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Summary. The purpose of this chapter is to report on work that has
been done in the REWERSE project concerning hybrid reasoning with
rules and ontologies. Two major streams of work have been pursued
within REWERSE. They start from the predominant semantics of non-
monotonic rules in logic programming. The one stream was an extension
of non-monotonic logic programs under answer set semantics, with query
interfaces to external knowledge sources. The other stream, in the spirit of
the AL-log approach of enhanced deductive databases, was an extension
of Datalog (with the well-founded semantics, which is predominant in
the database area). The former stream led to so-called non-monotonic
dl-programs and hex-programs, and the latter stream to hybrid well-
founded semantics. Further variants and derivations of the formalisms
(like a well-founded semantics for dl-programs, respecting probabilistic
knowledge, priorities, etc.) have been conceived.

1.1 Introduction

The purpose of this chapter is to report on the work that has been done in
REWERSE on hybrid reasoning with rules and ontologies. The importance of
rules and ontologies for Web applications is reflected by the World Wide Web
Consortium’s1 (W3C) proposal of the layered architecture of the Semantic Web,
including the ontology layer and the rule layer. The ontology layer of the Semantic
Web was quite developed already at the REWERSE start in 2004. In the same
year, W3C adopted the Web Ontology Language (OWL) recommendation [32].

1 http://www.w3.org/

http://www.w3.org/


On the other hand, the rule layer was a topic addressed by many researchers but
was not yet official subject of W3C activities.

Integration of the rule layer with the ontology layer is necessary for rule-
based applications using ontologies, like data integration applications. It can be
achieved by combining existing ontology languages with existing rule languages,
or by defining new languages, expressive enough to define ontologies, rules and
their interaction. An important issue in combination of ontology languages and
rule languages based on logics is the semantics of the combined language, as a
foundation for development of sound reasoners. The REWERSE work reported
in this chapter focused on hybrid reasoning, where the reasoner of the combined
language reuses the existing reasoners of the component ontology language and
rule language.

Motivated by the need for hybrid reasoning with rules and ontologies, two
major streams of work have been pursued within REWERSE. They start from
the predominant semantics of non-monotonic rules in logic programming. The
one stream was an extension of non-monotonic logic programs under answer set
semantics, with query interfaces to external knowledge sources. The other stream,
in the spirit of the AL-log [33] approach of enhanced deductive databases, was
an extension of Datalog (with the well-founded semantics, which is predominant
in the database area). The former stream lead to so-called non-monotonic dl-
programs and hex-programs, and the latter stream to hybrid well-founded
semantics. Further variants and derivations of the formalisms (like a well-founded
semantics for dl-programs, respecting probabilistic knowledge, priorities, etc.)
have been conceived.

To put the REWERSE work in a broader perspective, the chapter begins
with a concise introduction to the Resource Description Framework (RDF) layer,
which sets the standard for the data model for the Semantic Web, to the RDF
Schema, seen as a simple ontology language, and to OWL. We then discuss
rule languages considered in integration proposals and present a classification of
the major approaches to integration which uses the terminology of [4, 81]. The
remaining part of the chapter surveys the REWERSE work on hybrid integration
of rules and ontologies.

1.2 Overview of Approaches

This section gives a brief survey of the approaches to combine or integrate
reasoning with rules and ontologies on the Web. It starts with a brief introduction
to the underlying formalisms of the Semantic Web, followed by discussion on
the rule languages considered in integration proposals. Finally, a classification
of the integration proposals is presented. For a more comprehensive survey, the
interested reader is referred to [40].
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1.2.1 RDF and RDF Schema

The Resource Description Framework (RDF) defines the data model for
the Semantic Web as labeled, directed graphs. An RDF dataset (that is, an RDF
graph) can be viewed as a set of the edges of such a graph, commonly represented
by triples (or statements) of the form:

Subject Predicate Object

where

– the edge links Subject , which is a resource identified by a URI or a blank
node, to Object , which is either another resource, a blank node, a datatype
literal, or an XML literal ;

– Predicate, in RDF terminology referred to as property, is the edge label.

The next example, originating from [40], illustrates the main concepts of RDF.

Example 1. Take a scenario in which three persons named Alice, Bob, and Charles,
have certain relationships among each other: Alice knows both Bob and Charles,
Bob just knows Charles, and Charles knows nobody.

