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Abstract. Nonmonotonic description logic programs (dl-programs) are a well-
known formalism for combining rules and ontologies, where rules interact with
an underlying ontology via dl-atoms that allow queries to the ontology under
a possible update of its assertional part. It is known that dl-atoms may be non-
monotonic and dl-programs without nonmonotonic dl-atoms have many desirable
properties. In this paper, we show that it is possible to remove nonmonotonic dl-
atoms from a dl-program while preserving its strong/weak answer set semantics.
Though the translation is faithful, it relies on the knowledge about monotonicity
of dl-atoms. We then thoroughly investigate the complexity of deciding whether
a dl-atom is monotonic under the description logics DL-LiteR, EL++, SHIF
and SHOIN , which is of independent interest for computing strong answer sets.
We show that the problem is intractable in general, but tractable for dl-atoms with
bounded queries in DL-LiteR.

1 Introduction

Logic programming under the answer set semantics (ASP) has been recognized as an
expressive nonmonotonic reasoning framework for declarative knowledge representa-
tion [4]. Recently, there has been an extensive interest in combining ASP with descrip-
tion logics (DLs) for the Semantic Web [7,8,11,16,18,21,22], see [6,18] for a compre-
hensive overview. While most approaches are based on model building either within
a nonmonotonic modal logic like MKNF [18] and AEL [7], or over hybrid formu-
las including QEL [8,16], the approach of dl-programs [11] stands out by facilitating
inference-based communication via well-designed interfaces called dl-atoms. This en-
ables one to reason on top of queries to ontologies, where the rules can combine the
query results in a subtle manner. The approach is closely related to equipping logic pro-
grams with external sources [12] and has been implemented e.g. in dlvhex and DReW.5

Informally, a dl-program is a pair (O,P ), whereO is an ontology (i.e., a knowledge
base) expressed in a description logic, and P a logic program, where rule bodies may
contain queries to the knowledge baseO, called dl-atoms. Such queries allow to specify
inputs from a logic program to the knowledge base. In more detail, a dl-atom is of the

5 See www.kr.tuwien.ac.at/research/systems/ link dlvhex/ resp. drew/

www.kr.tuwien.ac.at/research/systems/
dlvhex/
drew/


form DL[λ;Q](t), whereQ(t) is a query toO, and λ is a list S1 op1 p1, . . . , Sm opm pm
of “virtual updates” Si opi pi, where Si is a concept or a role in O, pi is a predicate
symbol in P of the same arity, and opi is one of the operators ], −∪, −∩. Intuitively, ]
(resp., −∪) increases Si (resp., ¬Si) by the extension of pi, while −∩ (called the constraint
operator) restricts Si to pi by closed world assumption, i.e., in the absence of pi(c), we
assert ¬Si(c); notably, ] and −∪ are monotonic in pi, while −∩ is anti-monotonic. Dl-
programs under weak and strong answer sets semantics [11] were further investigated
from the perspectives of loop formulas [25] and the logic of here-and-there [14].

A dl-atom may be nonmonotonic, due to the presence of the constraint operator.
Dl-programs without nonmonotonic dl-atoms, which we call canonical, enjoy many
desirable properties. For example, the strong answer sets of a canonical dl-program are
minimal under set inclusion; if in addition no default negation occurs in it (i.e., the dl-
program is positive), then it has a unique answer set that is given but the least fixpoint of
an immediate consequence operator. In addition, we know that a key component in most
state-of-the-art ASP solvers is the constraint propagation in terms of computing a well-
founded model that extends the current partial assignment. For canonical dl-programs,
as shown in [13], the well-founded model can be computed by a quadratic number of
calls to the underlying ontology, in the size of a ground dl-program. Thus, if query-
answering in an ontology is tractable, constraint propagation in terms of computing
the well-founded model is also tractable. Solvers for dl-programs can take advantage
of this, as the well-founded model approximates the strong answer sets; furthermore,
characterizations of strong answer sets (e.g., in terms of unfounded sets, cf. [9]) can
be exploited. Therefore, eliminating nonmonotonic dl-atoms from a dl-program is of
practical relevance in answer set computation.

In this paper, we show that any dl-program can be faithfully transformed into a
canonical dl-program under the strong/weak answer set semantics. This result is not
only of use for computational purposes as mentioned above, but also allows to extend
embeddings for the class of canonical dl-programs under strong answer set semantics
into MKNF [18] and First-Order Autoepistemic Logic (FO-AEL) [7] to all dl-programs.

However, one aspect of our translation is that it relies on the knowledge whether
dl-atoms occurring in dl-programs are monotonic. We thus investigate the complexity
of deciding this property, which is of independent interest, as in [11] knowledge about
monotonic dl-atoms may be used as a parameter to define strong answer sets. We con-
centrate in this paper on the description logics SHIF and SHOIN considered in [11],
and on the tractable description logics DL-LiteR [5] and EL++ [2].

While absence of the constraint operator from a dl-atom implies monotonicity, this
is not a necessary condition. In fact, the dl-atom A = DL[S′ ] p, S′−∪p, S−∩p;¬S](a)
evaluates always to true, regardless of the underlying ontology, and thus is monotonic;
such tautological (and analogous contradictory) dl-atoms can be efficiently recognized
[10]. However, in general recognizing monotonic dl-atoms turns out to be intractable,
even for tractable classes of ontologies including DL-LiteR and EL++. On the other
hand, we show that if the size of the query in the dl-atom is bounded, the problem
becomes tractable for DL-LiteR. Thus in this setting—which is important in practice—
we obtain a faithful and polynomial translation to eliminate nonmonotonic dl-atoms
from arbitrary dl-programs.
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2 Preliminaries

In this section, we briefly review basic notions of description logics [3] in an abstract
manner and description logic programs [11].

