sets (see Fig. 1).

Several alternative distance functions between subsets have been proposed in phi-
losophy of science [13], for the objective of measuring the distance between theories
in a logical languageL . Here, the points of the metric space are the interpreta-
tions ofL , whose distance is measured by some metric∆; for propositionalL , the
Hamming distance between interpretations (i.e., the number of atoms on which they
are different) is a natural choice. Each theory inL is identified with the set of its
models, which thus is a set of points in the metric space.1 This way, measuring the
distance between two theories is abstracted to measuring the distance between two
sets of points in a metric space. In the particular case where one theory describes
categorically TRUTH (i.e., the true state of affairs), the distance value is taken for
a quantitative extent of the truthlikeness of the other theory. Notice that measuring
theory distance in this setting has suggestive applications for theory revision (change
a theory into the closest possible one that meets the revision) and arbitration between
theories.

An example can be drawn from the court domain (cf. [19]). Suppose that in a
trial two testimonies (which can be represented as theories) are very similar while a
third is much different. Given that the witnesses are independent of each other, the
belief of the jury in the reliability of the third testimony will naturally decrease with
growing distance to the other testimonies.

Another use of such distance functions between subsets is in the new area of
knowledge discovery in databases [5, 16], where one often has to choose between or
form clusters from different rules discovered from the data. The rules can be identified
with the data points to which they apply, and then rule distance can be computed by
using a distance function for subsets [21].

Particularly appealing among the distance functions between point sets that have
been proposed in philosophy of science are the minimum distance measure,dmd, the
surjection measure,ds, and the fair surjection measure,dfs. Intuitively, these measures
compute the amount of distance covered when each point of one set is mapped to a
point of the other set under some restrictions. Underdmd, each point of the one set
is mapped to the point of the other set that is closest to it; for the surjection distance
ds, one considers all surjections from one set to the other and computes the length
of the elements in the surjection; for the fair surjection distancedfs, one additionally
requires that the surjection has to be fair in the sense that it distributes the points as
evenly as possible.

1 Theories are thus not necessarily categorical, and reflect incomplete information about certain facts;
they may leave open several possibilities for the true state of affairs, which is considered to be among
the models.
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While the properties and relationships of these measures have been considered,
their computation was left open. In particular, it was unclear for some of these mea-
sures whether they can be computed efficiently if this is possible for the underlying
distance function on points.

Another interesting issue is an appealing distance function on sets of points which
satisfies the triangle inequality, i.e., a metric on the sets of points. Note that the
distance measuresdmd, ds, anddfs do not satisfy the triangle inequality.

The main results of this paper can be shortly summarized as follows.

– We propose a new measure, thelink measuredl , which is motivated by some
intuitive problems with the other measures.

– We show that the measuresdmd, ds, dfs, anddl can be computed in polynomial
time under very general assumptions. While this is trivial fordmd, the algorithms
for the other measures use sophisticated matching and network flow techniques.

– We introduce the metric infimum method, a general construction that produces
for a given distance functiond on sets of points a refinementdω of d which is a
metric and hence satisfies the triangle inequality. The intuition in the construction
is to consider in computing the distance between two setsS1 andS2 all possible
sequences of intermediate sets and take the minimum distance obtainable by using
such a sequence. We show that applied todmd, ds, dfs and dl , this construction
produces only two different metrics.

– We present an algorithm for computing the refined link measuredωl which makes
use of standard graph algorithms. This algorithm is not polynomial; we show,
however, that a polynomial algorithm is not likely to exist by proving that com-
puting dωl is NP-hard. On the other hand, our results imply that for a broad class
of instances, computingdωl is NP-easy, i.e., possible in polynomial time with an
oracle for some problem in NP (cf. [8]), and hence not much harder than the
NP-complete problems.

The rest of the paper is organized as follows. After introducing some notation at
the end of the introduction, we review in Sect. 2 measures for the distance of point
sets derived from measures of theory distance from [13, 22, 14]. Furthermore, in this
section we define the new minimum link measuredl and compare it to the distance
measuresdmd, ds, anddfs. In Sect. 3 we analyze the structural properties ofds, dfs, and
dl , which are employed by our algorithms. Section 4 is devoted to the computation
of the distance measuresdmd, ds, dfs, anddl , for which we describe polynomial time
algorithms. In Sect. 5 we provide the metric infimum method and study properties
of the metric produced from a distance function. In Sect. 6 we consider computing
the dωl measure and show NP-completeness of the associated decision problem. The
concluding Sect. 7 states some open problems and issues for further work.

We start by defining some notation. We assume thatB is finite; however, the
constructions can be carried out also for infiniteB under some conditions. We shall
discuss this issue in Sect. 7. Elements ofB are referred to as points. The set of
all nonempty subsets ofB is denoted byP∅(B). We use a special notation for the
minimum distance of an elementx from a setS:

∆m(x, S) = miny∈S ∆(x, y).

We call each pointy ∈ S such that∆(x, y) = ∆m(x, S) a closest point ofS for x.
We further denote byµ a functionµ : B ×P∅(B) → B that for allx and nonempty
S yields a closest point ofS for x, i.e.
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µ(x, S) = y, such thaty ∈ S and∆(x, y) = ∆m(x, S).

We assume that the reader knows about basic concepts of graph theory (cf. [3, 24])
and NP-completeness (cf. [8]).

Let the union of a family of graphs{Gi = (Vi, Ei) : 1 ≤ i ≤ n} be the graph
(
⋃
i Vi,

⋃
iEi). The union isdisjoint if Vi ∩ Vj = ∅, 1 ≤ i < j ≤ n. In case that

the Gi are weighted, i.e.Gi = (Vi, Ei, wi), the union (
⋃
i Vi,

⋃
iEi,

⋃
i wi) is only

defined if the weight function
⋃
i wi is well-defined.

We denote bydeg(v,G) the degree of vertexv in the graphG. A graphG is
called aline iff it is a tree (i.e. a connected acyclic graph) on 2 vertices, andG is
called astar iff it is a tree on> 2 vertices and exactly one vertexv has degree> 1,
which is called thecenterof the star.

In our examples, we use as the base setB a finite fragment of the integral plane
with, unless stated otherwise, the Manhattan metric, which is defined by

∆M ((x1, y1), (x2, y2)) = |x1 − x2| + |y1 − y2|.

2 Distance measures for point sets

In this section, we review some of the distance functions which have been proposed
in the literature. A comparative analysis of these measures, from the viewpoint of
philosophy of science, can be found in [13]. We further propose a new distance
function which overcomes weaknesses of previously suggested distance functions in
some situations.

Hausdorff distance (dh) The Hausdorff distancedh can be defined using the∆m

notation as
dh(S1, S2) = max{max

e∈S1

∆m(e, S2),max
e∈S2

∆m(e, S1)}.

This function defines a distance function onP∅(B), which is a metric if∆ is a metric
([4]). The problem of computing the Hausdorff distance between geometric entities
has been considered in the area of computational geometry (see, e.g., [9]).

The problem withdh is that it is very sensitive to extreme points in the setsS1
andS2 (see Fig. 1.)

In fact, for every pair of setsS1 andS2 there are pointsx1 ∈ S1 andx2 ∈ S2 such
that dh(S1, S2) = dh({x1}, {x2}) = ∆(x1, x2). We are looking for a distance measure
that attempts to combine information about the distances between the elements ofS1
andS2. Therefore we do not considerdh in the sequel.

Sum of minimum distances (dmd) The sum of minimum distancesfunctiondmd [13]
is defined by

dmd(S1, S2) =
1
2

(∑
e∈S1

∆m(e, S2) +
∑
e∈S2

∆m(e, S1)

)
.

This function takes into account the distances between each element and the other
set.
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Fig. 1. Sets{a, b, c, d, e} and{a} are equally distant from{f} according to the Hausdorff metric

Surjection distance (ds) Oddie [14] suggested defining the distance between two
sets by considering surjections that map the larger set to the smaller set. This leads
to the following distance function:

ds(S1, S2) = min
η

∑
(e1,e2)∈η

∆(e1, e2),

where the minimum is taken over all surjectionsη from the larger of the setsS1 and
S2 to the smaller.

