
Progression for Monitoring in Temporal ASP∗

Davide Soldá, Ignacio D. Lopez-Miguel, Ezio Bartocci and Thomas Eiter

TU Wien, Vienna, Austria
{davide.solda, ignacio.lopez, ezio.bartocci, thomas.eiter}@tuwien.ac.at

ORCiD ID:

Abstract. In recent years, there has been growing interest in the ap-
plication of temporal reasoning approaches and non-monotonic log-
ics from artificial intelligence in dynamic systems that generate data.
A well-known approach to temporal reasoning is the use of the pro-
gression technique, which allows for the online computation of log-
ical consequences of a logical knowledge base over time. We con-
sider the progression technique for Temporal Here and There and
Temporal Equilibrium Logic, which is the logic underlying answer
programming over linear-temporal logic (LTL). Compared to usual
LTL online computation, where the goal is to check whether a trace
is compliant with a temporal specification, our approach provides
also the means to compute non-monotonic temporal reasoning over
a trace of observations. Besides formal notions and results, we also
present an algorithm for performing progression to monitor a dy-
namic system, which has been implemented as a proof of concept
and allows for handling expressive application scenarios.

1 Introduction

With the increase of data-driven applications, reasoning about their
behavior as they evolve in time has become crucial. Temporal logics
provide a formal framework to specify the desired temporal behav-
ior in an unambiguous way. Over the last decade, there has been a
great effort in artificial intelligence to develop temporal reasoning
approaches based on non-monotonic logics and answer set program-
ming [11, 24] (ASP). A popular example is Temporal Equilibrium
Logic [1, 2] (TEL), which combines Linear Temporal Logic [28]
(LTL) and Equilibrium Logic [27] in an orthogonal way. TEL is
a nonmonotonic version of Temporal Here-and-There Logic [2]
(THT), which is an intuitionistic version of LTL based on Heytings’s
Logic of Here-and-There [21] amounting to 3-valued Gödel Logic.

Tools for computing stable traces of temporal logic programs have
been presented already in the literature, among them TELINGO[15],
STELP[14], and the algorithm in [13]. The latter two are automata-
based; a Büchi-based approach as in [14] may have to handle an ex-
ponential number of loop formulas to ensure the stability of traces.
TELINGO instead uses incremental ASP and is limited to finite traces.

How to monitor TEL specifications over infinite traces is an open
problem. In this paper, we take inspiration from rewriting-based tech-
niques proposed in runtime verification [30], in situation calculus
[23] to reason about actions and in planning with goals specified us-
ing Metric Interval Temporal Logic [6]. However, all these works
are based on classical semantics. The key idea of progression is

∗
ECAI 2023, to appear (uncorrected preprint)

to rewrite, as new observations of the system become available, an
answer-set program expressing the obligations that need to be ful-
filled in the future in order to have a true or a false verdict.

The main difference between TEL/THT and LTL is the seman-
tics for the implication. TEL/THT is more expressive than LTL [2]:
LTL formulas can be encoded into THT, but the converse is not al-
ways possible. Furthermore, LTL is monotonic while TEL is non-
monotonic and thus more suited for handling exceptions and dealing
with incomplete information. In contrast with rule-based languages
such as temporal Datalog [32, 29], TEL/THT uses explicit temporal
modal operators to reason about time instead of rules. In [31] there
has been proposed a stream reasoning framework based on Metric
Temporal Logic, under stable semantics.

Computing stable models (aka answer sets or equilibrium models)
of logic programs where time is involved can be a challenging task,
especially when dealing with infinite traces, which may be necessary
when observing a reactive system. The behavior of such a system
may depend on the environment; hence the possibility to monitor
complex properties that require reasoning is desirable. In nonmono-
tonic reasoning and logic programming, skeptical (cautious) reason-
ing is a common approach to inference, in which in a Tarskian man-
ner the intersection of all answer sets of a program is considered. Our
approach thus aims to compute the intersection of all prefixes of all
stable traces of a temporal program, by taking also possible future
observations on the system under scrutiny into account.

In order to compute prefixes of stable traces of the program, we
introduce a novel online computation based on the idea of progres-
sion already used in runtime verification [8] and in planning where
the goal is specified using Metric Temporal Logic [6]. To the best of
our knowledge, this is the first time that this approach has been used
in temporal answer set programming. In comparison to incremental
ASP, this approach incorporates the observations into the program,
which does not lead to an increase in the program size. Furthermore,
it maintains a program at the symbolic level, making also visible
which information is missing. It provides a basis for reasoning about
future evolution in a flexible way, e.g., to find possible sequences of
observations that will ensure a specification will be satisfied.

To validate and present an application of our algorithm, we use
a temporal version of the well-known Σp2 strategic companies prob-
lem [16, 22], where we assume to have an incoming trace of ob-
servations about the evolution of ownership of companies and pro-
duction of goods. An example of a temporal property that we may
want to verify at runtime is whether G(contr_by(c, c1, c2) →
F(contr_by(c, c1, c1))) is satisfied, which informally means that
whenever at some point in the future, company c is controlled by

c1 and c2, it will eventually be controlled only by c1.

Our contribution We define a novel approach for monitoring by
progression TEL/THT formulas over an infinite sequence of obser-
vations. In particular, we develop an algorithm to compute online the
intersection of all the stable traces with a stream of incoming ob-
servations. We provide an experimental implementation and validate
our approach on a case study of the strategic companies problem.

Paper organization In Section 2 we provide the necessary back-
ground on Temporal Here and There Logic (THT) and Temporal
Equilibrium Logic (TEL). Section 3 and 4 introduce our approach of
progression for monitoring TEL and THT, respectively. In Section 5
we present an algorithm for computing online the intersection of all
the temporal traces of a given temporal program with an incoming
trace of observations. In Section 6, we demonstrate an application
of our approach to a case study on monitoring strategic companies
and provide some experimental results. We discuss related work in
Section 7 and conclude in Section 8 with an outlook on future work.

2 Preliminaries

As Equilibrium Logic (EL) [27] can be seen as the logic underlying
Answer Set Programming (ASP) [27], Temporal Equilibrium Logic
(TEL) over infinite traces [2] can be interpreted as a pure logical
temporal extension of ASP. Note that the definition of EL is based on
Here-and-There Logic (HT), as TEL is defined over Temporal Here-
and-There Logic (THT). The logics have the same formulas; we are
interested in a fragment with the following syntax:

F ::= ⊥ | p | F ◦ F | F → F |XF |G F | F F |Y F ′

F ′ ::= ⊥ | p |Y F ′
(1)

Where p ∈ P for a finite set P of propositional atoms and ◦ ∈
{∧,∨}. Negation is defined as ¬φ ≡ φ → ⊥, and > ≡ ¬⊥. The
temporal operators G (globally) and F (finally) are defined as usual,
viz. Gφ ≡ ⊥Rφ and Fφ ≡ >Uφ respectively. We denote by L the
set of all the THT resp. TEL formulas.

The semantics of THT is defined over sequences of pairs of sets of
atoms. A THT interpretation 〈H,T 〉 is an infinite sequence of pairs
〈Hi, Ti〉 for i ≥ 0, where Hi ⊆ Ti for each i. In contrast, a TEL
trace T can be viewed as a THT trace 〈T, T 〉, and we may identify
〈T, T 〉 by T if there is no confusion.

Definition 1 (THT-Satisfaction). Satisfaction of a THT formula by a
THT-trace I = 〈H,T 〉, at time k, where k ≥ 0 is integer, is induc-
tively defined as follows:

• I, k � p iff p ∈ Hk, for any atom p ∈ P
• I, k � Y φ iff I, k − 1 � φ and k > 0
• I, k � φ ∨ ψ iff I, k � φ or I, k � ψ
• I, k � φ ∧ ψ iff I, k � φ and I, k � ψ

• I, k � φ→ ψ iff

{
〈T, T 〉, k 6� φ or 〈T, T 〉, k � ψ, and
I, k 6� φ or I, k � ψ

• I, k � X φ iff I, k + 1 � φ
• I, k � φU ψ iff there is j ≥ k s.t. I, j � ψ,

and for all j′ ∈ [k, j − 1], I, j � φ
• I, k � φR ψ iff for all j ≥ k s.t. I, j 6� ψ,

there exists j′ ∈ [k, j − 1], I, j � φ
• I, k 6� ⊥

A trace I is a model for a formula φ if I, 0 � φ.

We recall that 〈T, T 〉 � φ if and only if T �LTL φ with φ ∈ L
[4]. An interpretation I is total if H = T . Furthermore, given two
interpretations I and 〈H ′, T 〉, and a trace of observationsO such that
Oi ⊆ Hi and Oi ⊆ H ′i , for each 0 ≤ i, we say that 〈H ′, T 〉 ≤O
〈H,T 〉 if H ′i ⊆ Hi for each i ≥ 0. Intuitively, ≤O allows for H-
minimality modulo observations; in our approach, observations are
added online as facts and thus they do not need to be proven. To
simplify the notation in the following sections if we do not have to
make explicit the observation trace, we write 〈H ′, T 〉 ≤ 〈H,T 〉,
instead of 〈H ′, T 〉 ≤O 〈H,T 〉. We are now ready to introduce the
semantics of TEL.

Definition 2 (TEL-Satisfaction Modulo Observations). Given a
trace of observations O, a trace T is an temporal equilibrium model
of a formula φ ∈ L modulo O if the following two conditions hold:
(i) 〈T, T 〉 � φ, i.e., T is a total THT model of φ, and (ii) no
〈H,T 〉 ≤O 〈T, T 〉 s.t. 〈H,T 〉 � φ exists, i.e., 〈T, T 〉 has to be
minimal modulo observations O.

We note that if the trace of observations is the empty trace, Defi-
nition 2 collapses to classical TEL satisfaction [2]. Given two traces
T and O, and a formula φ ∈ L, we denote by T �OTEL φ that T is
a equilibrium trace of φ modulo observations O. In case O is clear
from the context, we may just write T �TEL φ.