2.1 Description logics

The vocabulary of a description logic (DL) includes disjoint sets of individual names I,
concept names C (also called atomic concepts), and role names R (also called atomic
roles). Intuitively, individuals names are constants, concept names are unary predicate
symbols, and role names are binary predicate symbols. Complex concept and role ex-
pressions C and R, respectively, in core DLs are formed using Boolean connectives (¬
for negation, u for conjunction and t for disjunction) and existential restriction, as well
as predicate inversion, under syntactic restrictions.

A description logic knowledge base (or ontology) is a pair O = 〈T ,A〉 where
— T , the TBox, is a finite set of formulas X v Y , where X and Y are (restricted)
concept (resp. role) expressions, called concept (resp. role) inclusion axioms;

— A, the ABox, is a finite set of formulas X(a), where X is a (restricted) concept or
role expression and a is a tuple of individual names matching the arity of X , called
membership assertions.

While T specifies terminological knowledge, A specifies extensional knowledge.
The semantics of O is natively defined in terms of models similarly as for theories in
predicate logic, or alternatively for many DLs by a translation τ(O) of O into first-
order logic [3]. An ontology O is satisfiable whenever τ(O) has a model. A dl-query
q is either an inclusion axiom or a membership assertion. By O |= q we denote that
every model of τ(O) is a model of τ(q). In general, deciding O |= q is reducible to
deciding satisfiability of an ontologyO′. In what follows, we assume that the underlying
ontologies are from a class for which the satisfiability problem is decidable (which
usually is the case). There are many well-known such classes, e.g. DL-LiteR [5] and
EL++ [2], for which it is tractable, and SHIF and SHOIN [15], for which it is
EXP-complete resp. NEXP-complete [19].

2.2 Description logic programs: syntax and models

Let Φ = (P, C) be a first-order vocabulary with finite nonempty sets P of predicate
symbols and C ⊆ I of constant symbols such that P is disjoint from C ∪R. Ordinary
atoms (simply atoms) are formed from P , C, and variables as usual.

Definition 1 (Dl-atoms). A dl-atom is an expression of the form

DL[λ;Q](t), (m ≥ 0) (1)

where λ = S1 op1 p1, . . . , Sm opm pm and for all i (1 ≤ i ≤ n),
– opi ∈ {], −∪, −∩} (we call −∩ the constraint operator);
– Si is a concept (resp. role) whenever pi is a unary (resp. binary) predicate;
– Q(t) is a dl-query scheme, i.e. an inclusion axiom or a membership assertion where
t may contain variables as placeholders for constants.
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The pi are called input predicates. Intuitively, Si ] pi extends Si by the extension of pi,
and Si−∪pi analogously extends ¬Si; the expression S−∩pi instead constrains Si to pi.
E.g., DL[S]p;S](a) is a dl-atom in which the concept S is extended with the extension
of p prior to querying whether a is an instance of S; the dl-atom DL[S ] p,R−∩q;S](a)
is similar but in addition the role R is constrained to the extension of q.

A dl-rule (or simply a rule) r is an expression of the form

A← B1, . . . , Bm, notBm+1, . . . , notBn, (n ≥ m ≥ 0) (2)

where A is an atom and each Bi (1 ≤ i ≤ n) is either an ordinary atom or a dl-atom.6

We refer to A as the head of r and to the conjunction of all Bi (1 ≤ i ≤ m) and
notBj (m+1 ≤ j ≤ n) as the body of r. For convenience, we view r also of the form

A← Pos, notNeg (3)

where Pos = {B1, . . . , Bm}, Neg = {Bm+1, . . . , Bn} and not S = {notA | A ∈ S}
for a set S of atoms or dl-atoms. A ground instance of a dl-rule r is obtained from r by
replacing every variable occurring in r, by a constant symbol from C.

A description logic (dl-)program K is a pair (O,P ) where O is an ontology and P
is a finite set of dl-rules. By ground(P ) we denote the set of all ground instances of the
rules in P . In what follows, we assume that the vocabulary P and C of P is implicitly
given by the predicate and constant symbols occurring in P respectively and that P is
ground (viz. P = ground(P )) unless explicitly stated otherwise.

Given a dl-program K = (O,P ), the Herbrand base of P , denoted by HBP , is
the set of all ground atoms p(c1, . . . , cn) with predicate symbol p ∈ P and arguments
ci ∈ C. A (Herbrand) interpretation (relative to P ) is a subset I ⊆ HBP ; the atoms
in I (resp., HBP \ I) are assigned being true (resp., false). Given P = ground(P ), we
can restrict HBP for our purposes to the ordinary atoms occurring in P and all ground
atoms p(c) where p occurs in some dl-atom of P . Under this restriction, the size of
HBP is polynomial in the size of P .