Fair surjection distance (dfs) In order to overcome certain unsatisfactory behavior
of the surjection measureds, Oddie introduced a variant of the surjection measure,
in which admissible surjections must be fair. A surjectionη betweenS1 to S2 is fair,
if η maps the elements ofS1 as evenly as possible onto the elements ofS2, i.e.,
| |η−1(x)| − |η−1(y)| | ≤ 1 for all x, y ∈ S2, whereη−1(z) = {w : η(w) = z}. Thus,

dfs(S1, S2) = min
η′

∑
(e1,e2)∈η′

∆(e1, e2),

where the minimum is taken over all surjections.2

Link distance (dl ) We propose an alternative distance measure between two sets.
Given two setsS1, S2 ⊆ B, a linking betweenS1 andS2 is a relationR ⊆ S1 × S2
satisfying

(1) for all e1 ∈ S1 there existse2 ∈ S2 such that (e1, e2) ∈ R, and
(2) for all e2 ∈ S2 there existse1 ∈ S1 such that (e1, e2) ∈ R.

The minimum link distancedl between subsetsS1 andS2 is defined by

dl (S1, S2) = min
R

∑
(e1,e2)∈R

∆(e1, e2),

where the minimum is taken over all relationsR such thatR is a linking betweenS1
andS2.

2 Oddie [14] actually considered only the version normalized by the size of the larger set.
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For convenience, we adopt the following convention. For any binary relation
R ⊆ B ×B, the cost ofR, c(R), is c(R) =

∑
(e1,e2)∈R∆(e1, e2). Notice that the cost

of a surjection, a fair surjection, and a linking between setsS1 andS2 is implicit by
this definition.

Example 2.1Consider the setsS1 = {a, b, c, e} andS2 = {c, d} in Fig. 2.

s s s
s
s

a b c d

e

Fig. 2. Examples of the distance measures; the distance froma to b is the unit distance

The distance functionsdmd, ds, dfs anddl evaluate as follows.

dmd(S1, S2) = ((0 + 1) + (0 + 1 + 1 + 2))/2 = 5/2.

ds(S1, S2) = 5; the surjectionη = { (a, c), (b, c), (e, c), (c, d) }
is optimal andc(η) = 2 + 1 + 1 + 1 = 5.

dfs(S1, S2) = 6; the fair surjectionη′ = { (a, c), (b, d), (e, c), (c, d) }
is optimal andc(η′) = 2 + 2 + 1 + 1 = 6.

dl (S1, S2) = 5; the linkingL = {(a, c), (b, c), (e, c), (c, d)}
is optimal andc(L) = 1 + 1 + 1 + 2 = 5. �

The following proposition is easily derived from the definitions.

Proposition 2.1 Assume that∆ is a distance function onB. Thendmd, ds, dfs, anddl

are distance functions onP∅(B). �

For a discussion of the relationships and properties ofdmd, ds, anddfs, the reader
is referred to [13]. As mentioned above, these functions have been considered for
measuring the distance between logical theories. However, they have also applications
in other contexts.

The minimum distance measure is appealing in many cases. For example, suppose
the distance between two countries with respect to travelling should be determined.
For this purpose, the (possibly normalized) result of thedmd function, evaluated on
setsS1, S2 of representative cities of the countries seems well apt; it amounts to the
least cost of getting from a city in one country to a closest city in the other country,
and takes account of each possible starting point. The intercity distance∆ may be
measured in different ways, e.g. in terms of the geographical distance, or by the
cheapest ticket (in this case,∆ may not be a metric). An example for an application
of the surjection distance measures in the plane is given below.

We argue that the minimum link measure is more appealing than the other mea-
sures in some scenarios. A situation in whichdl is intuitively more appealing thands
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Fig. 3. Situation favoring the minimum link measuredl over ds anddfs
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Fig. 4a–c.Situation favoring the minimum link measuredl over ddmd

or dfs is sketched in Fig. 3, whereB is the plane and∆ is the euclidean distance be-
tween points.3 (Notice thatds anddfs take the same value as each surjection between
S1 andS2 is trivially fair.)

Each pair of the minimum linking betweenS1 and S2 is represented by a line
between dots. The small value ofdl seems to represent the intuitive distance between
the point sets better than the larger value ofds (resp.dfs). Note that the value of
ds (resp.dfs) increases if the distance between the left and the right group of three
vertices increases, while the value ofdl remains the same; this behavior seems to be
more intuitive.

Comparingdl to dmd, we find that the latter acts in a senselocally (or pointwise),
since the distance between setsS1 andS2 is basically the sum of the distances of each
point in the one set to the other set. On the other hand,dl actsglobally (or setwise),
since it aims at minimizing the total distance value rather than the distance value of
each point. In particular, it is possible that an optimal linkingL betweenS1 andS2
contains a pair (e1, e2) such that∆(e1, e2) > ∆m(e1, S2) and∆(e1, e2) > ∆m(e2, S1)
(see Fig. 4b). In some situations, setwise distance is more appropriate than pointwise.

For example, assume that point sets are the sites of organizations, and that an
organization is interested in a working exchange program with another organization
such that mutual connections between sites are established, involving all sites of
both organizations. For example, organizations might be associations of universities
from the same country. Here, thedl measure is more appropriate for measuring the
geographical distance between the organizations than thedmd measure. An example is
given in Fig. 4. For the situation in (a), dl anddmd amount to the connections between
sites as shown in (b) and (c), respectively. The solution in (b) can be considered
preferable; it seems to correspond more closely with the intuition.

The global operation mode ofdl makes it also appealing for measuring the distance
between logical theories, based on a revision argument. Suppose that as in Sect. 1,
the points of a metric space are interpretations of a logical languageL , and that
theories are identified with the sets of their models (i.e., sets of points).4 The distance
between two theoriesS1 andS2 can be seen as the “cost” for a believer to change

3 Similar situations can be found for the integral plane and the Manhattan metric.
4 By the assumptions from above, only finitely many interpretations may be in the metric space. For

example, ifL is a first-order language over a finite vocabulary, all interpretations ofL in a fixed finite
domain might be included. In particular, a propositionalL over a finite set of atoms has only finitely
many interpretations. Such languages are relevant in the area of data and knowledge representation.



116 T. Eiter, H. Mannila

his current view, given byS1, to S2. For this purpose, each model inS1 must be
revised to some model inS2, and all models ofS2 must be covered; it is reasonable
to allow that the same model fromS1 is multiply revised to different models inS2
(think of a model inS1 which is very close to several models inS2; see also Fig. 3),
and that different models inS1 can be revised to the same model inS2. The cost of a
particular revision process is the sum of the distances between each model ofS1 and
its revisions. Notice that by inverting each revision step,S2 can be revised toS1 and
thus the cost of revision is symmetric. The least cost for a revision process between
S1 andS2 is thus a suggestive value for the distance betweenS1 andS2. However,
this is precisely the value computed bydl . Notice thatdmd is less appealing for this
application; due to pointwise minimization, this function reflects the cost of revising
one set to a close part of the other set rather than to the whole set.

3 Link graph

We associate with each linkingL between sets of pointsS and S′ a graphG(L),
which we call the link graph ofL. The link graph is useful for studying structural
properties of linkings.

Assume thatS = {s1, . . . , sn} andS′ = {s′1, . . . , s′m} (note thatS1 ∩ S2 /= ∅ is
possible). LetV1 = {v1

1, . . . , v
1
n} andV2 = {v2

1, . . . , v
2
m} be disjoint sets of vertices. For

every linkingL betweenS andS′, G(L) is the undirected bipartite graph (V1∪V2, E),
whereE = {{v1

i , v
2
j} : (si, s′j) ∈ L}.

We note some useful structural properties of the link graph.

Proposition 3.1 For each surjectionη : S → S′, the graphG(η) is the disjoint union
of |S′| lines and stars, whose centers are all fromV2.

Proof. Each set{v2
j} ∪ {v1

i : si ∈ η−1(s′j)}, where 1≤ j ≤ m, induces a line or star
in G(η). G(η) is clearly the disjoint union of all these stars and lines.�

Proposition 3.2 Let L be an optimal linking betweenS and S′. ThenG(L) is the
disjoint union of stars and lines.

Proof. If not, an edge can be removed fromG(L) so that the resulting graph isG(L′)
for a linking L′ ⊆ L betweenS andS′, which contradicts optimality ofL. ut

Thus, for every optimal linkingL betweenS andS′, we can imagineG(L) as a
forest of stars and lines. By taking the metric∆ into account, the following properties
of the stars in this forest can be derived.

For a disjoint unionG(L) of a forest of stars and lines, denote bycst(L) the set of
all centers of the stars ofG(L). For example, in Fig. 5 we havecst(L) = {v1

1, v
1
3, v

2
7}.

It can be easily seen that for an optimal linkingL, each centerx of a star inG(L)
is connected only to verticesy such thatx corresponds to a closest point ofS (resp.
S′) for y.