For encoding the information that “a person called Bob knows a person called
Charles” we need a vocabulary including concepts like ”person” and ”name”. We
can adopt the so-called FOAF (friend-of-a-friend) RDF vocabulary [84]. Then
the statement can be given by the following RDF triples:

_:b rdf:type foaf:Person, _:b foaf:name "Bob", _:b foaf:knows _:c,
_:c rdf:type foaf:Person, and _:c foaf:name "Charles",

where the qualified names like foaf:Person are shortcuts for full URIs like
http://xmlns.com/foaf/0.1/Person, making usage of namespace prefixes from
XML, for ease of legibility. For instance, the triple

_:b foaf:name "Bob"

expresses that “someone has the name Bob.” _:b is a blank node and can be
seen as an anonymous identifier. In fact, the name for a blank node is meaningful
only in the context of a given RDF graph; conceptually, blank node names can
be uniformly substituted inside an RDF graph without changing the meaning of
the encoded knowledge.

RDF information can be represented in different formats. One of the most
common is the RDF/XML syntax.2. The much simpler Turtle3 representation is
adopted in SPARQL, the W3C standard language for querying RDF data. The
information of the example can be encoded in Turtle as follows:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

_:a rdf:type foaf:Person .

_:a foaf:name "Alice" .

2 http://www.w3.org/TR/rdf-syntax-grammar/
3 http://www.w3.org/TeamSubmission/turtle/
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@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://www.mat.unical.it/~ianni/foaf.rdf>

a foaf:PersonalProfileDocument.

<http://www.mat.unical.it/~ianni/foaf.rdf> foaf:maker _:me .

<http://www.mat.unical.it/~ianni/foaf.rdf> foaf:primaryTopic _:me .

_:me a foaf:Person .

_:me foaf:name "Giovambattista Ianni" .

_:me foaf:homepage <http://www.gibbi.com> .

_:me foaf:phone <tel:+39-0984-496430> .

_:me foaf:knows [ a foaf:Person ;

foaf:name "Axel Polleres" ;

rdfs:seeAlso <http://www.polleres.net/foaf.rdf>].

_:me foaf:knows [ a foaf:Person ;

foaf:name "Wolfgang Faber" ;

rdfs:seeAlso <http://www.kr.tuwien.ac.at/staff/faber/foaf.rdf>].

_:me foaf:knows [ a foaf:Person ;

foaf:name "Francesco Calimeri" ;

rdfs:seeAlso <http://www.mat.unical.it/kali/foaf.rdf>].

_:me foaf:knows [ a foaf:Person .

foaf:name "Roman Schindlauer" .

rdfs:seeAlso <http://www.kr.tuwien.ac.at/staff/roman/foaf.rdf>].

Fig. 1.1: Giovambattista Ianni’s personal FOAF file.

_:a foaf:knows _:b .

_:a foaf:knows _:c .

_:b rdf:type foaf:Person .

_:b foaf:name "Bob" .

_:b foaf:knows _:c .

_:c rdf:type foaf:Person .

_:c foaf:name "Charles" .

A Turtle shortcut notation like

_:a rdf:type foaf:Person ;

foaf:name "Alice" ;

foaf:knows _:b ;

foaf:knows _:c .

is a condensed version of the first four triples stated before.
Other common notations for RDF are N-Triples4 and Notation 35.

Figure 1.1 shows some information about one of the authors of this article
extracted from RDF data that are available on the Web. RDF defines a special
4 http://www.w3.org/2001/sw/RDFCore/ntriples/
5 http://www.w3.org/DesignIssues/Notation3.html
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property rdf:type,6 abbreviated in Turtle syntax by the “a” letter. It allows the
specification of “IS-A” relations, such as, for instance,

<http://www.mat.unical.it/~ianni/foaf.rdf> a foaf:PersonalProfileDocument.

in Figure 1.1 links the resource <http://www.mat.unical.it/~ianni/foaf.rdf> to
the resource foaf:PersonalProfileDocument via rdf:type.

Types supported for RDF property values are URIs, or the two basic types, viz.
rdf:Literal and rdf:XMLLiteral. Under the latter, a basic set of XML schema
datatypes are supported.

The RDF Schema (RDFS) is a semantic extension of basic RDF. By giv-
ing special meaning to the properties rdfs:subClassOf and rdfs:subPropertyOf,
to rdfs:domain and rdfs:range, as well as to several types (like rdfs:Class,
rdfs:Resource, rdfs:Literal, rdfs:Datatype, etc.), RDFS allows to express sim-
ple taxonomies and hierarchies among properties and resources, as well as domain
and range restrictions for properties.

The semantics of RDFS can be approximated by axioms in FOL, see e.g. [82].
Such a formalization can be used as a basis for RDFS reasoning, where the truth
of a given triple t in a given RDF graph G under the RDFS semantics is decided.