An interpretation I satisfies (is a model of) an (ordinary or dl-)atom A under O,
denoted I |=O A, if the following holds:

– if A ∈ HBP , then I |=O A iff A ∈ I;
– if A = DL[S1 op1 p1, . . . , Sm opm pm;Q](t), then I |=O A iff O(I;λ) |= Q(t) 7

where O(I;λ) = O ∪A(I), A(I) =
⋃m
i=1Ai(I) and, for 1 ≤ i ≤ m,

Ai(I) =

{Si(c) | pi(c) ∈ I}, if opi = ];
{¬Si(c) | pi(c) ∈ I}, if opi = −∪;
{¬Si(c) | pi(c) ∈ HBP \ I}, if opi = −∩,

An interpretation I is a model of a dl-rule of the form (3), if I |=O B for each B ∈ Pos
and I 6|=O B′ for each B′ ∈ Neg implies I |=O A. An interpretation I is a model of a
dl-program K = (O,P ), denoted I |=O K, if I is a model of each rule of P .

6 Unlike [11], we omit strong negation here for simplicity and without loss of expressiveness.
7 Technically, one assumes that for O(I;λ) beyond the syntax of an ontology class, O(I;λ) |=
Q(t) can be recast to basic reasoning (e.g. satisfiability) on an ontology from the same class.
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We note that different forms of dl-atoms might be equivalent; e.g., DL[A−∪p;Q](t)
and DL[¬A]p;Q](t) have this property, and the same holds for DL[A]p,B]p;Q](t)
and DL[A uB ] p;Q](t). In fact, the following statement holds.

Lemma 1. The dl-atoms DL[λ;Q](t) and DL[λ′;Q](t) have same models, if λ′ results
from λ by replacing “S1 ] p, . . . , Sk ] p” with (S1u· · ·uSk)] p, “(S1t· · ·tSn) −∪ p”
with (¬S1 u · · · u ¬Sn)] p, or “S1 −∪ p, . . . , Sn −∪ p” with (S1 t · · · t Sk) −∪ p,.

Monotonicity. A dl-atom A is monotonic (relative to a dl-program K = (O,P )),
if I |=O A implies I ′ |=O A, for all I ′ such that I ⊆ I ′ ⊆ HBP ; otherwise A is
nonmonotonic. Clearly, a dl-atom A is monotonic if the constraint operator −∩ does not
occur in A; however, A can be monotonic even if −∩ occurs.

Example 1. The dl-atom A = DL[S′ ] p, S′−∪p, S−∩p;¬S](a) from the Introduction is
tautological, i.e., I |=O A for every interpretation I ⊆ HBP of any given dl-program
K = (O,P ). On the other hand, A = DL[S−∩p;C](a) is not tautological, but clearly
monotonic w.r.t. K = (O,P ) if O = ∅.

Given a dl-program K = (O,P ), we denote by DLP the set of all dl-atoms that oc-
cur in P , by DL+

P ⊆ DLP the set of all monotonic dl-atoms, and by DL−P = DLP \DL+
P

the set of all nonmonotonic dl-atoms. Note that in [11], DL+
P is any subset of the mono-

tonic dl-atoms (intuitively, those known to be monotonic), and all others are regarded
as nonmonotonic; we adopt here the ideal (and preferable) case of complete knowledge
about monotonicity, which can be established whenever the underlying description logic
is decidable. A dl-program K = (O,P ) is

– positive, if (i) P is “not”-free, and (ii) each dl-atom in P is monotonic relative to K.
– canonical, if DL−P = ∅ (i.e., P contains only monotonic dl-atoms);
– normal, the constraint operator −∩ does not occur in monotonic dl-atoms of P .

Clearly, every positive K is canonical, and K is canonical if −∩ does not occur in P .
Normal programs are incomparable to both positive and canonical programs,

Example 2. Let K = (∅, P ) where P consists of
p(a)← DL[S ] p;S](a), p(a)← notDL[S ] p;S](a).

This dl-program is canonical and normal, but not positive. Intuitively, P expresses
reasoning by cases: regardless of whether the dl-atom A = DL[S ] p;S](a) evaluates
to true or false, p(a) should be true.

Positive dl-programs have attractive semantic properties, e.g., they have a least model
(under set inclusion). Note that monotonicity of a dl-atom A in a normal dl-program K
is easily decided, as it amounts to the occurrence of −∩ in A.

2.3 Strong and weak answer sets

Let K = (O,P ) be a positive dl-program. The immediate consequence operator γK :
2HBP → 2HBP is defined as, for each I ⊆ HBP ,

γK(I) = {h | h← Pos ∈ P and I |=O A for each A ∈ Pos},
Since γK is monotone, it has a least fixpoint lfp(γK) which coincides with the least
model of K and can be iteratively constructed as γ∞K =

⋃
n≥0 γ

n
K where
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γ0K = ∅, and γn+1
K = γK(γ

n
K) for n ≥ 0.

Let K = (O,P ) be a dl-program. The strong dl-transform of K relative to O and an
interpretation I ⊆ HBP , denoted by Ks,I , is the positive dl-program (O, sP IO), where
sP IO is obtained from P by deleting:

– every dl-rule r of the form (2) such that either I 6|=O Bi for some i ∈ {1, . . . ,m}
and Bi ∈ DL−P , or I |=O Bj for some j ∈ {m+ 1, . . . , n};8 and

– all nonmonotonic dl-atoms and notA from the remaining dl-rules where A is an
atom or a dl-atom.

The interpretation I is a strong answer set of K if it is the least model of Ks,I , i.e.,
I = lfp(γKs,I ).

The weak dl-transform of K relative to O and an interpretation I ⊆ HBP , denoted
byKw,I , is the positive dl-program (O,wP IO), wherewP IO is obtained similarly as sP IO
but with DLP in place of DL−P . An interpretation I is a weak answer set of K, if I is the
least model of Kw,I , i.e., I = lfp(γKw,I ). If in a dl-program K = (O,P ) no dl-atom
occurs positively, then its weak and strong answer sets coincide (as Kw,I = Ks,I for
any interpretation I). The same holds if O is unsatisfiable; in this case, the strong and
weak answer sets are incomparable w.r.t. inclusion. This, however, is not true in general.