Proposition 3.3 LetL be an optimal linking betweenS andS′ and let{v1
i , v

2
j} be an

edge ofG(L). If v1
i ∈ cst(L), then∆(si, s′j) = ∆m(s′j , S), and if v2

j ∈ cst(L), then
∆(si, s′j) = ∆m(si, S′).

An analogous proposition holds on optimal surjections.
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Fig. 5. G(L) that is the disjoint union of stars and lines.

Proposition 3.4 If η : S → S′ is an optimal surjection betweenS andS′, then for
eachi and j, 1 ≤ i ≤ n, 1 ≤ j ≤ m, such that{v1

i , v
2
j} is an edge ofG(η) but not a

line, we have∆(si, s′j) = ∆m(si, S′).

4 Computing the distance measures

In this section, we investigate computing the distance functions from the previous
section. While it is clear that under suitable assumptions computingdmd is simple
and efficient, this is not obvious fords, dfs, anddl . It turns out that all these distance
functions are computable in polynomial time, however.

4.1 Assumptions, graph matchings, and network flows

We need some assumptions for distance computation first. The input for computing
d(S, S′) consists of the setsS = {s1, . . . , sn} ⊆ B andS = {s′1, . . . , s′m} ⊆ B, such
that n ≥ m ≥ 1. Furthermore, we assume that the distance function∆ on B takes
rational values and can be computed in polynomial time.5

Our algorithms make use of graph matching and network flow techniques. A
matchingof an undirected weighted graphG = (V,E,w) is a set of edgesM ⊆ E such
that for each pair of distincte, e′ ∈M , it holds thate∩e′ = ∅; the matchingM is called
perfect iff

⋃
M = V . The weight w(M ) of M is w(M ) =

∑
e∈M w(e). It is well-

known that a perfect matching of minimum weight (hence, by our assumptions, also
its weight) inG can computed in polynomial time (cf. [10]). Specialized algorithms
have been developed for bipartite graphs and for other graph classes.

Proposition 4.1 (cf. [10, p.93,Theorem 14])Let G = (V1 ∪ V2, E, w) be a bipartite
weighted graph with nonnegative weights from the reals. Then, a perfect matchingM
in G of minimal weight (if it exists) can be computed in time

O

( |V1|·|E|·log |V1|
max(1, log(|E|/|V1|))

)
. �

A networkN = (V,E, cap, c) is a directed weighted graph (V,E, c) where each
edgee ∈ E has assigned a capacitycap(e) ∈ <+; the second weight functionc assigns
a costc(e) to each edgee. Let s andt be specified vertices fromV . An s-t-flow (or
simply flow, if s and t are understood) onN is a functionf : E ∪ {(x, y) : (y, x) ∈
E} → <+ such that

5 This assumption is stricter than necessary, but avoids problems arising if the values of∆ are possibly
difficult to compare to a number or among each other (cf. [7]).



118 T. Eiter, H. Mannila

(i) for each (x, y) ∈ E, 0≤ f (x, y) ≤ cap(x, y) andf (y, x) = −f (x, y), and
(ii) for eachx /= s, t we have

∑
(x,y)∈E f (x, y) =

∑
(z,x)∈E f (z, x).

The first condition states that the flow on an edge is legal and that on a “loop”
(x, y), (y, x), the flow must be zero. The second condition states that what flows in,
flows out of every node distinct froms and t. The value|f | of flow f is defined as
|f | =

∑
(s,x)∈E f (s, x), and the costc(f ) of f is defined asc(f ) =

∑
e∈E w(e)f (e).

A maximum flow is any flowf such that|f | is a maximum over all flow values,
and a minimum cost flow of valuev is any flow f such that|f | = v and c(f ) is
minimum over the costs of all flows of valuev. The integrality theorem for minimum
cost flowsstates the following.

Theorem 4.2 ([24, p. 593]) If all capacities in a networkN = (V,E, cap, c) are
integers, then there exists a maximum flow which is integral and has minimum cost
(over all maximum flows).

4.2 Computing the surjection distanceds

First we consider computingds for S = {s1, . . . , sn} and S′ = {s′1, . . . , s′m}. We
show that computingds(S, S′) can be reduced to computing the cost of a minimum
weight perfect matching in a graph in polynomial time.

Construct fromS andS′ an complete bipartite weighted graphG = (X ∪Y,E,w)
as follows. Letk = n − m. Let X = {x1, . . . , xn} and Y = U ∪ V , whereU =
{u1, . . . , um} andV = {v1, . . . , vk}. The weight functionw is defined as follows.

w(e) =

{
∆(si, s′j) for e = {xi, uj}, 1≤ i ≤ n, 1 ≤ j ≤ m;
∆m(si, S′) for e = {xi, vj}, 1≤ i ≤ n, 1 ≤ j ≤ k.

The link graphG(η) of an optimal surjection is a collection of stars and lines. The
auxiliary verticesvi allow us to obtain fromG(η) a graph with a perfect matching:
from each star ofG(η), all vertices except one are linked to an auxiliary node.

Figure 6 shows an example of the construction, whereS = {s1, s2, s3}, S′ =
{s′1, s′2}, and the distance function∆ is assumed to yield the following values:
∆(s1, s

′
1) = 1, ∆(s2, s

′
1) = 2, ∆(s3, s

′
1) = 6, ∆(s1, s

′
2) = 5, ∆(s2, s

′
2) = 7 and

∆(s3, s
′
2) = 3. Notice that for a minimum weight perfect matchingM of G, we

havew(M ) = 6.
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Fig. 6. GraphG for S = {s1, s2, s3} andS′ = {s′1, s′2}. The bold edges constitute a minimum weight
perfect matching ofG

Lemma 4.3 LetM be an arbitrary minimum weight perfect matching ofG and letη
be an optimal surjection betweenS andS′. Thenw(M ) = c(η).
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Proof. We show first thatw(M ) ≤ c(η). From an optimal surjectionη we get a perfect
matchingM ′ of G such thatw(M ′) ≤ c(η) as follows. We take all edges{xf (j), uj}
such thatf (j) is the least index of anysh in η−1(s′j), and all edges{xgi , vi} for an
arbitrary enumerationxg1, xg2, . . ., xgk of the remainingx vertices.M ′ consists of
the following edges:

(i) {xf (j), uj} for everyj with 1 ≤ j ≤ m, wheref (j) = min{i : si ∈ η−1(s′j)};
(ii) {xgi , vi} for everyi with 1 ≤ i ≤ k, where{xg1, . . . , xgk} = X−{xf (1), . . . , xf (m)}.

It is not hard to see thatM ′ is indeed a perfect matching inG. Sincew(xi, vl) ≤
w(xi, uj), for all i, j, l with 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 1≤ l ≤ k, we have that
w(M ′) ≤ c(η); hence, it follows thatw(M ) ≤ c(η).

On the other hand,w(M ) ≥ c(η) holds. Indeed, from a matchingM we can define
a surjectionη′ : S → S′ as follows. Let for alli with 1 ≤ i ≤ n be

η′(si) =

{
s′j , if {xi, uj} ∈M ;

µ(si, S′), if {xi, vl} ∈M for somel.

It is easy to see thatη′ is well-defined and indeed a surjection, and thatc(η′) = w(M ).
Hence, it follows thatw(M ) ≥ c(η); the result follows. ut
Theorem 4.4 The distance functionds is computable in polynomial time.

Proof. Consider setsS and S′. The graphG for S and S′ is clearly constructible
in polynomial time. Since a minimum weight perfect matchingM in G can be con-
structed in polynomial time, by our assumptionsw(M ) can be computed in polynomial
time. Hence the result follows.�

Remark: Since the graphG is bipartite, a minimum weight perfect matching in
G can be computed in timeO(n3) (cf. Proposition 4.1;|V1| = n, |E| = n2).

4.3 Computing the fair surjection distancedfs

Next we show thatdfs can be efficiently computed by solving a network flow problem.
Given setsS = {s1, . . . , sn} and S′ = {s′1, . . . , s′m} with 1 ≤ m ≤ n, we

construct a networkN = (V,E, cap, c) as follows. LetV = X ∪ Y ∪ {s, t}, where
X = {x1, . . . , xn} andY = {y1, . . . , ym} are disjoint. The set of edgesE consists of
four groups of edgese with capacitycap(e) and costc(e) as follows. Letc0 = dn/me.
(i) (s, xi), for everyi with 1 ≤ i ≤ n, for which cap(s, xi) = 1 andc(s, xi) = 0,
(ii) (xi, yj), for everyi andj with 1 ≤ i ≤ n, 1≤ j ≤ m, for which cap(xi, yj) = 1

andc(xi, yj) = ∆(si, s′j),
(iii) (yi, t), for every i with 1 ≤ i ≤ m, for which cap(yi, t) = c0 and c(yi, t) = 0,

and
(iv) (s, yi), for everyi with 1 ≤ i ≤ m, for which cap(s, yi) = 1 andc(s, yi) = Ω,

whereΩ is an arbitrary real number greater than
∑

i,j ∆(xi, yj). Figure 7 shows an
example of the construction, whereS, S′, and∆ are as above.