In the next sections, we will use interchangeably temporal equilib-
rium model and equilibrium/stable traces, furthermore, we will use
a normal form for a generic THT resp. TEL formula φ ∈ L, called
temporal program. The translation into normal form uses a Tseitin-
style reduction and preserves equivalence under THT semantics and
thus strong equivalence [3].

Definition 3 (Temporal program). Given a set P of propo-
sitional atoms, we define the set of temporal literals as
{p,¬p,Xp,¬Xp,Gp,Fp}, where p ∈ P . Atoms with the negation
as failure in front of the atom are called negative, otherwise, they are
called positive. A temporal rule is either:

• an initial rule of the form

r : b1 ∧ . . . bk ∧ ¬bk+1 ∧ . . .¬bn → c1 ∨ · · · ∨ cl (2)

where all bi, cj ∈ {p,Xp} and ¬ is negation as failure;
• a dynamic rule of the form Gr, where r is an initial rule;
• a fulfillment rule of form either G(Gp → q) or G(p → Fq),

where p, q are atoms.

An initial or dynamic rule r is a constraint, if its head is ⊥, and is a
fact if its body is empty (n=0) and its head is a single positive literal.
A temporal program is any set of temporal rules.

In the original definition of temporal program [12], negated liter-
als were admitted in the head of a rule, while in Definition 3 we do
not. We restrict the syntax to simplify our exposition in the upcom-
ing sections. Note that by using a fresh auxiliary atom it is always
possible to rewrite a rule with negation in the head into one without.

Temporal programs may be seen as a temporal extension of logic
programs, which consist only of rules like (2), where bi, cj ∈ P . We
will use interchangeably the terms answer sets and stable models.

We introduce also some notations. If r is a temporal rule, we
denote by lits(r) the set of temporal literals appearing in r. Fur-
thermore, let B(r) and H(r) be the set of temporal literals occur-
ring, respectively, in the body and in the head of the rule r. More-
over, let B+(r) be the set of positive literals in B(r), and B−(r)
be the set of negative literals in B(r). We also use the shortcuts
lits+(r) = B+(r) ∪H(r), and lits−(r) = B−(r).

2

3 Progression for THT
In online computation, we usually do not have the full trace, but
only a prefix of it. We thus propose the following THT3 seman-
tics. A prefix of a THT-trace I is any sequence If = 〈Hf , T f 〉 =
〈H0, T0〉, . . . , 〈Hk, Tk〉 (the prefix of length k + 1) while a suffix
of I is any sequence Ik,... = 〈Hk, Tk〉, 〈Hk+1, Tk+1〉, . . . (the suf-
fix at k or k-suffix), where k ≥ 0. A THT-prefix is a prefix of any
THT-trace I; by PreTHT we denote the set of all THT-prefixes. For
any prefix If and trace O, a THT-trace I is an extension if If is a
prefix of I and O ≤ H; by ext(If , O) we denote the set of all such
extensions.

Definition 4 (THT3 semantics). The truth value of φ ∈ L with re-
spect to a THT-prefix If and a trace O of observations is as follows:

If �OTHT3
φ =

> if I � φ for every I ∈ ext(If , O),

⊥ if I 6� φ for every I ∈ ext(If , O),

? otherwise.

Note that in caseO is the empty trace, Definition 4 is the Temporal
Here and There version of the LTL3 logic proposed in [8]. We add
the observation trace O as a parameter since we use Definition 4 for
a 3-valued logic for TEL, where minimality on the trace matters.

In order to process one state at a time, we resort to the concept of
progression and introduce it for THT. In that, we omit the temporal
operators U and R, which do not appear in the normal form, and
focus on F and G.

In the progressive evaluation of a THT formula, we may be able
to evaluate an implication p→ Xq only partially in the current state,
and we must delegate the remaining part of the evaluation to the fu-
ture. To this end, we introduce→c as a new type of implication for
evaluation in the There part of the trace, in order to ensure that the
remaining evaluation is compliant with the THT semantics.

We denote by LP the set of formulas generated by the grammar
in (1), where in place of → also →c may occur. Note that we ex-
clude nesting of G,F,X into Y operators. We can now introduce
the definition of THT progression.

Definition 5 (THT progression on a state of a prefix). Progression
PTHT : LP × PreTHT × N → LP is the partial function that
maps a formula ψ, a THT-prefix If = 〈Hf , T f 〉 of length k, and an
integer i such that 0 ≤ i < k to an LP formula as follows:

• PTHT (⊥, If , i) = ⊥
• PTHT (p, If , i) = > if p ∈ Hf

i , and p ∈ P
• PTHT (p, If , i) = ⊥ if p 6∈ Hf

i , and p ∈ P
• PTHT (Yφ, If , i) = PTHT (φ, Ifi−1) if i > 0, otherwise ⊥
• PTHT (φ1 ∨ φ2, I

f , i) = PTHT (φ1, I
f , i) ∨ PTHT (φ2, I

f , i)
• PTHT (φ1 ∧ φ2, I

f , i) = PTHT (φ1, I
f , i) ∧ PTHT (φ2, I

f , i)
• PTHT (X φ, If , i) = φ
• PTHT (φ1 → φ2, I

f , i) ={
PTHT (φ1, I

f , i)→ PTHT (φ2, I
f , i)∧

PTHT (φ1, 〈T fi , T
f
i 〉)→c PTHT (φ2, 〈T fi , T

f
i 〉)

• PTHT (φ1 →c φ2, I
f , i) =

PTHT (φ1, 〈T fi , T
f
i 〉)→c PTHT (φ2, 〈T fi , T

f
i 〉)

• PTHT (Gφ, If , i) = PTHT (φ, If , i) ∧Gφ
• PTHT (Fφ, If , i) = PTHT (φ, If , i) ∨ Fφ

In addition,> →∗ ⊥ is replaced by⊥;⊥ →∗ φ by>; and φ→∗ >
by >, for each formula φ and→∗∈ {→,→c}. Furthermore, > ∨ φ
is replaced by >; ⊥ ∨⊥ by ⊥; ⊥ ∧ φ by ⊥; and > ∧> by >.

Note that we do not apply the progression recursively on the future
states, but we indeed apply it recursively on the sub-prefix of the
trace, as we assume to have access to the current and past states.

Let us denote the recursive application of the progression over a
finite trace of length k + 1 in the following way

Definition 6 (THT progression over prefixes). For any THT-prefix of
length k + 1 and formula φ ∈ L, the application of the progression
to φ over If is defined as

PTHT (φ, If) ≡ PTHT (. . . PTHT (φ, If , 0) . . . , If , k) (3)

We have now all the definitions needed to state the main result of
this section.

Theorem 1 (THT verdict on prefixes). For every THT-prefix If ,
trace O of observations, and formula φ ∈ L, progression leads to
the same verdict of the �OTHT3

semantics, i.e.,

PTHT (φ, If) = v =⇒ If �OTHT3
φ = v, for v ∈ {>,⊥}.

4 Progression for TEL
For progression of TEL formulas, we start with a 3-valued semantics.

Definition 7 (TEL3 semantics). Let T f be a TEL-prefix of length
k, φ ∈ L, and O be a trace of observations. Then

T f �OTEL3
φ =

> if T fOk,... �OTEL φ,
⊥ if T 6� O

TEL φ ∀ 〈H,T 〉 ∈ ext(〈T f , T f 〉, O),

? otherwise.

The following example explains why we require minimal LTL
models in Definition 7.

Example 1. Let us consider first φ = G(¬¬p → p), i.e., a TEL
tautology. In this case, we have that each trace T is a temporal equi-
librium trace, and we conclude that T f �OTEL3

φ = > for any
possible O.

Let us focus on an LTL tautology that is not a TEL tautology. Let
φ = >, and T f = ∅ is the prefix of lengh 1. Then, because of mini-
mality, the only possible extension that is a TEL trace is the T fO1,...,
which is indeed the minimal LTL trace modulo observationO. There-
fore, T f �OTEL3

φ = >.
Given T = ∅, let us analyze now a more interesting LTL tautology,

φ = GFp ∨ GF¬p. Thanks to minimality in the Here, the only
extension of T that is an equilibrium trace is the one p ∈ Ti if and
only if p ∈ Oi. We conclude also in this case that T f �OTEL3

φ = >.

Definition 8 (TEL progression on a prefix of a trace). Let T f be
a prefix of a TEL trace and φ ∈ L a TEL formula. Then the TEL
progression of φ on T f is defined as

PTEL(φ, T f) =

> if φ′ = >, and ψ(Hf) = ⊥ for all Hf ⊂ T f

⊥ if φ′ = ⊥, or ψ(Hf) = > for some Hf ⊂ T f

? otherwise,

whereφ′=PTHT (φ, 〈T f , T f 〉), ψ(Hf) =PTHT (ψ, 〈Hf , T f 〉).

Theorem 2 (TEL verdict on prefixes). Let T f be a TEL-prefix of
length k, O be a trace of observations, and φ be a formula. Then
progression leads to the same verdict of the �THT3 semantics, i.e.,

PTEL(φ, T f) = v =⇒ T f �OTEL3
φ = v, for v ∈ {>,⊥}.

3

Example 2 (GF ¬p). Let φ = GF ¬p, O = ∅ω and T f = ∅, then
PTEL(φ, T f) = ?, and T f �TEL3 φ = >. Therefore,

T f �OTEL3
φ = > 6=⇒ PTEL(φ, T f) = >

PTEL(φ, T f) = ? 6=⇒ T f �OTEL3
φ = ?

Example 3 (GF p). Let φ = GF p, O = ∅ω and T f = ∅, then
PTEL(φ, T f) = ?, and T f �TEL3 φ = ⊥. Therefore,

T f �OTEL3
φ = ⊥ 6=⇒ PTEL(φ, T f) = ⊥,

PTEL(φ, T f) = ? 6=⇒ T f �OTEL3
φ = ?

We also notice that both the 3-value THT and TEL logic intro-
duced in Definitions 4 and 7 take the observation trace into account,
but the respective definitions of progression 5, 8 do not. The reason
is that we are progressing a prefix of a trace and we assume to have
the observations already encoded in the trace. Given a finite trace
If = 〈Hf , T f 〉, we extend the definition of <O over finite prefixes
by Hf <O T f if for each i = 0, . . . , k − 1, Oi ⊆ Hi and exists
i ∈ {0, . . . , k− 1} such that Hi ⊂ Ti. If we replace Hf ⊂ T f with
Hf <O T f in Definition 8, Theorem 2 still holds.