It has been shown that if a dl-program contains only monotonic dl-atoms, then its
strong answer sets are minimal models (cf. Theorem 4.13 of [11]), and thus incompa-
rable w.r.t set inclusion. However, this does not hold for weak answer sets, even if a
dl-program is positive. It is also known that strong answer sets are always weak answer
sets, but not vice versa. One might wonder whether for each weak answer set I of a
dl-program K, it has some strong answer set I ′ such that I ′ ⊆ I . As illustrated by the
following example, this is not the case.

Example 3 (cont’d). Reconsider K in Example 2, and let I = {p(a)}. We have that
wP IO = { p(a) }, thus I is a weak answer set of K. However, note that sP IO = {p(a)←
DL[S ] p;S](a)}. The least model of Ks,I is ∅ (6= I). So that I is not a strong answer
set of K. Now consider I ′ = ∅. We have sP I

′

O = {p(a) ← DL[S ] p;S](a); p(a) }.
The least model of Ks,I′ is {p(a)} (6= I ′). Thus I ′ is not a strong answer set of K. In
fact, K has no strong answer sets at all. This is in line with the intuition that, as O = ∅,
p(a) can not be foundedly derived without the assumption that p(a) is true.

3 Eliminating Constraint Operators from Nonmonotonic Dl-atoms

Intuitively, translating a nonmonotonic dl-atom into a monotonic one is to replace S−∩p
with S−∪p′, where p′ is a fresh predicate of the same arity as p that stands for the negation
of p. In what follows, we show that the constraint operator can be eliminated from
nonmonotonic dl-atoms while preserving strong answer sets. As mentioned previously,
we assume that the signatures P and C are implicitly given by a dl-program K; any
predicate symbol not occurring in K is fresh.

Definition 2 (π(K)). Let K = (O,P ) be a dl-program. Then π(K) = (O, π(P )),
where π(P ) =

⋃
r∈P π(r) and π(r) consists for a rule r of form (2) of:

8 [11] used DL?
P in place of DL−P , which in our ideal setting of complete knowledge coincides

with DL?
P ; technically, the discrepancy is not essential.
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(i) the rule

A← π(B1), . . . , π(Bm), π(notBm+1), . . . , π(notBn), where (4)

π(B) =

{
B, if B is an atom or a monotonic dl-atom;
not πB , if B is a nonmonotonic dl-atom,

where πB is a fresh propositional atom, and

π(notB) =

{
notB, if B is an atom;
notDL[π(λ);Q](t), if B = DL[λ;Q](t),

where π(λ) results from λ by replacing each “S−∩p” with “S−∪πp”, where πp is a
fresh predicate of the same arity as p;

(ii) for each nonmonotonic dl-atom B ∈ {B1, . . . , Bm}, the rule

πB ← π(notB) (5)

where πB is from (i) and
(iii) for each predicate p such that “S−∩p” occurs in some nonmonotonic dl-atom of r,

all ground instances of the rule

πp(x)← not p(x) (6)

where x is a tuple of distinct variables matching the arity of p, and πp is from (i).

Intuitively, the idea behind π is the following. Recall that “S−∩p” means “infer ¬S(c) in
the absence of p(c)”. Thus if πp(c) stands for the absence of p(c) then “S−∩p” should
have the same meaning as that of “S−∪πp”. Thus, a nonmonotonic dl-atom is expressed
by a monotonic dl-atom and nonmonotonic negation “not”. Note that π(P ) may still
contain dl-atoms with the constraint operator, but they are all monotonic, i.e., π(K) is
canonical but not necessarily normal. The trick for eliminating unnegated nonmono-
tonic dl-atoms is simulating “double negation” (allowed in nested expressions [17]),
which also is exploited to eliminate the constraint operator from nonmonotonic dl-
atoms.

Example 4. Let K1 = (∅, P1), where P1 = {p(a) ← notDL[¬S−∩p;S](a)}; note that
K1 is normal but neither canonical nor positive. One can check that K1 has the weak
answer sets ∅ and {p(a)}, which are both also strong answer sets. Under the translation
π, we have π(K1) = (∅, π(P1)), where π(P1) consists of the rules

p(a)← notDL[¬S−∪πp;S](a), πp(a)← not p(a),
which has the weak answer sets {p(a)} and {πp(a)} corresponding to {p(a)} and ∅,
respectively, when restricted to HBP1

; again, both are also strong answer sets.

Given a dl-programK = (O,P ) and I ⊆ HBP , let π(I) = I∪π1(I)∪π2(I) where

π1(I) = {πp(c) ∈ HBπ(P ) | p(c) /∈ I}, and
π2(I) = {πA ∈ HBπ(P ) | A ∈ DL−P & I 6|=O A}

With this in place, we establish a one-to-one mapping between the strong answer
sets of a dl-program K and those of π(K).
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Theorem 1. Let K = (O,P ) be a dl-program. Then

(i) if I is a strong answer set of K, then π(I) is a strong answer set of π(K);
(ii) if I∗ is a strong answer set of π(K), then I∗ ∩ HBP is a strong answer set of K.