The intuition behindN is as follows. MappingS to S′ corresponds to forwarding
from every vertexxi one unit of flow coming from the sources to one of the vertices
yj , from which it is transported to the sinkt. The capacity of the edge fromyj to t
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Fig. 7. Network N for S = {s1, s2, s3}, S′ = {s′1, s′2}. The flow f assigningcap(e) to the bold edges
and 0 to all others is a minimum cost maximum flow

is restricted so that no more units can be transported than elements fromS can be
mapped tos′j by a fair surjection. The edges froms to theyj vertices assure that at
least as many units reachyj from thexi vertices as elements fromS must at least
be mapped toyj in any fair surjection. Each such edge can transport one unit of
flow, but only at the extremely high costΩ. Thus, as few units as necessary will be
transported via such edges in a maximum flow.

It is straightforward to check that for anyS andS′, a maximums-t flow in N
has valuec0m = n + k, where

k =

{
0, if n = i·m, for some integeri ≥ 0

m− (n modm), otherwise.

In a maximum flow of minimum cost exactlyk units are transported froms directly
to theyj vertices and all other units via thexi vertices, such that the flow corresponds
to an optimal fair surjection betweenS andS′. Since all capacities are integers, the
integrality theorem for minimum cost flows asserts that an integral maximums-t flow
f of minimum cost onN exists. Clearly, eache ∈ E with cap(e) = 1 has inf value
0 or 1, i.e.,cap(e). It can be easily seen that inf every other edgee also has value
0 or cap(e).

For an example, consider Fig. 7. There,k = 1. The cost of the flowf is c(f ) =
6+1·Ω. On the other hand,η′ = { (s1, s

′
1), (s2, s

′
1), (s3, s

′
2) } is an optimal fair surjection

betweenS andS′ with c(η) = 6.
The next lemma states that the construction works correctly.

Lemma 4.5 Let f be a maximums-t flow of minimum cost onN and let η be an
optimal fair surjection betweenS andS′. Thenc(f ) = c(η) + kΩ.

Proof. First observe that a surjectionη betweenS and S′ is fair if and only if
bn/mc ≤ |η−1(s′j)| ≤ dn/me for everyj, 1≤ j ≤ m.

We show thatc(f ) ≥ c(η) + kΩ. By the integrality theorem for minimum cost
flows, we can assume thatf is integral. As easily seen,f assigns 1 to exactlyk edges
from (s, y1), . . . , (s, ym), to all edges (s, xi), where 1≤ i ≤ n, and to exactly one
of the edges (xi, y1), . . . ,(xi, ym) for every i with 1 ≤ i ≤ m; let (xi, yg(i)) be this
edge.
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Define the mappingζ : S → S′ by ζ(si) = s′g(i), for everyi with 1 ≤ i ≤ n. We
show thatζ is a fair surjection betweenS andS′. Assume this does not hold. Then,
there must exist aj with 1 ≤ j ≤ m, such thatf assigns 1 to fewer thanc0 − 1
edges from (x1, yj), . . .,(xn, yj) and 0 to the others. The flow value|f | = c0m implies
that c0 units reachyj , i.e.

∑
(x,yj )∈E f (x, yj) = c0. Note thatyj is reachable by an

edge only fromx1, . . . , xn ands. Since each of these edges has capacity 1, it follows
that no more thanc0 − 1 units reachyj , which is a contradiction. Thusζ is a fair
surjection. It is easy to check thatc(f ) = c(ζ) + kΩ.

Sinceη is an optimal fair surjection, we thus have thatc(f ) ≥ c(η) + kΩ.
Now we show thatc(f ) ≤ c(η) +kΩ. We construct from a fair surjectionη a flow

fη on networkN as follows.

fη(e) =


c0, if e = (yj , t) where 1≤ j ≤ m;
1, if e = (s, xi) where 1≤ i ≤ n,

or e = (s, yj) where 1≤ j ≤ m is such that|η−1(s′j)| < c0,
or e = (xi, yη(si)) where 1≤ i ≤ n;

0, otherwise.

Clearly, fη is an s-t flow of value c0m and hence maximum. As readily checked,
c(fη) = c(η) + kΩ. Thus we get thatc(f ) ≤ c(η) + kΩ. The result follows. ut
Theorem 4.6 The functiondfs is computable in polynomial time.

Proof. Consider setsS andS′. The networkN can be easily constructed fromS and
S′ in polynomial time. Since all capacities are integer, a minimum integrals-t flow
of valuev = c0m on N is computable in time

O(veN (lognN )/max{log(eN/nN ), 1}), nN = |V |, eN = |E|
[10, p. 92, Theorem 13]. The result follows.ut

4.4 Computing the link distancedl

It remains to show that the link distance functiondl is computable in polynomial
time. As in the case ofds, we reduce this problem to a perfect matching problem.

Let againS = {s1, . . . , sn} andS′ = {s′1, . . . , s′m}. We define a complete bipartite
weighted graphG = (A ∪ B,E,w) as follows:A = {a1, . . . , an}, B = {b1, . . . , bm},
and for each edgee = {ai, bj} of G, w(e) = ∆(si, s′j). Intuitively, G is a graph in
which eachsi ∈ S (resp.s′j ∈ S′) is connected to everys′j (resp.si) at the cost of
the distance∆(si, s′j). LetG′ be a zero-weight copy ofG, i.e.,G′ = (A′∪B′, E′, w′)
is a complete bipartite weighted graph whereA′ = {a′1, . . . , a′n}, B′ = {b′1, . . . , b′m},
(A ∪ B) ∩ (A′ ∪ B′) = ∅, andw′(e) = 0 for each edgee. FromG andG′ we define
the graphG′′ by taking the union ofG andG′ and connecting everyai andbj to a′i
andb′j , respectively, by weight equal to its nearest neighbor inG. That is,

G′′ = (V ′′, E′′, w′′),

where
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V ′′ = A ∪A′ ∪B ∪B′,
E′′ = E ∪ E′ ∪ {{ai, a′i}, {bj , b′j} : ai ∈ A, bj ∈ B},

w′′(e) =


w(e), for e ∈ E;
w′(e), for e ∈ E′;
∆m(si, S′), for e = {ai, a′i}, 1≤ i ≤ n;
∆m(s′i, S), for e = {bj , b′j}, 1≤ j ≤ m.

Figure 8 shows an example of the construction;S, S′, and∆ are as above. The set of
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edges outlined in bold face constitute a perfect matchingM of minimum weight;M
has valuew(M ) = 6. Notice that the link measure betweenS andS′ amounts to the
same value: the linkingL = {(s1, s

′
1), (s2, s

′
1), (s3, s

′
2)} is an optimal linking between

S andS′ with costc(L) = 6.

Lemma 4.7 LetL be an optimal linking betweenS andS′, and letM be a minimum
weight perfect matching inG′′. Thenc(L) = w(M ).

Proof. We first show thatw(M ) ≤ c(L). We get fromL a perfect matchingM ′ in
G′′ whose weight is equal to the cost ofL as follows. Let the centers of the stars
of G(L) be cst(L) = {y1, . . . , yk}, and letx1, . . . , xk be arbitrary vertices fromG(L)
such thatxi is connected by an edge toyi, for all i = 1, . . . , k. Then, define thatM ′
consists of the following edges:

(i) {ai, bj} and{a′i, b′j}, for all edges{v1
i , v

2
j} of G(L) such thatv1

i , v
2
j /∈ {x1, . . . , xk};

(ii) {ai, a′i}, for everyi = 1, . . . , n such thatv1
i ∈ {x1, . . . , xk};

(iii) {bj , b′j}, for everyj = 1, . . . ,m such thatv2
j ∈ {x1, . . . , xk}.

By Proposition 3.2,G(L) is the disjoint union of stars and lines. Hence, it is not hard
to see thatM ′ is a perfect matching inG′′. Moreover, by the construction ofG′′ and
the definition ofM ′, it follows immediately from Proposition 3.3 thatw(M ′) = c(L).
It follows thatw(M ) ≤ c(L).