5 Computing the Intersection of TEL Traces
In this section, we describe an algorithm to compute online the in-
tersection of all the equilibrium traces of a given temporal program
π, and an incoming trace of observations O. During the computa-
tion, it may happen that the truth value of one atom is determined not
only by other non-future atoms, but also by future atoms, e.g., p:-
X(q).. In this case, if we are not able to determine the truth value
of the atom, we may delay the computation, by pastifying an atom,
i.e. adding a previous operator, obtaining, for instance, Y(p):- q..
Furthermore, we may instantiate some dynamic or fulfillment rules,
adding them to the initial part of the temporal program. Therefore,
during the computation, we may deviate from the Definition 3.

In order to clearly define the set of atoms whose truth value we
can compute, we proceed by introducing the dependency graph for
programs with possibly disjunctive rules.

Definition 9 (Dependency graph). The dependency graph of a logic
program π is the directed graphDGπ = 〈N, E×{+,−}〉 where (i)
each atom of π is a node inN , (ii) there is a positive (resp. negative)
arc inE from a node a to a node b if a ∈ H(r) and b ∈ B+(r) (resp.
b ∈ B−(r)) for some rule r in π, and (iii) for every rule r in π and
a 6= b ∈ H(r), there is a positive arc from a to b in E.

Given the definition of the dependency graph, we can now intro-
duce the following concept.

Definition 10 (Negative dependency). Given a logic program π, and
its corresponding dependency graph DGπ , we say that an atom p
depends negatively on q if there exists a path from p to q passing
through a negative arc.

Furthermore, we say that a set U of atoms is closed under negative
dependencies if q ∈ U holds for every atom q such that some atom
p ∈ U negatively depends on q.

Example 4. If we apply Definition 9 to the following logic program,
we obtain the dependency graph in Figure 1.

¬next(b)→ a, a ∨ b, next(b)

Furthermore, by applying Definition 10, we see that U = ∅ is the
only set closed under negative dependencies not containing next(b),
as both a and b depend negatively on next(b).

anext(b) c
−

+

+

Figure 1: Dependency graph of the program of Example 4

In order to compute the intersection of all the equilibrium traces
with a stream of incoming observations, we resort to some splitting
techniques to decompose the program into a lower and an upper part.
Intuitively, the lower part refers to the part of the program related to
the current and the past states, while the upper part is related to fu-
ture states. As we are interested in deriving as many facts as soon
as possible, we extend the Splitting Theorem. We define two new
functions that resemble the eU and bU functions of the Splitting The-
orem, respectively filter and progress. Instead of requiring U to
be a splitting set, we have the more relaxed requirement of being a
set closed under negative dependency. We first define filter.

Definition 11 (Filter). Given a logic program π and U ⊆ P , we let
filter(π, U) consist of all rules r ∈ π that contain only atoms from
U and where each negative literal ¬p occurring in r depends only
on atoms in U .

We are now ready to introduce the reduction skep_prog(π,C,
B,U). Besides the program π, it takes as input a set C of atoms
that are considered to be proved, a set B of atoms that may possibly
be proved, and a set U of atoms closed under negative dependencies.

Definition 12 (Skeptical Progress). Let us consider a logic program
π, and C,B,U, Us ⊆ P , where Us is the maximal splitting set of
π contained in U . Let us define skep_prog(π,C,B, U) = π′ to be
obtained by removing all the rules r ∈ π, such that either

i) there is a p ∈ H(r) such that p ∈ C,
ii) there is a p ∈ B+(r) such that p ∈ Us \B, or
iii) there is a p ∈ B−(r) such that p ∈ C.

From each remaining rule r, all positive literals p ∈ are deleted, and
all negated literals ¬p such that p ∈ Us \B are deleted.

The following theorem says that by a proper application of the
filter function on the progress function, we are able to compute an
answer set of the program π. The intuition behind Theorem 3 is that
given U , you can filter rules that are defeasible with respect to atoms
in U only, where a rule is defeasible if its body depends on some
negated by default literal.

Theorem 3 (Non-Defeasible Splitting Theorem). Let U be a set of
atoms closed under negative dependencies w.r.t. a logic program π.
Then π has an answer set Z only if Z = X ∪ Y such that

• X is an answer set of filter(π, U) and
• Y is an answer set of skep_prog(π,X,X,U).

The converse holds if each rule r ∈ filter(π, U) with disjunctive
head satisfiesH(r)∩(U\Us) = ∅, whereUs is the maximal splitting
set of π contained in U .

If we compare Theorem 3 with the well-known Splitting Theorem
[24], it is interesting to stress that Theorem 3 uses a notion of being
closed under defeasiblity, while the Splitting Theorem requires the
splitting set to be closed under definition, i.e., for each atom p in
splitting set S, all atoms occurring in a rule r that defines p should be

4

contained in S as well. Notably, for normal (disjunction-free) logic
programs Theorem 3 extends the Splitting Theorem, providing an if
and only if characterizations of answer sets.

As we are interested in the computation of the intersection of equi-
librium traces, we exploit Theorem 3 to prove the following.

Theorem 4 (Skeptical Non-Defeasible Splitting Theorem). Suppose
U ⊆ P is closed under negative dependencies w.r.t. a logic pro-
gram π. Let C and CX (B and BX) be the skeptical (brave) conse-
quences of π and filter(π, U), respectively, and let CY (BY) be the
skeptical (brave) consequences of skep_prog(π,CX , BX , U). Then
CX ∪ CY ⊆ C and B ⊆ BX ∪BY .

We remark that for normal logic programs π, we in fact can show
that in Theorem 4 CX ∪CY = C and B = BX ∪BY holds, i.e. the
cautious and brave conclusions remain invariant under progression.

Even if the results just stated are related to logic programs in gen-
eral, in our framework we are interested in selecting U as the largest
set of atoms closed under negative dependency containing only past
atoms or present atoms, currently appearing in the temporal program.
I.e., atoms preceded only by a non-negative number of previous op-
erators, that is Y ip with i ≥ 0. For convenience, let us introduce
the notation history_atoms(πinit) = {Yip | ∃r ∈ πinit and
Yip ∈ lits+(r)∪ lits−(r), i ≥ 0} for the past time literals in πinit.

Now we have all terminology to present our reasoning algorithm
(Algorithm 1). At the very beginning, it copies the initial segment of
the temporal program in πi (line 2), then it instantiates rules from
the dynamic part and from the fulfillment part via the function inst,
adding them to the initial part of the program (line 4).

Next, it computes Ui, the set of current and past atoms such that
they are closed under negation (line 5). It filters out the program πi
using U as the filtering parameter, obtaining a new filtered program
πf (line 6). If there is no local answer set, instability is detected and
it is signaled to the user (line 8). Otherwise, if πf admits a stable
model, its skeptical and brave consequences (respectively Ci, and
Bi) are computed, and the skeptical consequencesCi are fed into the
output trace (lines 10-12). Once Ci and Bi are available, they can be
used to simplify the program via the application of skep_prog (line
13). The intuition of (line 14) is to add a previous operator before
atoms appear in the initial segment (see Defn. 13 for details).

Algorithm 1 Main algorithm. Input: π, O. Output: Skeptical trace
1: i := 0
2: πic := πinit
3: while > do
4: πic := πic ∪ inst(πdyn) ∪ inst(πful) ∪Oi
5: U ic := history_atoms(πic) \ get_neg_deps(πic)
6: πf := filter(πic, U

i
c)

7: if πf does not admit any answer set then
8: noStableTraceError
9: end if

10: Ci := skeptical_conseq(πf)
11: Bi := brave_conseq(πf)
12: feed_skeptical_trace(Ci)
13: πic := skep_prog(πic, Ci, Bi, Ui)
14: πi+1

c := pastify(πic)
15: i := i+ 1
16: end while

Definition 13 (Pastify). Given a temporal program of form π =

πinit, pastify(π) results by rewriting its rules as follows: rewrite

•
∨m
k=1 Y

ikbk
∨n
k=m+1 ¬Y

ikbk →
∨l
k=1 Y

jkck to∨m
k=1 Y

ik+1bk
∨n
k=m+1 ¬Y

ik+1bk →
∨l
k=1 Y

jk+1ck;

• Yiq → Yip ∨ . . . p ∨ Fp to Yi+1q → Yip ∨ . . . p ∨ Fp; and

• Gq ∧ q ∧ . . .Yiq → Yip to Gq ∧ q ∧ . . .Yi+1q → Yi+1p.

In what follows, we present different results with the aim of show-
ing that the algorithm computes an approximation of the intersection
of all equilibrium traces of the input program π modulo observations
O. For simplicity, we assume that the observations added in Algo-
rithm 1 as facts at run-time are already encoded in the input program.
Set operations such as intersection, union, and set minus over traces
must be considered state-wise.

Definition 14 (Unfolding). Given a temporal program π and k ≥ 0,
the temporal program unfold(π, k) contains (i) all rules in πinit and
(ii) for each rule r =

∧k
j=1 bj ∧

∧n
j′=k+1 ¬bj′ →

∨l
h=1 ch, where

all bjs, bj′ and ch are positive temporal literals, in πdyn ∪ πful the
rules ri = r[Xi], for each 0 ≤ i ≤ k, where

r[Xi] =
∧k
j=1 X

ibj ∧
∧n
j′=k+1 ¬X

ibj′ →
∨l
h=1 X

ich

Notice that unfold(π, k) can be viewed as a non-temporal ASP
program that contains a set of atoms from Pk = {Xip : p ∈ P
for i = 0, . . . , k}. Given a set T k ⊆ Pk, we define trace(T k),
as the prefix of a trace starting from T k, as follows. If p ∈ T k,
then p ∈ trace(T k)0. And, if Xip ∈ T k, then p ∈ trace(T k)i
for each 0 < i ≤ k. Using this notation, we can introduce the
limit version for k → ∞, obtaining Pω , πω = unfold(π)ω , where
unfold(π) = unfold(π, 1). Furthermore, if Tω is a set of atoms in
πω , then trace(Tω) is the corresponding infinite trace. In order to
simplify notation, we will use T ≡ trace(Tω).