Proof sketch: First one shows that I |=O DL[λ;Q](t) iff π(I) |=O DL[π(λ);Q](t).
Then ones prove, by induction on k, that γkKs,I = HBP ∩ γk[π(K)]s,π(I) for every inter-
pretation I and k ≥ 0. Finally we can obtain that the least fixpoint of γ[π(K)]s,π(I) is
π(I), thus (i) is proved. The proof of (ii) is similar.

Note that to remove the constraint operator from nonmonotonic dl-atoms, we must ex-
tend the underlying language. Indeed, the strong answer sets of an arbitrary dl-program
K are not necessarily incomparable, while the strong answer sets of any −∩-free dl-
program K′ are minimal models of K′ (cf. Theorem 4.13 of [11]) and thus incompara-
ble. Hence, if K′ results from a transformation that preserves strong answer sets, then it
must use extra symbols.

Note that we need to determine the monotonicity of dl-atoms in the translation π,
which leaves monotonic dl-atoms untouched. That is, the “double negation” interpreta-
tion applies only to positive nonmonotonic dl-atoms. If we deviate from this condition,
the translation no longer works for strong answer sets. To illustrate this, we may ask
whether monotonic dl-atoms can be handled like nonmonotonic dl-atoms, and if so, the
translation turns out to be polynomial. Unfortunately we give a negative answer below.

Example 5. ConsiderK1 = (∅, P1) where P1 = {p(a)← DL[S]p, S′−∩q;S](a)}. The
dl-atom A = DL[S ] p, S′−∩q;S](a) is clearly monotonic and thus the unique strong
answer set of K1 is I = ∅. If we extend π to eliminate the constraint operator from A
similar as from nonmonotonic dl-atoms, we obtain the dl-program (∅, P ′1) where
P ′1 = {p(a)← not πA, πA ← notDL[S ] p, S′−∪πq;S](a), πq(a)← not q(a) }.

One can verify that this dl-program has two strong answer sets, {p(a), πq(a)} and
{πA, πq(a)}, which are {p(a)} and ∅ respectively when restricted to HBP1

. Thus the
modified translation may introduce strong answer sets that do not correspond to any
strong answer set of the original dl-program.

Weak answer sets. Though we can show that Theorem 1 holds for K under weak
answer set semantics as well, a similar translation exists for the purpose which needs not
the knowledge about monotonicity of dl-atoms, thus it is polynomial. This is achieved
by first rewriting dl-programs into ones in which all dl-atoms occur negatively.

Definition 3 (σ(K)). Let r be a dl-rule of the form (2). We define σ(r) to be the dl-rule
A← σ(B1), . . . , σ(Bm), . . . , notBm+1, . . . , notBn

where σ(B) = not σB if B is a dl-atom, and B otherwise, where σB is a fresh atom.
For a dl-program K = (O,P ), we define σ(K) = (O, σ(P )) where σ(P ) = {σ(r) |
r ∈ P} ∪ {σB ← notB | B ∈ DLP }.
For instance, consider K = (∅, P ), where P = {p(a) ← DL[S ] p;S](a)}. We have
σ(K) = (∅, σ(P )), where σ(P ) = {p(a)← not σA; σA ← notDL[S ] p;S](a)}, and
A is the dl-atom DL[S ] p;S](a). Then σ(K) has two weak answer sets, viz. {σA} and
{p(a)}, which respectively correspond to the weak answer sets ∅ and {p(a)} of K if
restricted to HBP . In general, we have:
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Proposition 1. Let K = (O,P ) be a dl-program and I ⊆ HBP . Then I is a weak
answer set of K iff I ∪ {σB | B ∈ DLP and I 6|=O B} is a weak answer set of σ(K).

Note that if in each rule of form (2) in a dl-program K = (O,P ) every Bi (1 ≤ i ≤ m)
is an ordinary atom, then the weak answer sets of K coincide with the strong answer
sets of K. Now let π′(K) = π(σ(K)) be the composition of σ(K) and π(K). From
Theorem 1 and Proposition 1, we thus obtain:

Corollary 1. Let K be a dl-program. There is an one-one mapping between the weak
answer sets of K and those of π′(K) = π(σ(K)).

Clearly, σ(K) can be computed in polynomial time w.r.t. the size of K. Furthermore,
in σ(K) only negated dl-atoms occur, π needs no knowledge about monotonicity of
dl-atoms for σ(K), thus π′ is a faithful and polynomial translation.

4 Complexity of Deciding Monotonicity of Dl-atoms

As regards monotonicity checking, we start with some generic result. Let us call the
complexity of deciding, given a dl-program K = (O,P ), a dl-atom A of form (1) in P ,
and an arbitrary interpretation I , whether O(I;λ) |= A the query complexity of A.

Proposition 2. Given a dl-program K = (O,P ) and a dl-atom A occurring in P that
has query complexity in class C, deciding whether A is monotonic is in co-NPC .

Indeed, to refute that A is monotonic, we can guess interpretations I ⊆ I ′ and check
that (I;λ) |= A and (I ′;λ) 6|= A using the C oracle.