Now we show that alsow(M ) ≥ c(L). FromM we can get a linkingL′ between
S andS′ whose cost is equal tow(M ) as follows. Define thatL′ contains all pairs
(v1
i , v

2
j ), for each i = 1, . . . , n and j = 1 . . . ,m, such that one of the following

conditions is satisfied:

(i) {ai, bj} ∈M ;
(ii) {ai, a′i} ∈M ands′j = µ(si, S′) (s′j from S′ is closest tosi);
(iii) {bj , b′j} ∈M andsi = µ(s′j , S).
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SinceM is a perfect matching inG′′, it is easy to see thatL′ is indeed a linking
betweenS andS′, and thatc(L′) = w(M ). Hence, it follows thatc(L) ≤ w(M ). The
result follows. ut

We remark that a modified version of the graphG′′ provides another possibility
for computing the surjection measure. In fact, if all edges{bj , b′j} are removed from
G′′, then the perfect matchings in the resulting graphG′′′ correspond to surjections
betweenS andS′, and the cost of a minimum weight perfect matching inG′′′ equals
the cost of an optimal surjection betweenS andS′. However,G′′′ is more complex
than the graphG in Sect. 4.2, on which a perfect matching algorithm is expected to
perform better in general.

Theorem 4.8 The distance functiondl is computable in polynomial time.

Proof. Consider setsS and S′. The graphG′′ for S and S′′ can be constructed
in polynomial time. A minimum cost perfect matching inG′′ can be computed in
polynomial time, cf. [10]; hence the result follows.ut

The graphG′′ is bipartite by the partition of the vertex sets constituted byA∪B′
andA′ ∪B. Therefore, a minimum cost perfect matching inG′′ can be computed in
time

O

(
n·m·(n +m)·log(n +m)·(1/max(1, log

2n·m + n +m
n +m

))

)
(cf. Proposition 4.1;|V1| = n +m, |E| = 2nm + n +m).

Let us remark at the end of this section that in case∆ is a metric onB, the
efficiency of the proposed algorithms might be improved by using metric matching
techniques (cf. [23]). The network flow and matching problems constructed in this
section involve additional vertices to which the underlying metric spaceB does not
extend; thus, the constructions would have to be suitably adapted. Notice that the
main goal of this section is showing that certain distance functions are computable in
polynomial time and not intractable. We confined ourselves for this purpose to using
standard methods.

5 From distance functions to metrics

In certain contexts, it is natural or desired that a measure of distance between point
sets is a metric, i.e., it satisfies the postulates of a distance function and in addition
the triangle inequality.

For example, suppose that the amount of work that has to be done to change a set
into another should be reflected in the interdistance value attached to these point sets;
for a concrete instance, assume that the points are strings. In this case, the triangle
inequality is a reasonable postulate for a suitable distance measure, since changing a
setS1 into a setS2 is not more expensive than the sum of changingS1 to S3 and
changingS3 into S2.

Each of the distance functions between two sets defined in the previous section,
dmd, ds, dfs, anddl , fails to satisfy the triangle inequality, as shown by the following
example.
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Fig. 9. Violations of the triangle inequality (S1 = {a, c}, S2 = {d}, S3 = {b} )

Example 5.1Consider S1 = {a, c}, S2 = {d}, and S3 = {b} in Fig. 9. Then
dmd(S1, S2) = 6/2 = 3, dmd(S1, S3) = 3/2 and dmd(S3, S2) = 2/2 = 1; hence,
dmd(S1, S3) + dmd(S3, S2) = 5/2 < dmd(S1, S2), i.e., the triangle inequality fails. The
same applies to the other distance functionsdα, for everyα ∈ {s, fs, l}, for which
we havedα(S1, S2) = 4, dα(S1, S3) = 2, anddα(S3, S2) = 1.6 �

In this section we describe a simple construction that produces from a distance
function a metric which has certain appealing properties. More precisely, given an
arbitrary distance functiond : P∅(B)2 → <+, whereB is finite, the construction
produces a metricdω on P∅(B). For the distance functionsdmd, ds, dfs, anddl the
respective metrics coincide on singletons with the metric∆ on B.

Call any finite sequenceP = (P1, P2, . . . , Pm), wherem ≥ 2 andPi ⊆ B, for all
i with 1 ≤ i ≤ m, a path betweenP1 andPm; the length of the path ism. We use
P (S, S′) to denote the set of all paths betweenS andS′. The concatenation of paths
P = (P1, . . . , Pm) andP ′ = (Pm, . . . , Pn) is the pathPP ′ = (P1, . . . , Pn). The cost
cd(P ) of P under a distance functiond is defined bycd(P ) =

∑m−1
i=1 d(Pi, Pi+1). A

pathP ∈ P (S, S′) is calledoptimal underd (or d-optimal) iff cd(P ) = min{cd(P ′) :
P ′ ∈ P (S, S′)}.

Define the functiondω : P∅(B)2 → <+ by

dω(S, S′) = min{cd(P ) : P ∈ P (S, S′)}.
We observe thatdω has the following appealing properties. Let the functionsf :
P∅(B) × P∅(B) → <+ (<+ are the nonnegative reals) be partially ordered byf ≤ g
iff f (S1, S2) ≤ g(S1, S2) for all S1, S2.

Theorem 5.1 Let d be a distance function onP∅(B), whereB is finite. Then,

(a) dω defines a metric onP∅(B).
(b) dω is the unique maximum of the distance functionsf : P∅(B)2 → <+ which

satisfy

f (S, S′) = min(d(S, S′),min
S′′

(f (S, S′′) + f (S′′, S′)) ) (1)

(c) dω is the unique maximum metric functionf : P∅(B)2 → <+ with f ≤ d.

Proof. It is easy to see thatdω is symmetric and thatdω(S, S′) = 0 iff S = S′, hence
dω is a distance function. Moreover, from the definition ofdω it follows that the
triangle inequality holds; hence (a) follows.

It is easy to see thatdω satisfies Equation 1. We show thatf (S, S′) ≤ dω(S, S′)
by induction on the length of the shortestd-optimal path (P1, . . . , Pm) ∈ P (S, S′).

6 More complex examples show the failure of the triangle inequality for the versions of the measures
from normalization by the size of the larger set.
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If m = 2, thendω(S, S′) = d(S, S′) andf (S, S′) ≤ dω(S, S′) holds. If m > 2, then
dω(S, S′) = d(S, P2) + dω(P2, S

′), hence by the induction hypothesis and Equation 1,
dω(S, S′) ≥ f (S, P2) + f (P2, S

′) ≥ f (S, S′), and the statement holds. Consequently,
f ≤ dω and dω is a unique maximum of the distance functions satisfying (1); thus
(b) holds.

It remains to consider (c). Assumef is a metric such thatf ≤ d and that
dω(S, S′) < f (S, S′) for someS and S′. Now dω(S, S′) =

∑m−1
i=1 d(Pi, Pi+1) for

somed-optimal path (P1, . . . , Pm) ∈ P (S, S′). By the triangle inequalityf (S, S′) ≤∑m−1
i=1 f (Pi, Pi+1) and by assumptionf (Pi, Pi+1) ≤ d(Pi, Pi+1) for 1 ≤ i < m, thus

we getf (S, S′) ≤ dω(S, S′), a contradiction. ut
In the light of Theorem 5.1(c), we refer todω as themetric infimumof d.

Recall that our motivation was to extend a distance function∆ onB to P∅(B) so
that∆({x}, {y}) = ∆(x, y). Thus, if we want this distance function to be a metric,∆
must be a metric onB. If this is the case, then each of the metric infima of the distance
functionsdmd, ds, dfs, anddl in Sect. 2 satisfies the propertydω({x}, {y}) = ∆(x, y).

Proposition 5.2 Letd andda be distance functions onP∅(B) such thatda ≤ d and for
all x, y ∈ B, d({x}, {y}) = ∆(x, y) anddωa ({x}, {y}) = ∆(x, y). Then,dω({x}, {y}) =
∆(x, y) for all x, y ∈ B.7

Proof. From da ≤ d it follows easily thatdωa ≤ dω. Sincedωa ({x}, {y}) = ∆(x, y),
we have∆(x, y) ≤ dω({x}, {y}). On the other hand, sinced({x}, {y}) = ∆(x, y), it
follows (cf. Theorem 5.1(b)) thatdω({x}, {y}) ≤ ∆(x, y). The result follows. �

Corollary 5.3 Assume that the distance function∆ satisfies the triangle inequality,
i.e.,∆ is a metric onB. Then, for eachα ∈ {md, s, fs, l}, we havedωα({x}, {y}) =
∆(x, y) for all x, y ∈ B.