Theorem 5 (Trace Equivalence). Let π be a temporal program with-
out fulfillment rules. Then Tω is a stable model for πω iff trace(Tω)
is an equilibrium trace for π. Furthermore, if in the latter case
trace(Tω) � πful for a set πful of fulfillment rules, then trace(Tω)
is an equilibrium trace for π ∪ πful.

Let πω = unfold(π)ω be an unfolded temporal program π,
π0
p = π0 and U i maximal subset of ∪j=0,...,iPj closed under

negated dependencies in πip. Let us denote by T i a generic answer
set of filter(πip, U i). We define πi+1

p = skep_prog(πi, T i, T i, U i)
for some T i non-deterministically chosen. Then,

Theorem 6 (Sequence Non-Defeasible Splitting). Let π be a tempo-
ral program without fulfillment rules. If π admits a temporal equi-
librium model T , then T = trace(∪i≥0T

i), for some sequence
T 0, T 1, . . . is an equilibrium trace of π. Furthermore, if T � πful
for some set πful of fulfillment rules, then T � π ∪ πful.

Theorem 5 and 6 just presented pertain to properties that establish
a relationship between models of the unfolded program πω and those
of the original one π, as well as a property about splitting a tempo-
ral program using the newly introduced concept of Non-Defeasible
Splitting. However, in certain cases, it may be possible to observe a
finite number of equilibrium traces and a large number of local an-
swer sets at each step of the computation. Consequently, determining
a single trace would require an accurate guess of the T i stable model
at time step i to be utilized during the program’s evolution. Since a
non-deterministic choice is involved, some backtracking procedures

5

would also be required. To address this challenge, our proposed algo-
rithm aims to compute an approximation of the unique intersection
of all the equilibrium traces, instead. Theorem 5 and 6 can be used to
prove their skeptical counterpart.
Denote by AS(π) the set of all stable models of a logic program π.

Theorem 7 (Skeptical Equivalence). Let π be a temporal program
without fulfillment rules. If π admits an equilibrium trace, then
trace(

⋂
AS(πω)) =

⋂
TEL(π).

Let πω be the unfolded temporal program π. π0
∩ = π0 and U i

maximal subset of ∪j=0,...,iPj closed under negative dependen-
cies in πi∩. Let us denote by Ci, and Bi, respectively, the skeptical
and the brave consequences of filter(πip, U i). We define πi+1

∩ =
skep_prog(πi∩, C

i, Bi, U i). Then,

Theorem 8 (Sequence Skeptical Non-Defeasible Splitting). Let π be
a temporal program where πful = ∅. If π has an equilibrium trace,

trace(
⋃
i≥0

⋂
AS(πi∩)) ⊆

⋂
TEL(π) and

trace(
⋃
i≥0

⋃
AS(πi∩)) ⊇

⋃
TEL(π).

We can extend Theorems 7 and 8, which are already applicable to
a temporal program π = πinit ∪πdyn, to include also a set of fulfill-
ment rules πful under some assumption. Syntactically, (i) for each
rule r ∈ πful such that p ∈ H(r) or Fp ∈ H(r), p can occur only
in heads of π, or with r added, would not feed back to the compo-
nent in which q occurs in a modular program decomposition such as
program splitting. Otherwise, (ii) for Fp ∈ H(r), we may instead
require the observation trace O to be fair with respect to p, i.e., in-
finitely many observations of p must occur. Under such constraints,
if trace(T) �TEL πful holds for each T ∈ AS(πω), then we can
replace TEL(π) with TEL(π ∪πful) in both Theorems 7 and 8. In-
tuitively, case (i) holds because p can be proved at the very last step
and its truth value does not affect the other atoms in the answer set.
Case (ii) holds because thanks to fairness on the observation, if we
prove Fp, we do not have to do any guess where to add p in the trace,
but just wait for the next occurrence in O thanks to minimality.

In Theorems 5–8 we deal with the πful part of a program differ-
ently from the πinit and πdyn parts. Let us consider the following
simple program π = πinit ∪ πdyn ∪ πful, where πinit = {p},
πdyn = {¬p, q → ⊥} and πful = {p → Fq}. There is only one
equilibrium trace for π, viz. the trace {p, q}, ∅ω , which trivially coin-
cides with the intersection of all equilibrium traces. However, if we
proceed as in Algorithm 1, we only compute the local intersection
and union of all the stable models, but we never make a guess where
to fulfill Fq. Therefore, we can fulfill in our approach a promise Fq
only if we derive q by some other rule in the initial or the dynamic
part. On the other hand, by admitting some fulfillment rules more
expressive possibilities are offered.

We point out that we cannot apply Theorem 8 directly to Algo-
rithm 1 because it refers to the unfolded version of the input pro-
gram πω , while in Algorithm 1 rules are added at runtime and the
state-counter i is incremented at each step. However, we can still ex-
ploit Theorem 8 as it is not hard to see that for each rule r, we have
I, i � r ⇐⇒ I, i+ 1 � pastify(r) ⇐⇒ I, 0 � Xir.

6 Case study: Temporal Strategic Companies
Strategic Companies [5] is a well-known Σ2

p-complete problem
that has been used for systems comparisons, also in ASP competi-
tions [17, 20]. In the original Strategic Companies problem, a collec-

tion C = c1, ..., cm of companies is given. Each company ci pro-
duces some goods from a set G of goods and is possibly controlled
by a set Wi ⊆ C of owner companies, for each i = 1, . . . ,m. A set
C′ ⊆ C is a “strategic set” of companies if it is ⊆-minimal among
all sets such that (1) the companies inC′ produce all goods inG, and
(2) if Wi ⊆ C′, all companies ci owned by Wi must belong to C′.

For the presentation of this problem, we will assume that (i) each
product is produced by at most two companies, and (ii) each com-
pany is controlled by at most two companies.

That product g ∈ G is produced by c0 and c1 is represented by
prBy(p, c0, c1), that c0 and c1 control c by ctrBy(c, c0, c1)., and
that ci belongs to the strategic set by str(ci).

With this notation, we can now encode the previous conditions:

prBy(P,C0, C1)→ str(C0) ∨ str(C1),

ctrBy(C,C0, C1) ∧ str(C0) ∧ str(C1)→ str(C).

A company ci is unnecessary, unn(ci), if it does not belong to the
strategic set; this is expressed by

¬str(C)→ unn(C).

Since the set of ownerships and the set of companies producing
each good can change over time, in this example, we want to reason
whether two given companies can be unnecessary in two consecu-
tive time steps. For this purpose, we will include the corresponding
property for each company consisting of the following two rules:

unn(ci) ∧X(unn(ci))→ prop(ci),

¬prop(ci)→ negProp(ci).

By introducing prop(ci), we are able to identify which property
has been violated. This is a difference from usual LTL monitoring,
in which one single automaton combining all the properties is built,
which does not allow distinguishing between violations.

Unless new information is given, ownership and productions re-
main unchanged. This inertia principle can be encoded as follows:

prBy(P,C0, C1) ∧ ¬X(chg(pr(P)))→ X(prBy(P,C0, C1)),

prBy(P,C0, C1),X(prBy(P,C2, C3))→ X(chg(pr(P))),

where C0 6= C2 or C1 6= C3; similarly for ownerships.
We may monitor temporal properties on the observations, such as:

prBy(p, c0, c1)→ F(prBy(p, c0, c0) ∨ prBy(p, c1, c1)), (P1)

prBy(p, c0, c1)→
prBy(p, c0, c1) U (prBy(p, c0, c0) ∨ prBy(p, c1, c1)) (P2)

Property P1 requires that if the product p is produced by c0 and c1
at a certain point, that product will eventually only be produced by
one of the two companies. Property P2 indicates a convergence in
the companies producing a good. That is, if product p is produced by
companies c0 and c1, they must keep producing it until it is only pro-
duced by one of them. While we omitted the until operator U here, it
can be expressed in the normal form using the X and F operators and
auxiliary predicates. As already mentioned after Theorem 8, fairness
in the observations is assumed to ensure the approach remains valid.

We encoded this problem with the presented properties in an open-
source prototype that uses the Clingo [19, 25] API for Python. A user
can input a temporal logic program and enter new observations at
each time step, as well as translate a TEL formula into normal form.
The number of companies (3) and products (2) was not changed for
the different tests as it did not affect the patterns we observed. The
property related to a company being unnecessary in two consecutive

6

steps was also successfully included but it did not affect the number
of rules. The results of the tests are shown in Figure 2.

In the the case of property P1, the initial state fires the rule of the
property, making the program wait for the atom inside of the F. As an
optimization, fulfillment rules of type G(p → Fq) are not instanti-
ated when the rule has been fired in the past and q does not depend on
the future. Without optimization, as the rule by inertia fired in every
step the number of rules keeps growing until an observation arrives
that makes the head of the rule true (step 40). If no observation would
have arrived, the number of rules would have kept growing. In step
42, a new observation arrives making the body of the rule true, which
makes the number of rules start to grow again.

The traces of observations to test property P2 consisted in (T1) no
observations, (T2) one observation at step 2 that makes the head of
the rule true, and (T3) like (T2) but for every step. Since some of the
rules in the program are simplified when the property is satisfied, we
can see in Figure 2 that with the trace (T3), the number of rules is
lower than with the other two traces. Since (T1) and (T2) are very
similar, their respective program evolutions are almost overlapped.

The number of rules keeps growing at each step due to the instanti-
ation of the dynamic and fulfillment rules. This is because the normal
form from [2] results in future dependencies, which does not allow us
to simplify the program at each step as it happened with property P1.

0 10 20 30 40

280

290

300

310

320

330

step

no
.r

ul
es

With optimization
No optimization

0 1 2 3 4 5 6

300

350

400

450

step

no
.r

ul
es

T3: One obs. at each step
T2: One observation
T1: No observations

Figure 2: Evolution of the case study with property P1 containing the F
operator (left) and property P2 containing the U operator (right).