In the following, we study the complexity of monotonicity checking where O is
from DL-LiteR [5], EL++ [2], SHIF or SHOIN (the latter two were adopted in
[11]).9

4.1 Description logic DL-LiteR
Starting from I, C, and R, basic concepts B and (general) concepts C, and basic roles
R and (general) roles E are defined as as follows, where A is a concept name, P is a
role name, and P− is the inverse of P :

B −→ A | ∃R C −→ B | ¬B R −→ P | P− E −→ R | ¬R
In a DL-LiteR ontology O = 〈T ,A〉, inclusion axioms are of the form B v C or

R v E, and membership assertions are of the form C(a) and E(a, b), where C is a
concept, E is role and a, b are individual names.10

For every first-order sentence ϕ, we denote by cls(ϕ) the clausal form of ϕ that is
obtained by standard skolemization and transformation into set of clauses, and we let
cls(Σ) =

⋃
ϕ∈Σ cls(ϕ). It is easy to see that if O is a DL-LiteR ontology, every clause

in cls(τ(O)) contains at most two literals. Thus from the structure of resolution proofs,
we obtain the following useful result (which is implicit in [5]).

9 [11] considered the extensions SHIF(D) and SHOIN (D) of SHIF and SHOIN , re-
spectively, with datatypes; we omit the latter for simplicity (which is conceptually inessential).

10 General concepts and roles in ABoxes is syntactic sugar; we can replace C(a) and E(a, b) by
AC(a) and PE(a, b), resp., and add AC v C, PE v E in the TBox, where AC and PE are
fresh names. Modulo the new symbols, the new and the old ontology are equivalent.
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Proposition 3. Let O = 〈T ,A〉 be a DL-LiteR ontology. Then (i)–(iii) are equivalent:

(i) O is unsatisfiable.
(ii) The empty clause has a resolution proof from cls(τ(O)).

(iii) 〈T ,A′〉 is unsatisfiable for some A′ ⊆ A with |A′| ≤ 2.

As well-known, deciding satisfiability of a DL-LiteR knowledge base is tractable (cf.
Theorem 26 of [5]); in fact, it is NLOG-complete [1]. Furthermore, subsumption check-
ing (deciding O |= F where F is an inclusion axiom) and instance checking (deciding
O |= F where F is a membership assertion) easily reduce to deciding knowledge base
satisfiability for DL-LiteR and are thus solvable in polynomial time.

This continues to hold if in F arbitrary conjunctions X = X1 u · · · u Xn and
disjunctions Y = Y1t · · ·tYm of general concepts (resp. roles) Xi and Yj are allowed
in place ofB and C (resp.R and E), Such compound queries, which are convenient for
the user, can be reduced to basic reasoning using simple rewriting techniques, without
the loss of tractability.

We thus define dl-queries in DL-LiteR as formulas Q(t) of one of the following
forms, where C(i) (resp. E(i)), i = 1, 2 are any conjunctions or disjunctions of general
concepts (resp. roles), Bt and Rt are disjunctions of basic concepts resp. roles, and
Cu and Eu are conjunctions of concepts resp. roles:

– C(1)(a), where t = a, and a is a constant in C;
– E(1)(a, b), where t = (a, b), a and b are constants in C;
– C(1) v C(2), ¬(Bt v Cu), E(1) v E(2), ¬(Rt v Eu) where t = ε.

The entailment relation O |= Q(t) is as in the discussion. Let the size of dl-query
Q(t), denoted by |Q|, be the number of concept resp. role names occurring in Q. As a
consequence of Proposition 3, we show:

Proposition 4. Let O = 〈T ,A〉 be a DL-LiteR knowledge base and Q(t) a dl-query.

(i) Deciding whether O |= Q(t) is feasible in polynomial time of the size O (more
precisely, NLOG-complete).

(ii) O |= Q(t) iff 〈T ,A′〉 |= Q(t) for some A′ ⊆ A and |A′| ≤ max(2, |Q|2).

Regarding monotonicity checking, we then prove the following result.

Theorem 2. Given a dl-program K = (O,P ), where O is a DL-LiteR ontology, and a
dl-atom A occurring in P , deciding whether A is monotonic is co-NP-complete.

Proof sketch: The co-NP membership follows from Prop. 2 and the fact the query
complexity of the dl-queries Q(t) above is polynomial (Prop. 4). For co-NP-hardness,
we give a reduction from 3SAT instances ϕ = ϕ1∧· · ·∧ϕm with variables x1, . . . , xk,
and ϕi = li,1 ∨ li,2 ∨ li,3. We construct the ontology O and the dl-atom A as follows:

– O = {l∗i,j v Bi | 1 ≤ i ≤ m, 1 ≤ j ≤ 3} with x∗s = As, and ¬x∗s = A′s,
1 ≤ s ≤ k,

– A = DL[λ;B uB1 u · · · uBm](d) with λ = (A1 ] p1, . . . , Ak ] pk, ¬A′1−∩p1, . . .,
¬A′k−∩pk,¬B−∩p),
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where (i)A1, A
′
1 . . . , Ak, A

′
k, B,B1, . . . , Bm are pairwise distinct atomic concepts, (ii)

p, p1, . . . , pk are pairwise distinct unary predicates, and (iii) d is a constant. Finally we
can show that ϕ is satisfiable iff A is nonmonotonic relative to O.

Note that in the proof of co-NP-hardness, the query size |Q| grows with the size of the
3SAT instance. We next show that monotonicity checking is tractable if |Q| is small
(bounded by a constant); this is perhaps the most frequent case in practice.

The proof exploits two key properties; the first is that satisfaction of a dl-atom can
be shown with small interpretations relative to the query size.

Proposition 5. Let K=(O,P ) be a dl-program, I ⊆HBP and A a dl-atom of form (1)
from P . If I |=O A, then I ′ |=O A for some I ′⊆ I such that |I ′| ≤ max(2, |Q|2).