Proof. Choose the Hausdorff distancedh for da (note thatdωh = dh) anddα for d. �

Let us have a closer look at the properties of differentdω measures. Interestingly,
the metric infima of the distance functionsds, dfs, dl collapse to a single function.

Theorem 5.4 dωs = dωfs = dωl .

Proof. Clearly, dωl ≤ dωs ≤ dωfs. (Every surjection betweenS and S′ is a linking
betweenS andS′).

Notice that in order to showdωα ≤ dωβ , it suffices to show that for allS =
{s1, . . . , sn} andS′ = {s′1, . . . , s′m} where 1≤ m ≤ n and dβ(S, S′) = dωβ (S, S′),
there exists a pathP = (P1, . . . , Pm) ∈ P (S, S′) such thatcdα (P ) ≤ dβ(S, S′).

The claimdωs ≤ dωl is shown as follows. LetL be an optimal linking betweenS
andS′ such thatc(L) = dωl (S, S′). The idea is that a linking can be represented by
two surjections. We define fromL the surjectionsηS : S → R andηS′ : S′ → R to
an intermediate setR. This set contains elements ofS andS′ corresponding to the
centers of stars ofG(L) and the endpoints inV1 of lines ofG(L), i.e.,

R = {si : v1
i ∈ cst(L) ∩ V1 or deg(v1

i , G(L)) = 1} ∪ {s′j : v2
j ∈ cst(L) ∩ V2}.

7 This proposition can be generalized by replacing ‘d({x}, {y}) = ∆(x, y) anddωa ({x}, {y}) = ∆(x, y)’
with the weaker condition ‘d({x}, {y}) ≤ ∆(x, y) anddωa ({x}, {y}) ≥ ∆(x, y)’.
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The surjectionηS will map the elements ofS that belong to a line ofG(L) or to
a S′-star ofG(L) to the unique element they are linked byL. Similarly, ηS′ maps
members ofS′ that belong to lines orS-stars ofG(L) to the unique elementL links
them with. Formally, for alli andj with 1 ≤ i ≤ n, 1≤ j ≤ m,

ηS(si) =

 s′k, if v1
i is in a star ofG(L) with centerv2

k,
or if {v1

i , v
2
k} is a line ofG(L);

si, otherwise.

ηS′ (s′j) =


sk, if v2

j is in a star ofG(L) with centerv1
k,

or if {v1
k, v

2
j} is a line ofG(L);

s′j , otherwise.

Then ηS and ηS′ are surjections which satisfyc(ηS) + c(ηS′ ) = c(L). Consequently,
cds(S,R, S

′) ≤ c(L) = dωl (S, S′). It follows thatdωs ≤ dωl .
The fact thatdωfs ≤ dωs can be shown similarly. The intuition is that a surjection

can be decomposed into a sequence of surjections between sets whose cardinality
differs only by one. Such surjections will be necessarily fair. Assume thatη : S → S′
is an optimal fair surjection betweenS and S′ and thatds(S, S′) = dωs (S, S′). We
show by induction on the numberk of stars and lines ofG(L), that there exists a
pathP = (P1, . . . , Pr) ∈ P (S, S′) such that 0≤ |Pi| − |Pi+1| ≤ 1, 1 ≤ i < r, and
cdfs(P ) ≤ ds(S, S′).

If k = 1, thenm = 1, i.e. G(η) consists merely of one line or one star. The
sequenceQ = (Q1, . . . , Qn+1), whereQ1 = S andQi = Qi−1 −{si−1} ∪ {s′1}, for all
i with 2 ≤ i ≤ n + 1, satisfies the properties ofP . Indeed,Q ∈ P (S, S′), and clearly
0 ≤ |Qi| − |Qi+1| ≤ 1, for all i, 1≤ i ≤ n. Defineηi : Qi → Qi+1, 1≤ i ≤ n, by

ηi(x) =

{
s′1, if x = si;
x, if x ∈ Qi − {si}.

Eachηi is a fair surjection, and
∑n

i=1 c(ηi) = c(η); hence,cdfs(Q) ≤ ds(S, S′). Thus
the statement holds fork = 1.

Now consider the casek > 1. Let S1 = S − η−1(s′1) and S′
1 = S′ − {s′1}.

We construct a sequence of fair surjections that will ultimately linkS and S′ by
first decomposing an optimal surjection ofη−1(S′

1) to {s′1} into a sequence of fair
surjections (by the induction hypothesis). This sequence is extended to a sequence of
fair surjections betweenS andS1∪ {s′1}. The induction assumption is again applied,
and we get a sequence of fair surjections fromS1 ∪ {s′1} to S′. Formally, denote by
η[X] the restriction ofη to X. We note first that

ds(η−1(s′1), {s′1}) = dωs (η−1(s′1), {s′1}) = c(η[η−1(s′1)])

and
ds(S1, S

′
1) = dωs (S1, S

′
1) = c(η[S1])

must hold by the assumptionds(S, S′) = dωs (S, S′). Let P ′ = (P ′
1, . . . , P

′
s) ∈

P (η−1(s′1), {s′1}) andP ′′ = (P ′′
1 , . . . , P

′′
t ) ∈ P (S1, S

′
1) of the properties assured by

the induction hypothesis onη−1(s′1), {s′1} andS1, S
′
1, respectively. Let

Q′ = (S1 ∪ P ′
1, . . . , S1 ∪ P ′

s),

Q′′ = (P ′′
1 ∪ {s′1}, . . . , P ′′

t ∪ {s′1}).
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Note thatS1 ∪ P ′
1 = S and S1 ∪ P ′

s = P ′′
1 ∪ {s′1}. Hence,Q = Q′Q′′ is a path in

P (S, S′) and

cdfs(Q) = cdfs(Q
′) + cdfs(Q

′′)

≤ ds(η−1(s′1), {s′1}) + ds(S1, S
′
1)

= c(η[η−1(s′1)]) + c(η[S1]) = ds(S, S′).

ClearlyQ also satisfies the remaining property ofP in the statement forS andS′.
Hence, the statement holds onS, S′. It follows thatdωfs ≤ dωs .

The proposition follows fromdωl ≤ dωs ≤ dωfs anddωfs ≤ dωs ≤ dωl . ut
One can find instances for whichdωl /= dωmd, however. For an example, consider

the setsS1 = {00}, S2 = {01, 11}, S3 = {11}, S4 = {01} in Fig. 10. Here it is assumed
thatB consists of the four binary strings 00, 01, 10, and 11 whose distance∆ is their
Hamming distance.

�
�
�
�

s
s s
ss

s s
s

h h
h1110

0100

S1
S4

S3
S2

S1
S4

S3

Fig. 10. Example showing thatdωmd 6= dωl

Then,dωl (S1, S2) = dωl (S1, S3) = 2. However, for the minimum distance measure
we havedωmd(S1, S3) = 2, but dωmd(S1, S2) ≤ 3/2, since one can go fromS2 to S1
by first going toS4 and then toS1; we havedmd(S2, S4) = 1/2. This example shows
that the behavior of thedωl measure is more natural than that of thedωmd measure (at
least in some situations). For this reason, we consider in the next section only the
computation of thedωl measure.

6 Computing the dωl measure

Now let us consider the computational properties of thedωl measure. A simple result
is that under some general assumptions on the computational properties of∆ andB,
the dωl measure is computable.

Proposition 6.1 Assume that∆ is computable and thatB is computable, i.e., all points
of B can be effectively generated in finite time. Thendωl is computable.

Proof. Computedωl by cycling through all paths of length at most 2|B| and take the
minimum of their costs. �

Computingdωl appears to be more complex than computingdl . We will show in
this section that computingdωl is NP-hard for a simple – and quite natural – instance.
However, the associated recognition problem is in NP under very general conditions,
which entails that computingdωl is not much harder than the NP-complete problems.
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6.1 Steiner forests and paths between sets

We need additional concepts. LetS be a nonempty subset ofB. A weighted tree
T = (V,E,w) such thatV ⊆ B andw coincides with∆ is a Steiner tree forS if
S ⊆ V ; T is calledoptimal iff the weightw(T ) is minimum over the weights of all
Steiner trees forS.

We generalize Steiner trees as follows. ASteiner forest forS1, S2 ⊆ B is a family
F = {Ti : 1 ≤ i ≤ k} of pairwise disjoint weighted treesTi = (Vi, Ei, wi) such that
Vi ⊆ B andwi coincides with∆ for all i with 1 ≤ i ≤ k, andS1 ∪ S2 ⊆

⋃
i Vi and

Si∩Vj /= ∅, for i = 1, 2 and allj with 1 ≤ j ≤ k. The weightw(F ) of F is defined
as the weight of the graph that is the union of all trees inF ; F is optimal iff its
weight is minimum over all Steiner forests forS1 andS2.