7 Related Work

In the field of AI, there are other related approaches to reason about
temporal properties, particularly in the context of stream reasoning.
Streamlog [32] is a temporal Datalog language where the specifi-
cation is expressed as a set of rules with time-stamped predicates,
similar to the work in [29]. It is also interesting to point out some
syntactic restrictions introduced in [32]. Requiring time stamps of
the head to be greater than the time stamps of the body gives the
possibility to easily compute a local stratification and obtain then a
unique trace. We could investigate further these restrictions to use
our algorithm for trace generation purposes, too. In particular, given
a locally stratified program πinit, our algorithm eventually returns a
prefix T f such that PTEL(πinit, T

f) = >. Therefore, by applica-
tion of Theorem 2, T f �TEL3 πinit = >.

Other works such as LARS [10, 9] provide streaming reasoning
capabilities with rules using temporal operators such as always
and eventually (but not until or release) that are evalu-
ated within a finite window of time points. In contrast, our approach
is geared to all temporal operators of LTL [28].

The solver TELINGO [15] also deals with TEL/THT, but is dif-
ferent from our approach in several respects. First, only it handles

finite equilibrium traces, while our algorithm computes the intersec-
tion of infinite TEL traces online. TELINGO is more geared to tasks
like planning with a finite horizon, while our algorithm addresses the
monitoring problem. Furthermore, TELINGO has some syntactic con-
straints such as disallowing future operators in rule bodies and past
operators in rule heads. In our approach, instead, future operators can
occur both in heads and bodies. Another difference is that TELINGO

uses incremental reasoning in ASP, while we use progression-based
monitoring by rewriting the formula to be monitored at each step.

STELP [14] is another ASP solver for TEL that addresses a re-
stricted class of temporal logic programs called "Splittable temporal
logic programs" [4]. It handles temporal operators like always and
until as constraints (the head of their rule is empty): this is help-
ful when one wants to discard particular TEL models. Instead, under
some restrictions we can use always and until also for generat-
ing models (the head of the rule can also be non-empty).

In [13], the authors provide an approach to construct a Büchi au-
tomaton accepting TEL models. However, it is particularly compu-
tationally expensive (due to EXPSPACE-completeness of TEL satis-
fiability) and to the best of our knowledge has not yet been imple-
mented. Another important difference with the automata-based ap-
proach is that in our approach it is easier to monitor multiple formu-
las in parallel and we can provide an explanation of the violation, by
identifying the subformula responsible for it.

Our approach takes inspiration from the rewriting-based approach
for runtime verification proposed first in [30], where the authors em-
ployed the Maude system [18] as a rewriting logic engine to im-
plement LTL rewriting rules. Later, the authors of [7] leveraged
a progression-based monitoring approach for LTL formulas using
rewriting in the context of decentralized monitoring. A problem in
this setting is that to satisfy the LTL specification, each node may
need to know at a certain moment whether an event/proposition has
occurred in another node before the next synchronization step. This
problem is solved by rewriting the formula using a past operator in
front of the formula when it contains propositions controlled by other
nodes: in this case, the verdict is delayed until the synchronization
with the other nodes occurs. We also use this trick but in a completely
different context. In the ASP setting implication is interpreted differ-
ently than in LTL. For example, if we have a formula Xp→ q in the
classical interpretation corresponds to ¬Xp∨ q and will result in the
verdict true if q occurs at the current moment or will be rewritten in
the obligation ¬p to be held in the next step. However, in the ASP
setting, it is not enough to have q true in the current moment, as the
truth of q must be justified, which fails if Xp is false in the future;
this is why the body is rewritten as Yq using the past operator.

8 Conclusion and Future Work

In this paper, we presented a novel approach to temporal reason-
ing using the progression technique for Temporal Here and There
and Temporal Equilibrium Logic. Our approach allows for non-
monotonic reasoning over a trace of observations, providing the
means to compute logical consequences of a temporal knowledge
base over time. We presented the theoretical foundations to apply
progression to these logics and proposed an algorithm to monitor dy-
namic systems that has been implemented as a proof-of-concept.

Our work contributes to the growing interest in the application of
temporal reasoning approaches and non-monotonic logics. By using
the progression technique, we have shown that it is possible to go be-
yond the usual LTL online computation and provide a more expres-
sive approach to temporal reasoning. This can be useful in various

7

domains, such as robotics, control systems, and autonomous vehi-
cles, where real-time monitoring and decision-making are crucial.

In addition, we identified some future lines of work to improve and
extend our approach. These include the inclusion of explicit negation
and assumptions, the use of variables in the implementation, consis-
tency analysis, optimization of the algorithm, and the encoding of
norms and exceptions. Furthermore, the usage of paraconsistent pro-
grams could be an approach to include assumptions. We will also
apply this technique in a real-world case study to further validate our
approach. Overall, our findings show the potential for our approach
to be used in a variety of dynamic systems, paving the way for future
research in this area.

8

References
[1] Felicidad Aguado, Pedro Cabalar, Martín Diéguez, Gilberto Pérez,

Torsten Schaub, Anna Schuhmann, and Concepción Vidal, ‘Linear-
time temporal answer set programming’, Theory Pract. Log. Program.,
23(1), 2–56, (2023).

[2] Felicidad Aguado, Pedro Cabalar, Martín Diéguez, Gilberto Pérez, and
Concepción Vidal, ‘Temporal equilibrium logic: a survey’, Journal of
Applied Non-Classical Logics, 23(1-2), 2–24, (2013).

[3] Felicidad Aguado, Pedro Cabalar, Gilberto Pérez, and Concepción Vi-
dal, ‘Strongly equivalent temporal logic programs’, in Proc. of JELIA
2008: the 11th European Conference on Logics in Artificial Intelli-
gence, pp. 8–20. Springer, (2008).

[4] Felicidad Aguado, Pedro Cabalar, Gilberto Pérez, and Concepción Vi-
dal, ‘Loop formulas for splitable temporal logic programs’, in Logic
Programming and Nonmonotonic Reasoning, eds., James P. Delgrande
and Wolfgang Faber, pp. 80–92, Berlin, Heidelberg, (2011). Springer
Berlin Heidelberg.

[5] Mario Alviano, Marco Maratea, and Francesco Ricca, ‘Strategic Com-
panies’, in ASP Competition 2013, eds., UniversitÃă della Calabria and
TU Wien, Knowledge-Based Systems Group - TU Wien, (2013).

[6] Fahiem Bacchus and Froduald Kabanza, ‘Planning for temporally ex-
tended goals’, Annals of Mathematics and Artificial Intelligence, 22,
5–27, (1998).

[7] Andreas Bauer and Ylies Falcone, ‘Decentralised LTL monitoring’, in
Proc. of FM 2012: the 18th International Symposium on Formal Meth-
ods, pp. 85–100. Springer, (2012).

[8] Andreas Bauer, Martin Leucker, and Christian Schallhart, ‘The good,
the bad, and the ugly, but how ugly is ugly?’, in Proc. of RV 2007:
the 7th International Workshop on Runtime Verification, pp. 126–138.
Springer, (2007).

[9] Harald Beck, Minh Dao-Tran, and Thomas Eiter, ‘Equivalent stream
reasoning programs’, in Proc. IJCAI 2016: the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence, IJCAI’16, p.
929âĂŞ935. AAAI Press, (2016).

[10] Harald Beck, Minh Dao-Tran, Thomas Eiter, and Michael Fink,
‘LARS: A logic-based framework for analyzing reasoning over
streams’, in Proc. of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, eds., Blai Bonet and Sven Koenig, pp. 1431–1438. AAAI
Press, (2015).

[11] Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynski, ‘Answer
set programming at a glance’, Commun. ACM, 54(12), 92–103, (2011).

[12] Pedro Cabalar, ‘A normal form for linear temporal equilibrium logic’,
in Proc. of JELIA 2010: the 12th European Conference on Logics in
Artificial Intelligence, pp. 64–76. Springer, (2010).

[13] Pedro Cabalar and Stéphane Demri, ‘Automata-based computation of
temporal equilibrium models’, in Proc. of LOPSTR 2011: the 21st In-
ternational Symposium on Logic-Based Program Synthesis and Trans-
formation, pp. 57–72. Springer, (2012).

[14] Pedro Cabalar and Martín Diéguez, ‘STeLP–a tool for temporal answer
set programming’, in Proc. of LPNMR 2011: the 11th International
Conference on Logic Programming and Nonmonotonic Reasoning, pp.
370–375. Springer, (2011).

[15] Pedro Cabalar, Roland Kaminski, Philip Morkisch, and Torsten Schaub,
‘telingo= ASP + time’, in Proc. of LPNMR 2019: the 15th International
Conference on Logic Programming and Nonmonotonic Reasoning, pp.
256–269. Springer, (2019).

[16] Marco Cadoli, Thomas Eiter, and Georg Gottlob, ‘Default logic as
a query language’, IEEE Trans. Knowl. Data Eng., 9(3), 448–463,
(1997).

[17] Francesco Calimeri, Martin Gebser, Marco Maratea, and Francesco
Ricca, ‘Design and results of the fifth answer set programming com-
petition’, Artificial Intelligence, 231, 151–181, (2016).

[18] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Martí-Oliet, José Meseguer, and Jose F. Quesada, ‘Maude as a metalan-
guage’, in Proc. of WRLA 1998: the 1998 International Workshop on
Rewriting Logic and its Applications, eds., Claude Kirchner and Hélène
Kirchner, volume 15 of Electronic Notes in Theoretical Computer Sci-
ence, pp. 147–160. Elsevier, (1998).

[19] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten
Schaub, ‘Multi-shot asp solving with clingo’, Theory and Practice of
Logic Programming, 19(1), 27âĂŞ82, (2019).

[20] Martin Gebser, Marco Maratea, and Francesco Ricca, ‘The sixth an-
swer set programming competition’, Journal of Artificial Intelligence
Research, 60, 41–95, (09 2017).