1.2.2 The Web Ontology Language OWL

The next layer in the Semantic Web stack serves to formally define domain models
as shared conceptualizations, called ontologies [55]. The Web Ontology Language
OWL [32] is used to specify such domain models. The W3C document defines
three languages OWL Lite, OWL DL, and OWL Full, with increasing expressive
power. The first two are syntactic variants of expressive but decidable description
logics (DLs) [8]. In particular, OWL DL coincides with with SHOIN (D) at the
cost of imposing several restrictions on the usage of RDFS. These restrictions
(e.g., disallowing that a resource is used both as a class and an instance) are
lifted in OWL Full which combines the description logic flavor of OWL DL and
the syntactic freedom of RDFS. For in-depth discussion of OWL Full, we refer
the interested reader to the language specification [32].

While RDFS itself may already be viewed as a simple ontology language,
OWL adds several features beyond RDFS’ simple capabilities to define hierar-
chies (rdfs:subPropertyOf, rdfs:subClassOf) among properties and classes.7 In
particular, OWL allows to specify transitive, symmetric, functional, inverse, and
inverse functional properties. Table 1.1 shows how OWL DL property axioms
can be expressed in DL notation and in FOL. RDF triples S P O are represented
here as P (S,O), since in description logics (and thus in OWL DL), predicate
names and resources are assumed to be disjoint.

Moreover, OWL allows the specifications of complex class descriptions to
be used in rdfs:subClassOf statements. Complex descriptions may involve class
6 short for the full URI http://www.w3.org/1999/02/22-rdf-syntax-ns#type
7 As conventional in the literature, we use “concept” as a synonym for “class”, and
“role” as a synonym for “property.”
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Table 1.1: Mapping OWL DL Property axioms to DL and FOL
OWL property axioms as RDF triples DL syntax FOL short representation

〈P rdfs:domain C〉 > v ∀P−.C ∀x, y.P (x, y) ⊃ C(x)

〈P rdfs:range C〉 > v ∀P.C ∀x, y.P (x, y) ⊃ C(y)

〈P owl:inverseOf P0〉 P ≡ P−
0 ∀x, y.P (x, y) ≡ P0(y, x)

〈P rdf:type owl:SymmetricProperty 〉 P ≡ P− ∀x, y.P (x, y) ≡ P (y, x)

〈P rdf:type owl:FunctionalProperty 〉 > v 6 1P ∀x, y, z.P (x, y) ∧ P (x, z) ⊃ y = z

〈P rdf:type owl:InverseFunctionalProperty 〉 > v 6 1P− ∀x, y, z.P (x, y) ∧ P (z, y) ⊃ x = z

〈P rdf:type owl:TransitiveProperty 〉 P+ v P ∀x, y, z.P (x, y) ∧ P (y, z) ⊃ P (x, z)

Table 1.2: Mapping of OWL DL Complex Class Descriptions to DL and FOL
OWL complex class descriptions∗ DL syntax FOL short representation

owl:Thing > x = x

owl:Nothing ⊥ ¬x = x

owl:intersectionOf (C1 . . . Cn) C1 u · · · u Cn C1(x) ∧ · · · ∧ Cn(x)

owl:unionOf (C1 . . . Cn) C1 t · · · t Cn C1(x) ∨ · · · ∨ Cn(x)

owl:complementOf (C) ¬C ¬C(x)

owl:oneOf (o1 . . . on) {o1, . . . , on} x = o1 ∨ · · · ∨ x = on

owl:restriction (P owl:someValuesFrom (C)) ∃P.C ∃y.P (x, y) ∧ C(y)

owl:restriction (P owl:allValuesFrom (C)) ∀P.C ∀y.P (x, y) ⊃ C(y)

owl:restriction (P owl:value (o)) ∃P.{o} P (x, o)

owl:restriction (P owl:minCardinality (n)) > nP ∃y1 . . . yn.

n̂

k=1

P (x, yk)∧
^
i<j

yi 6=yj

owl:restriction (P owl:maxCardinality (n)) 6 nP ∀y1 . . . yn+1.

n+1̂

k=1

P (x, yk)⊃
_
i<j

yi =yj

∗For reasons of legibility, we use a variant of the OWL abstract syntax [91] in this table.

definitions in terms of union or intersection of other classes, as well as restrictions
on properties. Table 1.2 gives an overview of the expressive possibilities of OWL
for class descriptions and its semantic correspondences with description logics
and first-order logics.8 Such class descriptions can be related to each other using
rdfs:subClassOf, owl:equivalentClass, and owl:disjointWith keywords, which
allow us to express description logic axioms of the form C1 v C2, C1 ≡ C2, and
C1 u C2 v ⊥, respectively, in OWL.