Note that ifF = {T}, thenF is a Steiner forest forS andS′ iff T is a Steiner
tree forS ∪ S′. In particular, ifS′ = {x} and x ∈ S, then F is optimal iff T is
optimal. The following holds for an optimal Steiner forest in the general case.

Proposition 6.2 LetF be an optimal Steiner forest forS, S′. Then eachT = (V,E) ∈
F is an optimal Steiner tree forV ∩ (S ∪ S′).

Concerning the relation between Steiner forests and paths between sets, our first
observation is that the cost of a path between setsS andS′ is an upper bound for
the weight of an optimal Steiner forest forS andS′.

Lemma 6.3 LetP = (P1, . . . , Pm) ∈ P (S, S′) be adl -optimal path and letF be an
optimal Steiner forest forS, S′. Thenw(F ) ≤ cdl (P ).

Proof. (Sketch) Take an arbitrary sequenceL1,. . . , Lm−1 of linkings Li betweenPi
an Pi+1, and consider the undirected graphG whose edges correspond to the links
in all Li. Each connected component inG contains one point fromS and one from
S′. Thus any forest of spanning trees for the connected components inG is a Steiner
forest forS, S′. It follows w(F ) ≤ cdl (P ). �

Conversely, our next considerations show that the weight of an optimal Steiner
forest forS, S′ is an upper bound for the cost of any path betweenS andS′ under
dl . Consequently, the cost of adl -optimal path betweenS andS′ equals the weight
of an optimal Steiner forest forS, S′.

6.2 Computing a path from a Steiner Tree

Given a Steiner treeT = (V,E,w) for S ∪S′ ⊆ B, S, S′ /= ∅, such that all its leaves,
i.e. vertices of degree 1 are inS ∪S′, the algorithmpath in Table 1 constructs a path
P ∈ P (S, S′) such thatcdl (P ) ≤ w(T ). The intuitive idea is that each step in the path
takes one edge of the Steiner tree. We first do steps that remove each leaf of the tree
that is inS. Then we select an arbitrary vertexx and an edge starting from that, and
produce a next set on the path that in essence takes care of that edge.

Proposition 6.4 path (S, S′, T ) computesP = (P1, . . . , Pm) such thatP ∈ P (S, S′)
andcdl (P ) ≤ w(T ).

Proof. (Sketch) It is not hard to see that the firstwhile terminates (since the number
of edges inT decreases in each iteration), and one can show that upon termination
T is a tree such that all its leaves are inS′. After this, we clearly havePm /= ∅. The
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Table 1. Algorithm for computing fromT a path betweenS andS′

Algorithm path (S, S′, T )

input: Steiner treeT = (V,E,w) for S ∪ S′ ⊆ B,
S, S′ /= ∅, whose leaves are inS ∪ S′.

output: P = (P1, . . . , Pm) ∈ P (S, S′) with cdl (P ) ≤ w(T ).

/* Phase 1: move along edges of leaf nodes x /∈ S′ */

P1 := S; m := 1;
while T has a leafx /∈ S′ with an edge toy do
begin

/* Link x to y */Pm+1 := (Pm\{x}) ∪ {y}; m := m + 1;
removex from T ;

end; /* All leaves of T are in S′ now */

/* Phase 2: move towards S′, and keep the reached nodes in R */

setR := {x} for anyx ∈ Pm;
while E /= ∅ do begin

select anx ∈ R with an edge toy; R := R ∪ {y};
if x /∈ S′ andx is a leaf ofT then

/* Link x to y */Pm+1 := (Pm\{x}) ∪ {y};
/* Link x to x (cost 0) and y */else Pm+1 := P ∪ {y};

m := m + 1; remove edge{x, y} from T ;
end; /* Pm = S′ now */

if m = 1 then output(P1, P1) else output(P1, . . . , Pm);

vertexx selected fromPm serves as the root node of the remaining treeT , whose
edges are removed one by one in the iterations of the secondwhile. An edge{x, y}
can be removed only ifx ∈ R, which holds after all edges on the path from the root
to x have been removed. The secondwhile terminates, again since the number of
edges inT decreases in each iteration. Upon termination,Pm = S′ holds. Clearly,
m = |E| + 1. It is easily checked thatm = 1 iff S = S′ = {v} andT = ({v}, ∅, w) for
somev, hencew(T ) = 0. If m > 1, then for eachi with 1 ≤ i < m there exists a
linking Li betweenPi andPi+1 such thatc(Li) = ∆(x, y), where{x, y} is the edge
that has been removed fromT when constructingPi+1. Consequently,path outputs
on inputS, S′ a pathP ∈ P (S, S′) such thatcdl (P ) ≤ w(T ). �

Lemma 6.5 Let F = {Ti = (Vi, Ei, wi) : 1 ≤ i ≤ k} be an optimal Steiner forest for
S, S′. Then there exists a pathP ∈ P (S, S′) such thatcdl (P ) ≤ w(F ).

Proof. (Sketch) This can be shown by induction onk. For k = 1, this follows from
Proposition 6.4. In the general case, one can construct such a path by first going from
S ∩ V1 to S′ ∩ V1 while keeping the points inS − V1 fixed, after that going from
S ∩ V2 to S ∩ V ′

2 while keeping the points inS′ ∩ V1 andS − (V1 ∪ V2) fixed and so
on. The resulting path has costcdl (P ) ≤ w(F ). �

Theorem 6.6 Let F be an optimal Steiner forest forS, S′ ⊆ B. Thenw(F ) =
dωl (S, S′).

Proof. Follows immediately from Lemmas 6.3 and 6.5.�
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6.3 An algorithm for computingdωl and its complexity

The structural result in Theorem 6.6, combined with Proposition 6.2 is exploited first
by the algorithmdinflink in Table 2. The subroutinesteiner(S,B) called by this
algorithm returns the weight of an optimal Steiner tree forS in B.

Table 2. Algorithm for computingdωl

Algorithm dinflink (S, S′)
input: S, S′ ⊆ B, with 1≤ |S| ≤ |S′|.
output: dωl (S, S′).
d := ∞; /* upper bound on dωl (S, S′) */

for each partitioning B1, . . . , Bk of S ∪ S′ such that 1 ≤ k ≤ |S|
and Bi ∩ S /= ∅, Bi ∩ S′ /= ∅ for 1 ≤ i ≤ k do

begin /*
∑

i
w(Ti) of optimal Steiner trees Ti for Bi is ≥ dωl (S, S′) */

w := 0;
for i = 1 to k do w := w + steiner(Bi, B);
d := min(d,w);

end;
/* d has the cost of an optimal Steiner forest for S, S′ */

output(d);

Proposition 6.7 dinflink computesdωl correctly.

The generation of allB1, . . . , Bk, for eachk, causes exponential cost ofdinflink .
However, as we will show, even if there is only one possible choice, computingdωl
can be an NP-hard problem.dinflink reflects this by calls ofsteiner for NP-hard
instances.

On the other hand, under very general conditions computingdωl is not “much
harder” than the NP-complete problems, as one can show using the Steiner forest
characterization. Recall that our motivation for definingdωl was to extend a distance
measure onB to a metric onP∅(B), which is only possible if∆ is a metric onB.
In this case, the following holds on optimal Steiner trees.

Lemma 6.8 cf. [7] LetS ⊆ B be a nonempty subset ofB. If ∆ is a metric, then there
exists an optimal Steiner tree(V,E,w) for S such that|V | ≤ 2|S| − 2.

Theorem 6.9 Assume that each element ofB can be represented in polynomial size
and time with respect to the size of the input todωl , and that∆ is a metric.8 Then
decidingdωl (S, S′) ≤ b, whereb is a rational number, is in NP.

Proof. Let F = {Ti = (Vi, Ei, wi) : 1 ≤ i ≤ k} be an optimal Steiner forest forS, S′.
Then,k ≤ min(|S|, |S′|). SinceTi is an optimal Steiner tree forSi = Vi ∩ (S ∪ S′)
and∆ is a metric, by Lemma 6.8 we have|Vi| ≤ 2|Si|−2 for eachi with 1 ≤ i ≤ k.
Hence, the number of vertices inF , nv, is bounded by

8 Without this assumption onB, the result may not hold. E.g., ifB consists of all Boolean formulas
(likewise, first-order formulas, or trees)Φ of depth≤ n on a given vocabulary, then the size ofΦ is
not necessarily polynomial inn or the size of other such formulasΦ1 andΦ2.
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nv = |
k⋃
i=1

Vi| ≤ 2
k∑
i=1

(|Si| − 2) = 2|S ∪ S′| − 2k ≤ 2|S ∪ S′| − 2.