[21] Arend Heyting, ‘Die formalen Regeln der intuitionistischen Logik’,
Sitzungsberichte der Preussischen Akademie der Wissenschaften,
Physikalisch-Mathematische Klasse, 42–56, (1930).

[22] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg
Gottlob, Simona Perri, and Francesco Scarcello, ‘The DLV system for
knowledge representation and reasoning’, ACM Trans. Comput. Log.,
7(3), 499–562, (2006).

[23] Hector J Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin,
and Richard B Scherl, ‘Golog: A logic programming language for dy-
namic domains’, The Journal of Logic Programming, 31(1-3), 59–83,
(1997).

[24] Vladimir Lifschitz, ‘Answer set planning’, in Proc. of the 1999 Interna-
tional Conference on Logic Programming, ed., Danny De Schreye, pp.
23–37. MIT Press, (1999).

[25] Vladimir Lifschitz, Answer Set Programming, Springer, 2019.
[26] Vladimir Lifschitz and Hudson Turner, ‘Splitting a logic program’, in

Proc. of the Eleventh International Conference on Logic Programming,
ed., Pascal Van Hentenryck, pp. 23–37. MIT Press, (1994).

[27] David Pearce, ‘Equilibrium logic’, Annals of Mathematics and Artifi-
cial Intelligence, 47(1-2), 3, (2006).

[28] Amir Pnueli, ‘The temporal logic of programs’, in Proc. of FOCS 1977:
the 18th Annual Symposium on Foundations of Computer Science, pp.
46–57. IEEE Computer Society, (1977).

[29] Alessandro Ronca, Mark Kaminski, Bernardo Cuenca Grau, Boris
Motik, and Ian Horrocks, ‘Stream reasoning in temporal datalog’, in
Proc. of the 32nd AAAI Conference on Artificial Intelligence, (AAAI-
18), the 30th innovative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on Educational Advances in Artifi-
cial Intelligence (EAAI-18), AAAI’18/IAAI’18/EAAI’18. AAAI Press,
(2018).

[30] Grigore Rosu and Klaus Havelund, ‘Rewriting-based techniques for
runtime verification’, Autom. Softw. Eng., 12(2), 151–197, (2005).

[31] Przemyslaw Andrzej Walega, Bernardo Cuenca Grau, Mark Kamin-
ski, and Egor V. Kostylev, ‘DatalogMTL over the integer timeline’,
in Proceedings of the 17th International Conference on Principles of
Knowledge Representation and Reasoning, KR 2020, Rhodes, Greece,
September 12-18, 2020, eds., Diego Calvanese, Esra Erdem, and
Michael Thielscher, pp. 768–777, (2020).

[32] Carlo Zaniolo, ‘Logical foundations of continuous query languages for
data streams’, in Datalog in Academia and Industry: Second Interna-
tional Workshop, Datalog 2.0, Vienna, Austria, September 11-13, 2012.
Proceedings, pp. 177–189. Springer, (2012).

9

Appendix. Proofs
In order to simplify the proofs, we introduce the following Lemma
that is a direct consequence of the Definition 1 of satisfaction for the
THT logic.

Lemma 1 (Derived THT-Satisfaction). We can derive the following
cases for the THT-Satisfaction:

• 〈H,T 〉, k � G φ iff 〈H,T 〉, k � φ and 〈H,T 〉, k + 1 � G φ
• 〈H,T 〉, k � F φ iff 〈H,T 〉, k′ � φ for some k′ ≥ k

Furthermore, if we admit the implication symbol→c in the grammar
(1) and extend the semantics of THT with the following entry:

• 〈H,T 〉, k � φ→c ψ iff 〈T, T 〉, k 6� φ, or 〈T, T 〉, k � ψ
• then,

〈H,T 〉, k � φ→ ψ iff

{
〈H,T 〉, k � φ→ ψ, and
〈H,T 〉, k � φ→c ψ

Hereon, if not stated otherwise, we are going to use the extended
semantics introduced in Lemma 1. Furthermore, since temporal THT
formulas can be rewritten into a strongly equivalent formula with
only X, G, and F as temporal operators, we will not consider oper-
ators like U or R in the following proofs, in order to keep the expla-
nation closer to the temporal normal form used in our algorithm.

Let us introduce the following notation. Given a finite trace
If[i,...,j] = 〈Hf , T f 〉[i,...,j]= 〈Hi, Ti〉, 〈Hi+1, Ti+1〉, . . . , 〈Hj , Tj〉,
where If is of length k and 0 ≤ i ≤ j < k. The proof of the fol-
lowing Lemma is omitted since it follows directly from Definition 5.
We just observe that the requirement of not having future operators
{X,F,G} as an argument of the previous operator Y is needed.

Lemma 2. Let us consider the prefix If of length k+1, the following
properties hold for 0 ≤ i ≤ k and for all φ ∈ L

PTHT (⊥, If[i...k]) = ⊥ (4)

PTHT (p, If[i...k]) = > if p ∈ Hf
i (5)

PTHT (p, If[i...k]) = ⊥ if p 6∈ Hf
i (6)

PTHT (φ ∨ ψ, If[i...k]) = PTHT (φ, If[i...k]) ∨ PTHT (ψ, If[i...k])

(7)

PTHT (φ ∧ ψ, If[i...k]〉) = PTHT (φ, If[i...k]) ∧ PTHT (ψ, If[i...k])

(8)

PTHT (φ→ ψ, If[i...k]) ={
PTHT (φ, If[i...k])→ PTHT (ψ, If[i...k]) ∧
PTHT (φ, 〈T f , T f 〉[i...k])→c PTHT (ψ, 〈T f , T f 〉[i...k])

(9)

PTHT (G φ, If[i...k]) =
∧

j=i,...,k

PTHT (φ, If[j...k]) ∧ G φ (10)

PTHT (F φ, If[i...k]) =
∨

j=i,...,k

PTHT (φ, If[j...k]) ∨ F φ (11)

PTHT (X φ, If[i...k]) =

{
φ if k = i, otherwise
PTHT (φ, If[i+1...k])

(12)

PTHT (Y φ, If[i...k]) =

{
⊥ if i = 0, otherwise
PTHT (φ, If[i−1...k])

(13)

Lemma 3. Let I[i,...,k] be a segment of a THT trace I , 0 ≤ i ≤ k,
and φ ∈ L a THT formula. Then,

I, i � φ iff I, k � PTHT (φ, I[i,...,k])

Proof. We proceed by structural induction on the formula φ.
Consider the case φ = ⊥. Then, I, i 6� ⊥ by Definition 1. Further-

more PTHT (⊥, I[i,...,k]) = ⊥ by Lemma 2. Furthermore, we also
have I, k 6� ⊥ again by Definition 1.

We proceed in a similar way for φ = p, where p ∈ P . Then, by
Definition 1

I, i � p iff p ∈ Hi
By Lemma 2 if p ∈ H0, then

PTHT (p, I[i,...,k]) = >

And by Definition 1

I, k � PTHT (p, I[i,...,k])

The case p 6∈ Hi is similar.
Let us first consider the case φ ∨ ψ for the induction step. By

Definition 1

I, i � φ ∨ ψ By Def. 1⇐⇒ I, i � φ or I, i � ψ
By Ind. Hypothesis⇐⇒

{
I, k � PTHT (φ, I[i,...,k]), or
I, k � PTHT (ψ, I[i,...,k])

By Definition 1⇐⇒ I, k � PTHT (φ, I[i,...,k]) ∨ PTHT (ψ, I[i,...,k])
By Lemma 2⇐⇒ I, k � PTHT (φ ∨ ψ, I[i,...,k])

A similar argument can be used for φ ∧ ψ.
Let us analyze the implication case.

I, i � φ→ ψ
By Def. 1⇐⇒{

I, i 6� φ or I, i � ψ
〈T, T 〉, i 6� φ or 〈T, T 〉, i � ψ

By Ind. Hypothesis⇐⇒
I, k 6� PTHT (φ, I[i,...,k]) or I, k � PTHT (ψ, I[i,...,k]){
〈T, T 〉, k 6� PTHT (φ, 〈T[i,...,k], T[i,...,k]〉) or
〈T, T 〉, k � PTHT (ψ, 〈T[i,...,k], T[i,...,k]〉)

By Definition 1 and Lemma 1⇐⇒{
I, k � PTHT (φ, I[i,...,k])→ PTHT (ψ, I[i,...,k])

I, k � PTHT (φ, 〈T[i,...,k], T[i,...,k]〉)→c PTHT (ψ, 〈T[i,...,k], T[i,...,k]〉)
By Lemma 2⇐⇒ I, k � PTHT (φ→ ψ, I[i,...,k])

Let us consider the case G φ. We have that

I, i � G φ
By Def. 1⇐⇒ I, i � φ and I, i+ 1 � φ and . . . I, k � φ ∧Gφ

By Ind. Hypothesis⇐⇒ I, k � PTHT (φ, I[i...,k]) and
I, k � PTHT (φ, I[i+1...,k]) and . . . I, k � PTHT (Gφ, Ik)
By Def. 1⇐⇒ I, k �

∧
j=i,...,k−1

PTHT (φ, I[j...,k]) ∧ PTHT (Gφ, Ik)

By Def. 5⇐⇒ I, k �
∧

j=i,...,k

PTHT (φ, I[j...,k]) ∧Gφ

By Lemma 2⇐⇒ I, k � PTHT (G φ, I[i...,k])

10

The proof of the eventually case (F φ) follows the same schema of
the always one (G φ). If the formula consists of X φ and i < k, then

I, i � X φ
By Def. 1⇐⇒ I, i+ 1 � φ

By Ind. Hypothesis⇐⇒
I, k � PTHT (φ, I[i+1,...,k])

By Lemma 2⇐⇒ I, k � PTHT (X φ, I[i,...,k])
Otherwise if i = k,
I, i � X φ

By Def. 1⇐⇒ I, k � PTHT (φ, I[i+1,...,k])
By Lemma 2⇐⇒

I, k � PTHT (X φ, I[i,...,k])

The case with the previous operator follows a similar proof.

We can now derive Theorem 1.