In case |Q| = 1, |I ′| = 2 can be necessary. For example, consider the dl-atom A =
DL[S1 ] p, S2 ] q;S3](a) and O = {S1 v ¬S2}, where S1, S2, S3 are concept names.
Then {p(a), q(a)} |=O A but no proper subset of {p(a), q(a)} satisfies A under O.

The second property is that the monotonicity of a dl-atom can be refuted by chang-
ing a single atom in an interpretation I .

Proposition 6. Let K = (O,P ), where O be a (DL-LiteR) ontology. A dl-atom A from
P is nonmonotonic iff there exists I ⊆ HBP and p(c) ∈ HBP such that I |=O A and
I ∪ {p(c)} 6|=O A.

Using Propositions 5 and 6, we establish the announced tractability result.

Theorem 3. Given a dl-program K = (O,P ), where O is a DL-LiteR ontology, and
a dl-atom A = DL[λ;Q](t) from P of the form (1), deciding whether A is monotonic
is feasible in polynomial time (more precisely, NLOG-complete) if the size of Q(t) is
bounded by a constant.

Proof sketch: Let n = |Q| and Q(t) = C(a) where C is a concept name. Clearly
O 6|= C(a), otherwise A is monotonic. By Proposition 6, A is nonmonotonic
iff there exist some I ⊆ HBP , p(c) /∈ I such that (1) I |=O A and (2) I∪{p(c)} 6|=O A
iff P+ ∩ P− = ∅ and some I ′ of size |I ′| ≤ max(n2, 2) exists such that I ′ ∩ P+ = ∅
and I ′ |=O A, where P s = {α ∈ HBP | O ∪ A({α}) |= C(a)}, for s ∈ {+,−} by
Proposition 3. As easily seen, p(c) ∈ P−. Now the sets P+ and P− can be computed
in polynomial time. If n is bounded by a constant, the search space for I ′ is polynomial;
the test I ′ |=O A is feasible in polynomial time. Thus deciding whether A is nonmono-
tonic is feasible in polynomial time. Compound dl-queries can be reduced to the above
case by formula rewriting techniques.

4.2 Description logic EL++

The EL++ concepts are defined by
C,D ::= > | ⊥ | A | {a} | C uD | ∃P.C,

whereA ∈ C, P ∈ R and a ∈I. An EL++ constraint box (CBox), or knowledge base, is
a finite set of general concept inclusions (GCIs) of the form C v D and role inclusions
(RIs) of the form P1 ◦ · · · ◦ Pn v P . One can see that EL++ is expressive enough
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to capture concept and role assertions, e.g. assertions C(a) and P (a, b) can be encoded
with general concept inclusions {a} v C and {a} v ∃P.{b} respectively. Similarly, the
assertions ¬C(a) and ¬P (a, b) can be encoded as {a} u C v ⊥ and {a} u ∃P.{b} v
⊥ respectively. It is known that subsumption in EL++ w.r.t. CBoxes is tractable (cf.
Theorem 4 of [2]), and the same holds for satisfiability in EL++ w.r.t. CBoxes.

By an extended concept we mean a concept C or its negation ¬C, and an extended
role we mean a role P or its negation ¬P . An dl-query Q(t) in EL++ has one of the
following forms, where C(i) (resp. E(i)), i = 1, 2 are any conjunctions or disjunctions
of extended concepts (resp. roles), Ct and Et are disjunctions of concepts resp. roles,
and Cu and Eu are conjunctions of extended concepts resp. of roles:

– C(1)(a), where t = a, and a is a constant in C;
– E(1)(a, b), where t = (a, b), a and b are constants in C;
– C(1) v C(2), ¬(Ct v Cu), E(1) v E(2), ¬(Et v Eu), where t = ε.

Then we have the following property.

Proposition 7. Given an EL++ knowledge base O and a dl-query Q(t), deciding
whether O |= Q(t) is feasible in polynomial time.

Dl-atoms have the same form (1) except that concepts and roles occurring in λ
are now in EL++. It is then not hard to establish that they have polynomial query
complexity. Thus from Proposition 2 and a slight modification of the reduction in the
proof of Theorem 2, we obtain the following result.

Theorem 4. Given a dl-programK = (O,P ), whereO is an EL++ ontology, and a dl-
atom A = DL[λ;Q](t) in DLP , deciding whether A is monotonic is co-NP-complete.
The problem is co-NP-hard even if Q(t) = C(a) where C is a concept name.

4.3 Description logics SHIF and SHOIN

The description logics SHIF and SHOIN subsume DL-LiteR and EL++. They al-
low for transitive roles, i.e., role inclusion axioms of the form r ◦ r v r, and role in-
clusion r v s, under syntactic restrictions to ensure decidability of the basic reasoning
tasks. Furthermore, they cater equality a ≈ b and inequality a 6≈ b of individuals a and b
in ABox assertions. SHOIN concepts can be built inductively using the Boolean con-
nectives, nominal concepts {o1, . . . , on}, qualified restrictions ∃R.Q,∀R.Q and num-
ber restrictions ≥ nR, and ≤ nR, where n is an integer; in SHIF , nominal concepts
are excluded and ≥nR is restricted to ≥ 1R and ≤nR to ≤ 0R; see [15] for details.

Dl-atoms have the same form as (1) except that
– each Si is either a concept, a SHOIN resp. SHIF role or its negation,11 or one

of ≈, 6≈;
– the dl-query Q(t) has the form in Section 2.2 (using SHOIN / SHIF concepts

and roles) with role conjunctions resp. disjunctions of size 1, or the form t1 ≈ t2 or
t1 6≈ t2 where t = (t1, t2).