Consequently, from Theorem 6.6 it follows thatdωl (S, S′) ≤ b iff there exists a Steiner
forestF ′ for S andS′ on at mostnv vertices. By our assumptions, the instance size
of F ′ is bounded by a polynomial in the input size. Hence, guessingF ′, computing
w(F ′), and comparing this value tob is possible in polynomial time.�

Corollary 6.10 Computingdωl (S, S′) in the setting of Theorem 6.9 is NP-easy.

Proof. dωl (S, S′) can be computed with an oracle for decidingdωl (S, S′) ≤ b in
polynomial time, by doing a binary search over the range of possible values.ut

Notice that Theorem 6.9 and Corollary 6.10 generalize from metrics∆ to distance
functions under which the instance size of an optimal Steiner forest forS andS′ is
bounded by a polynomial in the input size.

It is easy to see that computingdωl is NP-hard even for simple cases.

Theorem 6.11 Deciding whetherdωl (S, S′) ≤ b is NP-hard for subsetsS, S′ of the
Euclidean integral plane with Manhattan metric and for integersb.

Proof. This is shown by a reduction of theGEOMETRIC STEINER TREEproblem (GST)
[8] in the integral plane under the Manhattan (rectilinear) metric∆M . GST is as
follows: Given a finite setP = {p1, . . . , pn} of points in the integral plane and an
integera, decide whether there exists under∆M a Steiner treeT for P such that
w(T ) ≤ a. This problem is known to be NP-hard in the strong sense, i.e. even if all
numbers are represented in unary notation [8]. It is easy to see that we may assume
that inP only nonnegative coordinate values occur.

Now it suffices to note that there exists a Steiner treeT for P such thatw(T ) ≤ b
if and only if dωl (P, {p1}) ≤ b. �

7 Conclusion

We have considered the problem of extending a distance function (or even metric)
between points to a distance function or metric between point sets. We have investi-
gated different approaches for this, and have analyzed the computational complexity
of the resulting functions.

In our analysis, we assumed that the underlying set of pointsB is finite. However,
in many casesB might be infinite. Under certain conditions, the results from above
can be extended to this case as well. The functionsdmd, df , dfs, anddl work well on
finite subsets ofB, but might not converge to a real number if one of the arguments is
infinite; it is not straightforward how to overcome this problem. The functiondω from
Sect. 5, appropriately adapted by taking for (S, S′) the infimum of{cd(P ) : P (S, S′)}
rather than the minimum (which need not exist), yields a metric also for infiniteB
provided that no sequence of pathsP 1, P 2, . . . between two different setsS andS′
exists whose costsc(P 1), c(P 2), . . . converge to 0. In particular, Theorem 5.1 remains
true in this case, and the metric infima ofds, dfs and dl on the finite subsets ofB
collapse. An important fact is, however, thatdω(S, S′) may no longer take the cost
of some optimal path betweenS andS′, but rather the limit of the cost values of an
infinite sequence of paths. This makes exact computation difficult if not impossible.
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However, given e.g. that every setS has for every constantc > 0 only finitely many
setsS′ with d(S, S′) < c and thatd(S, S′) > α for some constantα > 0 whenever
S andS′ are different, thendω(S, S′) takes the cost value of an optimal path.9 (This
applies e.g. to the integral plane under a number of distance functionsd on finite
point sets from above.) Under this assertion, the computation ofdω(S, S′) reduces to
a finite subsetB′ of B. For example, the computation ofdωl (S, S′) in the integral
plane trivially reduces toB′ which contains only pointsx that are within distance
dl (S, S′) to some point inS∪S′. The algorithms in Sect. 6 can thus be readily applied.

Besides proper extensions of the above distance functions to infinite point sets,
several open problems remain.

We know thatdh, dωl , anddωmd are not equivalent, but it is not quite clear what the
properties of these metrics really are. Also, it would be interesting to know whether
dωl or dωmd can be approximated in polynomial time with reasonable performance
bounds.

Acknowledgements.The authors would like to thank the referees for their comments and valuable sugges-
tions that helped to improve the presentation of this paper.

References

1. H. Alt, K. Mehlhorn, H. Wagener, E. Welzl: Congruence, similarity and symmetries of geometric
objects. Discrete Comput. Geom.3, 237–256 (1988)

2. M. R. Anderberg: Cluster Analysis for Applications. Academic Press, New York, 1973.
3. C. Berge: Graphs and Hypergraphs. Elsevier Science Publishers B.V. (North-Holland), 1989.
4. J. Dugundji: Topology. Allyn and Bacon, Inc., Boston, 1966.
5. U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (editors): Advances in Knowledge

Discovery and Data Mining. AAAI Press, 1995. To appear.
6. P. G̈ardenfors: Knowledge in Flux. Bradford Books, MIT Press, 1988.
7. M. Garey, R. Graham, D. Johnson: Some NP-complete Geometric Problems. In Proceedings STOC-78,

pages 10–21, 1978.
8. M. Garey, D. S. Johnson: Computers and Intractability – A Guide to the Theory of NP-Completeness.

W. H. Freeman, New York, 1979.
9. D. Huttenlocher, K. Kedem: Efficiently Computing the Hausdorff Distance for Point Sets under Trans-

lation. In Proceedings of the Sixth ACM Symposium on Computational Geometry, pp. 340–349 (1990)
10. K. Mehlhorn: Graph Algorithms and NP-Completeness, volume 2 of Data Structures and Algorithms.

Springer, 1984.
11. S. Muggleton: Inductive Acquisition of Expert Knowledge. Addison Wesley, Reading, Massachusetts,

1990.
12. B. K. Natarajan: Machine Learning: A Theoretical Approach. Morgan Kaufmann, San Mateo, CA,

May 1991.
13. I. Niiniluoto: Truthlikeness. D. Reidel Pub. Comp., Dordrecht, Holland, 1987.
14. G. Oddie: Verisimilitude and Distance in Logical Space. In I. Niiniluoto and R. Tuomela, editors, The

Logic and Epistemology of Scientific Change, pages 243–264. North-Holland, 1979. (Acta Philosoph-
ica Fennica 30).

15. G. Oddie: Likeness to Truth. D. Reidel Pub. Comp., Dordrecht, Holland, 1986.
16. G. Piatetsky-Shapiro, W. J. Frawley (editors): Knowledge Discovery in Databases. AAAI Press / The

MIT Press, Menlo Park, CA, 1991.
17. K. Popper: Some Comments on Truth and the Growth of Knowledge. In E. Nagel, P. Suppes, and

A. Tarski, editors, Logic, Methodology, and Philosophy of Science, pp. 285–292 (1962)
18. K. Popper: A Note on Verisimilitude. British Journal for the Philosophy of Science27, 147–159 (1976)

9 Examples show that neither of the two conditions can be dropped.



Distance measures for point sets and their computation 133

19. P. Z. Revesz: On the Semantics of Theory Change: Arbitration between Old and New Information. In
Proceedings of the Twelth ACM SIGACT SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS-93), pages 71–79, June 1993.

20. H. Romerburg: Cluster Analysis for Researchers. Lifetime Learning, Belmont, CA, 1984.
21. H. Toivonen, M. Klemettinen, P. Ronkainen, K. Hätönen, H. Mannila: Pruning and grouping of

discovered association rules. In MLnet Workshop on Statistics, Machine Learning, and Discovery
in Databases, pages 47–52, Heraklion, Crete, Greece, April 1995.

22. R. Tuomela: Verisimilitude and Theory-Distance. Synthese38, 213–246 (1978)
23. P. Vaiyda: Geometry Helps in Matching. In Proceedings of the Twentiest ACM Symposium on the

Theory of Computing (STOC-88), pages 422–425, 1988.
24. J. van Leeuwen: Graph Algorithms. In J. van Leeuwen, editor, Handbook of Theoretical Computer

Science, volume A, chapter 10. Elsevier – North-Holland, Amsterdam 1990.
25. M. Winslett: Updating Logical Databases. Cambridge University Press, 1990.
26. S. Wrobel: On the Proper Definition of Minimality in Specialization and Theory Revision. In P. B.

Brazdil, editor, Machine Learning: ECML-93. European Conference on Machine Learning, Lecture
Notes in AI 667, pp 65–82. Springer-Verlag, 1993