Proof of Theorem 1. Let If be a prefix of a THT trace of length k,
O be a trace of observations, and φ ∈ L (where in subformulas Y ψ
of φ future operators do not occur). We have to show that

PTHT (φ, If) = v =⇒ If �OTHT3
φ = v, for v ∈ {>,⊥}.

According to Lemma 3, given a prefix If = I[0,...,k] of any THT-
trace I and a formula φ in L, we have that

I, 0 � φ iff I, k � PTHT (φ, I[0,...,k]).

Therefore, if PTHT (φ, I[0,...,k]) = >, we have I, 0 � φ; as this
holds for every extension I of If we obtain If �THT3 φ = >.
Similarly, if PTHT (φ, I[0,...,k]) = ⊥, then since I, k 6� ⊥, it follows
that I, 0 6� φ, and as this holds for every extension I of If , we obtain
If �THT3 φ = ⊥. The result then follows by the fact that If �THT3

φ = v implies If �OTHT3
φ = v, for v ∈ {>,⊥}, since ext(If , O)

restricts the extensions I of If to consider.

To prove Theorem 2, we first prove some lemmas.

Lemma 4. For any finite trace T f and formula φ, we have
PTEL(φ, T f) = > =⇒ T f �TEL φ = >

Proof.

PTEL(φ, T f) = > By Definition 8
=⇒{

PTHT (φ, 〈T f , T f 〉) = >, and
PTHT (ψ, 〈Hf , T f 〉) = ⊥ for all Hf ⊂ T f

By Theorem 1
=⇒

{
〈T f , T f 〉 �THT3 φ = >, and
〈Hf , T f 〉 �THT3 φ = ⊥ for all Hf ⊂ T f

By Definition 4
=⇒

{
〈T, T 〉 � φ ∀〈T, T 〉 ∈ ext(〈T f , T f 〉), and
〈H,T 〉 6� φ ∀〈H,T 〉 ∈ ext(〈Hf , T f 〉) for all Hf ⊂ T f

=⇒

{
〈T f∅ω, T f∅ω〉 � φ, and
〈Hf∅ω, T f∅ω〉 6� φ for all Hf ⊂ T f

By Definition 2
=⇒

T f∅ω �TEL φ
Since it is the only minimal extension, by Def. 7

=⇒

T f �TEL3 φ = >

We note that the result generalizes from �TEL3 to �OTEL3
for any

trace O of observations. To this end, the unique minimal traces H0

and TO in ext(Hf , O) resp. ext(T f , O) are considered (if O is not
compatible with T f , the statement is vacuously true).

Lemma 5. Given a finite trace T f and a formula φ, we want to
prove: PTEL(φ, T f) = ⊥ =⇒ T f �TEL φ = ⊥

Proof.

PTEL(φ, T f) = ⊥ By Definition 8
=⇒{

PTHT (φ, 〈T f , T f 〉) = ⊥, or
PTHT (ψ, 〈Hf , T f 〉) = > for some Hf ⊂ T f

By Theorem 1
=⇒

{
〈T f , T f 〉 �THT3 φ = ⊥, or
〈Hf , T f 〉 �THT3 φ = > for some Hf ⊂ T f

By Definition 4
=⇒

{
〈T, T 〉 6� φ ∀〈T, T 〉 ∈ ext(〈T f , T f 〉), or
〈H,T 〉 � φ ∀〈H,T 〉 ∈ ext(〈Hf , T f 〉) for some Hf ⊂ T f

=⇒

Let us choose one such Hf if some exists. For all possible extension
T of T f , and H of Hf .{

〈T, T 〉 6� φ , or
〈H,T 〉 � φ

by Definition 2
=⇒

For all T extension of T f , T 6�TEL φ
By Def. 7
=⇒

T f �TEL3 φ = ⊥

As in the proof of Lemma 4 above, we note that the result generalizes
from �TEL3 to �OTEL3

for any trace O of observations.

We are now ready to show Theorem 2.

Proof of Theorem 2. In Lemmas 4, 5, we have already shown that

• PTEL(φ, T f) = > =⇒ T f �TEL φ = >, and
• PTEL(φ, T f) = ⊥ =⇒ T f �TEL φ = ⊥.

Similar as above, we note that T f �TEL φ = v implies T f �OTEL
φ = v, for every v ∈ {>,⊥} and trace O of observations, which
proves the result.

Let us introduce first the definition of satisfaction for Here and
There (HT) logic and of Equilibrium Logic (EL).

Definition 15 (HT-Satisfaction). Given an interpretation 〈H,T 〉, the
satisfaction of a HT formula by 〈H,T 〉 is inductively defined as fol-
lows:

• 〈H,T 〉 � p iff p ∈ H , for any atom p ∈ P
• 〈H,T 〉 � φ ∨ ψ iff 〈H,T 〉 � φ or 〈H,T 〉 � ψ
• 〈H,T 〉 � φ ∧ ψ iff 〈H,T 〉 � φ and 〈H,T 〉 � ψ

• 〈H,T 〉 � φ→ ψ iff

{
〈T, T 〉 6� φ or 〈T, T 〉 � ψ, and
〈H,T 〉 6� φ or 〈H,T 〉 � ψ

• 〈H,T 〉 6� ⊥

An interpretation 〈H,T 〉 is a model for a formula φ if 〈H,T 〉 � φ.

An interpretation 〈H,T 〉 is total if H = T . Furthermore, given
two interpretations 〈H,T 〉 and 〈H ′, T 〉, we say that 〈H ′, T 〉 ≤
〈H,T 〉 if H ⊆ T . We are now ready to introduce the semantics
of EL.

Definition 16 (EL-Satisfaction). A set T is an equilibrium model of
a formula φ if the following two conditions hold. i) 〈T, T 〉 � φ, i.e.,
if T is a total HT model of φ, and ii) H ⊂ T s.t. 〈H,T 〉 � φ does
not exist, i.e., 〈T, T 〉 has to be minimal.

Lemma 6. If a set S of atoms does not occur in the heads of a logic
program π, then each answer set S′ of π is such that S′ ∩ S = ∅.

11

We continue with establishing the results of Section 5. To this end,
we shall derive a number of auxiliary results, some of which are of
interest in their own right.

We start by noting that

Lemma 7. Suppose 〈H,T 〉 |= φ and let a ∈ H be an atom. Then,
the substitution of a with > in φ leads to a new logic program φ′

which has 〈H \ {a}, T \ {a}〉 as a HT model.

Proof. Let us consider φ a HT formula, and by φ′, φ′ ≡ φ[>/a]. We
can show that 〈H,T 〉 is a model of φ with a ∈ H iff 〈H ′, T ′〉 is a
model of φ′, where H ′ = H \ {a} and T ′ = T \ {a}.

We can proceed by induction on the complexity of the formula. If
φ ≡ p with p ∈ P \{a}, then 〈H,T 〉 � p iff p ∈ H by Definition 1.
Another base case is the following one: 〈H,T 〉 � a iff 〈H ′, T ′〉 � >.
Finally, we can easily see that 〈H,T 〉 � ⊥ iff 〈H ′, T ′〉 � ⊥ by
Definition 1. The induction part simply follows from the Definition 1.

Lemma 8. Let 〈H,T 〉 be an H-minimal model of a HT-formula φ.
Then, the substitution of a ∈ H with > in φ leads to a new logic
program φ′ which has 〈H \{a}, T \{a}〉 as a H-minimal HT model.

Proof. By Lemma 7, 〈H ′, T ′〉 � φ′ where H ′ = H \ {a} and
T ′ = T \ {a}. Towards a contradiction, assume that 〈H ′, T ′〉 is not
H-minimal for φ′. Then 〈H ′′, T ′〉 |= φ′ for someH ′′ ⊂ H ′. Since p
does not occur in φ′, it follows that 〈H ′′ ∪{p}, T ′ ∪{p}〉 |= p∧φ′,
which in turn implies that 〈H ′′ ∪ {p}, T ′ ∪ {p}〉 |= φ, as we can
resubstitute > in φ by p. Since H ′′ ∪ {p} ⊂ H and T = T ′ ∪ {p},
it follows that 〈H,T 〉 is not an H-minimal model of φ, which is a
contraduction.

Using Lemma 7 and 8, applying Definition 16, we can straightfor-
wardly conclude that

Lemma 9. Let π be logic program with S as an answer set. Then
the substitution of a ∈ S in π with > yields a new logic program π′

that has S \ {a} as an answer set.

Note that splitting sets are closed under union; hence there exists
always one maximal splitting set.

Lemma 10. Let U ⊆ P be closed under negative dependencies
w.r.t. a logic program π, and let Us be the (unique) maximal split-
ting set of π contained in U . Then for every Z ∈ AS(π) some
X ∈ AS(filter(π, U)) exists such that (i) X|Us = Xs and (ii)
X|U\Us ⊆ Y s, where

• Xs is an answer set of bUs(π), and
• Y s is an answer set of eUs(π \ bUs(π), Xs).

Proof. As Us is a splitting set of π, by the Splitting Theorem [26]
every Z ∈ AS(π) is of the form Z = Xs ∪ Y s as in the statement.

As filter(π, U) ⊆ π, (1) the set Us is also as splitting set
of filter(π, U). Furthermore, (2) bUs(filter(π, U)) = bUs(π)
must hold. Indeed, every rule r ∈ bUs(filter(π, U)) is over Us

and thus r ∈ bUs(π) as well. Suppose that some r ∈ bUs(π) \
bUs(filter(π, U)) exists. By definition of filter(π, U), this means
that some negative literal¬a occurs in the body of r where a depends
on some atom b ∈ P \ U . However, U is closed under negative de-
pendencies, and thus b ∈ U must hold, which is a contradiction.

In view of (1) and (2), by the Splitting Theorem each set X =
Xs ∪ Y ′ such that Y ′ is an answer set of eUs(filter(π, U) \
bUs(filter(π, U)), Xs) = eUs(filter(π, U) \ bUs(π), Xs), is an
answer set of filter(π, U).