11 It is convenient to allow for role negation, as we can replace “S−∪p” equivalently with “¬S]p”.
As discussed in [11], negative role assertions can be simulated in SHIF and SHOIN .
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Recall that testing knowledge base satisfiability is EXP-complete for SHIF [24,15]
and NEXP-complete for SHOIN (for both unary and binary number encoding) [15,19].
For monotonicity checking of dl-atoms, we establish the following result.

Theorem 5. Given a dl-program K = (O,P ) and a dl-atom A occurring in P , decid-
ing whether A is monotonic is (i) EXP-complete, if O is a SHIF knowledge base and
(ii) PNEXP-complete, if O is a SHOIN knowledge base.

Proof sketch: The membership parts follow easily from Proposition 2 and the facts
that (i) SHIF has query complexity in EXP and co-NPEXP = EXP, and (ii) SHOIN
has query complexity in co-NEXP and co-NPco-NEXP = PNEXP (cf. [11]). For the EXP-
hardness of (i), let O be a SHIF knowledge base, and define K = (O′, P ) where
O′ = O∪{C(o) | o ∈ C}, P = {p∗ ← DL[C−∩p;> v ⊥]}, where C is a fresh concept
name. Then the dl-atom in P is monotonic relative to K iff O is unsatisfiable, which
is EXP-complete in general (as EXP is closed under complementation). The PNEXP-
hardness of (ii) is proved by a polynomial transformation of the following problem
NEXP-JC, which is PNEXP-complete, to dl-atom monotonicity checking.

Thus testing monotonicity-of a dl-atom is not or only mildly harder than deciding
knowledge base satisfiability; it is in fact as hard as deciding whether a dl-program has
a weak or strong answer set over the respective description logic.

5 Discussion and Conclusion

5.1 Related work

To the best of our knowledge, eliminating the constraint operator from dl-programs has
been considered by Eiter et al. [13], who proposed a well-founded semantics for dl-
programs mentioning no the constraint operator and argued that the well-founded se-
mantics for general dl-programs is obtained by translating them into ones without con-
straint operators. Our transformation π for the strong answer set semantics is inspired
by the respective transformation in [13] (which we refer to as π′ in the following), but
there are subtle differences which result in significantly different behavior.

For every dl-program K = (O,P ), we have π′(K) = (O, π′(P )) where π′(P ) =⋃
r∈P π

′(r) and π′(r) comprises the following rules:

(1) if S−∩p occurs in r, then π′(r) includes all ground instances of the rule

p(X)← notDL[S′ ] p;S′](X),
where S′ is a fresh concept (resp., role) name if p is a unary (resp., binary) predicate,
and X is a tuple of distinct variables matching the arity of p,

(2) π′(r) includes the rule obtained from r by replacing each “S−∩p” with “¬S ] p”.12

For every atom or dl-atomA, let π′(A) result fromA by replacing every occurrence
S−∩p with ¬S ] p.

The translation π′ may lose strong answer sets as demonstrated in the next example.

12 It is “S−∪p” according to [13] which is equivalent to “¬S ] p”.
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Example 6. Consider the dl-program K = (O,P ) where O = ∅ and P consists of
q(a)← DL[S1 ] p,¬S2−∩q;S1 t S2](a), p(a)← q(a).

It is not difficult to check that K has a unique strong answer set {p(a), q(a)}. One
can verify that π′(K) has no strong answer sets.

The discussion above leads to a related question, viz. whether the translation π′(K)
introduces extra strong answer sets. However, this is not the case.

Proposition 8. Let K = (O,P ) be a dl-program and let I ⊆ HBπ′(P ) be a strong
answer set of π′(K). Then I ∩ HBP is a strong answer set of K.

As shown above, dl-programs can be faithfully transformed into canonical dl-pro-
grams, i.e., dl-programs without nonmonotonic dl-atoms, under both the strong and the
weak answer sets semantics. Besides the use for computational purposes in solvers for
dl-programs, the transformation for strong answer sets enables us to show that arbitrary
dl-programs under this semantics can be embedded into hybrid Minimal Knowledge
and Negation as Failure (MKNF) [18] and First-Order Autoepistemic Logic (FO-AEL)
[7], generalizing respective embeddings for canonical dl-programs in these papers, and
into default logic [20], which will be reported elsewhere.

5.2 Open issues

Our complexity results on monotonicity testing of dl-atoms suggest that a polynomial
and faithful translation of arbitrary dl-programs into canonical ones under strong an-
swer sets semantics, by eliminating the nonmonotonic dl-atoms is unlikely to exist
for DL-LiteR and EL++, as the existence of a strong answer set has NP complexity
while monotonicity testing is co-NP-complete. However, the two problems have the
same complexity for SHIF and SHOIN , and the respective complexity classes are
closed under complement. This suggests that it may be possible to transform general
dl-programs into equivalent canonical ones under the strong answer sets semantics by
eliminating constraint operators from dl-atoms in polynomial time. An idea is that in
the transformation π(K), the monotonicity test for π(B) in the rules (4) can be encoded
to a designated dl-program that is incorporated into the given dl-program and calculates
the test result. However, this requires further investigation.

Besides the weak and strong answer set semantics, further notions of answer set
semantics for dl-programs have been proposed that refine the weak and strong answer
set semantics, including FLP semantics [12,14] and the recent well-supported semantics
[23]. It remains an interesting issue to investigate whether translations similar to π(K)
for dl-programs under these answer set semantics to exist.
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