We claim that (3) eUs(filter(π, U) \ bUs(π), Xs) is a positive
program. Indeed, denote for any atom a by Ua the smallest split-
ting set of π that contains a (which exists since splitting sets are
closed under intersection). If ¬a occurs in the body of a rule r
in filter(π, U), we obtain Ua ⊆ U as U is closed under nega-
tive dependencies. Furthermore, Ua ⊆ Us by maximality of Us.
It follows a ∈ Us, and thus ¬a does not occur in rule bodies of
eUs(filter(π, U) \ bUs(π), Xs).

Now since eUs(filter(π, U) \ bUs(π), Xs) ⊆ eUs(π \
bUs(π), Xs), Y s is a model of eUs(filter(π, U) \ bUs(π), Xs);
by (3), every minimal model Y ′ of eUs(filter(π, U)\ bUs(π), Xs)
is an answer set of that program, and some Y ′ ⊆ Y s always exists.
This proves the result.

We next consider progression at the level of single models, which
we shall then use to analyze progresson of the skeptical conse-
quences. To this end, we shall consider the general progression oper-
ator for inputs skep_prog(π,X,X,U), which we simply refer to as
prog(π,X,U).

Lemma 11. Let U be a set of atoms closed under negative depen-
dencies w.r.t. a logic program π. Then every answer set Z of π is of
the form Z = X ∪ Y for some X ∈ AS(filter(π, U)) and some
Y ∈ AS(prog(π,X,U)).

Proof. By Lemma 10, we have that some X ∈ AS(filter(π, U))
exists such that X|Us = Xs and X|U\Us ⊆ Y s (where Us is the
maximal splitting set contained inU),Xs ∈ AS(bUs(π)), and Y s ∈
AS(eUs(π \ bUs(π), Xs)).

Consider prog(π,Xs, U). This program coincides with eUs(π \
bUa(π), Xs); this follows directly from Definition 12 andXs ⊆ Us.
Therefore, Y s ∈ AS(prog(π,Xs, U)). Since X|U\Us ⊆ Y s, we
can by Lemma 9 substitute atoms in X|U\Us by >, obtaining as a
result Y ∈ AS(prog(π,X,U)).

Lemma 12. Let U ⊆ P be closed under negative dependencies
w.r.t. a logic program π, and let Us be the (unique) maximal splitting
set of π contained in U . If every disjunctive rule r ∈ π satisfies
H(r) ∩ (U \ Us) = ∅, then for every X ∈ AS(filter(π, U)) and
Y ∈ AS(prog(π, U,X)) the set Z = X ∪ Y is an answer set of π.

Proof. Let X ∈ AS(filter(π, U)) and Y ∈ AS(prog(π,X,U)).
We show that Xs = X ∩ Us and Y s = Y ∪ (X \ Us) are answer
sets of bUs(π), and eUs(π \ bUs(π), Xs), respectively; then by the
Splitting Theorem [26],Z = Xs∪Y s = (X∩Us)∪Y ∪(X\Us) =
X ∪ Y is an answer set of π.

As in the proof of Lemma 10, we conclude that (1)Xs = X|Us is
an answer set of bUs(filter(π, U)), which coincides with bUs(π),
(2)X\Xs is an answer set of π′ = eUs(filter(π, U)\bUs(π), Xs),
and (3) π′ is a positive program such that π′ ⊆ eUs(π\bUs(π), Xs).
Moreover, by the assertion of the lemma, (4) each rule r ∈ π′ is non-
disjunctive.

Suppose towards a contradiction that Z is not an answer set of π.
Let Z′ ⊂ Z be a witness of this. As Xs is an answer set of bUs(π),
we must have Z′ ∩Us = Xs. Thus Z′ ∩ (P \Us) ⊂ Y s must hold.

By (3) and (4), we conclude thatX\Us ⊆ Z′ must hold, as π′ has
a unique minimal model (which isX\Us). Hence,Z′∩U = X must
hold. Consider now prog(π,X,U). This program is equivalent to the
program π′′ that results from eUs(π \ bUs(π), Xs) by substituting
each atom a ∈ X \ Us with >. Since each such atom is in Z′, we
obtain that Z′ is a model of π′′, and hence of prog(π,X,U). As
Z′ ⊂ Z, then also Y ′ = Z′ ∩ (P \ U) is model of prog(π,X,U),

12

As Y ′ ⊂ Y must hold, this contradicts that Y is an answer set of
prog(π,X,U).

Now we have all auxiliary results to show Theorem 3.

Proof of Theorem 3. Let U be a set of atoms closed under negative
dependencies on atoms in P \ U w.r.t. π. If Z is an answer set of π,
then by Lemma 11 there exist an answer set X of filter(π,X) and
an answer set Y of prog(π, U,X) such that Z = X ∪ Y .

As for the converse direction, under the syntactic constriction on
disjunction in heads of rules r thatH(r)∩U \Us = ∅, we can apply
Lemma 12, obtaining that if X is an answer set of filter(π,X) and
Y answer set of prog(π, U,X), then Z is an answer set of π.

Observation 1. We just observe that if S is an answer set of a logic
program π, then by GL definition, S is the minimal model of πS .
Hence, for any atom p p 6∈ S, we can remove rules where p appears
positive in the body or negative in the head, and delete literals p in
the head and negated literal ¬p in the body of the remaining rules.
If p is not a credulous consequence of the program π, modifying the
program π in this way does not change the set of the answer sets.

We are now in a position to show also Theorem 4.

Proof of Theorem 4. Consider a logic program π, and let U ⊆ P be
a set of atoms closed under negative dependencies. Let again Us de-
note the maximal splitting set of π such that Us ⊆ U . Let us denote
(i) by C and B the sets of the skeptical and the brave consequences
of π, respectively; (ii) by CX and BX the sets of the skeptical and
the brave consequences of filter(π, U), respectively; and (iii) by
CY and BY the sets of the skeptical and the brave consequences of
skep_prog(π,CX , BX , U), respectively.

Then, we need to prove that CX ∪CY ⊆ C, and B ⊆ BX ∪BY .
Let us consider the set Γ(π, U) = {(X,Y) | X ∈

AS(filter(π, U)), Y ∈ AS(prog(π,X,U))}. By Lemma 11, we
know that (1) every the answer set Z of π is expressed as Z = X∪Y
for some (X,Y) ∈ Γ(π, U). Hence CX is contained in the set of all
the skeptical consequences of π, i.e., CX ⊆ C holds. By application
of Lemma 9, we can (i) replace in the program π the atoms in CX
with >, which will preserve each answer set S of the original pro-
gram π modulo CX , but possibly will create new ones. Regarding
the brave consequences, we note that (B ∩ U) ⊆ BX must hold.

Furthermore, by Lemma 11 we see that if an p atom from Us does
not appear in any X from Γ(π, U), then p will not appear in any
answer set of the original program π. Thanks to Observation 1, we
can (2) remove rules where p ∈ Us\BX appears positive in the body
or negated in the head, and delete negated literals ¬p in the body of
the remaining rules. These modifications do not alter the answer sets
of the program.

Steps (i) and (ii) corresponds exactly to the application of func-
tion skept_progress(π,CX , BX , U). As already pointed out, the
resulting program may have new answer sets, but each answer set of
the original program π (modulo atoms in CX) is preserved. There-
fore, we can conclude thatCY ⊆ C and thatB∩(P\U) ⊆ BY must
hold. Putting things together, we then obtain that CX ∪CY ⊆ C and
B ⊆ BX ∪BY , which proves the result.

Lemma 13 (Lemma 2 from [4]). Let π be a temporal program with-
out fulfillment rules. Then I � π in THT iff Iω � πω in HT.

Lemma 14 (Theorem 1 from [4]). Let π be a temporal program
without fulfillment rules. Then T = 〈T, T 〉 is a temporal equilibrium
model of π iff Tω is a stable model of πω .

We are now prepared to derive Theorem 5. In the following proof,
we will use the notation T ≡ trace(Tω).

Proof of Theorem 5. We want to prove the following statement. Let
π be a temporal program without fulfillment rules. Then (i) Tω is a
stable model for πω if and only if T is an equilibrium trace for π.
Furthermore, (ii) if T is an equilibrium trace for π and T � πful
for a set πful of fulfillment rules, then T is an equilibrium trace for
π ∪ πful.

Item (i) is a direct consequence of Lemma 14. For item (ii), let us
assume that T � πful. We will prove satisfiability and minimality:

• Satisfiability. If T satisfies both πful and π, then by Definition 1
T also satisfies π ∪ πful.

• Minimality. By Lemma 13, we can conclude that if T = 〈T, T 〉
is a stable model of π, then Tω is a stable model of πω . That is,
no 〈H ′, T 〉 � π exists such that H ′ < T . Let us assume there is
〈H ′, T 〉 � π∪πful, such thatH ′ < T . From Definition 1, we get
that 〈H ′, T 〉 � πful and 〈H ′, T 〉 � π. The latter means that T is
not an equilibrium trace for π, which is a contradiction.

Theorem 6 is then not difficult to show.

Proof of Theorem 6. (Sketch) The result is obtained by repeated ap-
plication of Theorem 3, where the definition of the sets U i takes care
that they are closed under negatives dependencies.

We next consider Theorem 7.

Proof of Theorem 7. Let π be a temporal program without fulfill-
ment rules. We want to prove that if π admits an equilibrium trace,
then trace(

⋂
AS(πω)) =

⋂
TEL(π).

By Theorem 5, Tω is a stable model for πω iff trace(Tω)
is an equilibrium trace for π. Therefore, we also have that (i)
trace(

⋂
AS(πω)) =

⋂
TEL(π).

Finally, we consider Theorem 8.

Proof of Theorem 8. Let π be a temporal program without fulfill-
ment rules, If π admits an equilibrium trace, then we want to prove

trace(
⋃
i≥0

⋂
AS(πi∩)) ⊆

⋂
TEL(π), and

trace(
⋃
i≥0

⋃
AS(πi∩)) ⊇

⋃
TEL(π)

The result is obtained by repeated application of Theorem 4, where
the definition of the sets U i takes care that they are closed under
negatives dependencies, and Ci and Bi corresponds, respectively, to
the skeptical and the brave consequences of filter(πi∩).

13