Finally, OWL allows to express explicit equality or inequality relations between
individuals by means of the owl:sameAs and owl:differentFrom properties.

For details on the description logic notions used in Tables 1.1 and 1.2, we
refer the interested reader to, e.g., [8].

The next, more expressive, iteration of OWL (version 2)9 is developed by
W3C. According to the proposal OWL2 will be based on the decidable description
logic SROIQ [60]. It will support additional features such as acyclic composition

8 We use a simplified notion for the first-order logic translation here—actually, the
translation needs to be applied recursively for any complex DL term. For a formal
specification of the correspondence between DL expressions and first-order logic,
cf. [8].

9 http://www.w3.org/TR/owl2-syntax/
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of properties, qualified number restrictions, and possibility to declare symmetry,
reflexivity, or disjointness for properties.

Example 2 (Ontologies in Description Logics). A simple ontology about publica-
tions available online at http://asptut.gibbi.com/sandbox/reviewers.rdf
includes OWL statements which can be represented by the following DL axioms:

∃ex :title.> v ex :Paper (1.1)

∃ex :title−.> v xsd :string (1.2)

ex :isAuthorOf − ≡ dc:creator (1.3)
ex :Publication ≡ ex :Paper u ∃ex :publishedIn.> (1.4)

> v 6 1 ex :publishedIn− (1.5)
ex :Senior ≡ foaf :Person u > 10 ex :isAuthorOf u (1.6)

∃ex :isAuthorOf .ex :Publication

The axioms express the following information: ex :title is a datatype property
on ex :Papers that takes strings as values (axioms (1.1) and (1.2)). Furthermore,
the property ex :isAuthorOf is the inverse of the property dc:creator (axiom (1.3)).
Next, the ontology defines in (1.4) a class ex :Publication which consists of all
the papers which have been published, and in (1.5), we state that ex :publishedIn
to be an inverse functional property (i.e., every paper is published in at most
one venue). An ex :Senior researcher (1.6) is defined as a person who has at least
ten papers, some of which are published.

1.2.3 Rule Languages for Integration

The rule languages considered in integration proposals are usually extensions of
Datalog. Generally, rules have a form of “if” statements, where the predecessor,
called the body of the rule, is a Boolean condition and the successor, called the
head, specifies a conclusion to be drawn if the condition is satisfied.

In Datalog, the condition of a rule is a conjunction of zero or more atomic
formulae of the form p(t1, . . . , tm) where p is an m-ary predicate symbol and
t1, . . . , tm are terms which are constant symbols or variables.10 The head of a
rule is an atomic formula (atom). For example, the rule

auntOf (X,Y )← parentOf (Z, Y ), sisterOf (X,Z)

states that X is an aunt of Y if Z is a parent of Y and X is this parent’s
sister. The semantics of Datalog associates with every set of rules (rulebase)
its least Herbrand model (see, e.g., [90]), where each ground (i.e., variable-free)
atom is associated with a truth value true or false. The least Herbrand model
is represented as the set of all atoms assigned to true. These are all the ground
10 In logic programming, atomic formulae may in addition include terms built with

n-ary function symbols.
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atoms which follow from the rules interpreted as implications in FOL. For ex-
ample, the least Herbrand model of the rulebase consisting of the rule above
and of the facts parentOf (tom, john), sisterOf (mary, tom) includes the formula
auntOf (mary, john). On the other hand, auntOf (mary, tom) does not follow in
this rulebase. Datalog with negation uses this to conclude ¬auntOf (mary, tom).
Datalog rulebases constitute a subclass of logic programs. The latter use FOL
terms, not necessarily restricted to constants and variables. Proposals for inte-
gration of rules and ontologies are mostly based on the following extensions of
Datalog (which apply also to logic programs):

– Datalog with negation-as-failure, where the body may additionally in-
clude negation-as-failure (NAF) literals of the form not a where a is an atom.
Intuitively, a NAF literal not a is considered true if it does not follow from
the program that a is true. For example, happy(john) can be concluded from
the rulebase

happy(X)← healthy(X), not hungry(X)
healthy(john)←

Two commonly accepted formalizations of this intuition are the stable model
semantics and the well-founded semantics (see the survey [11]), which are
introduced in more detail in Section 1.3. These semantics differ in their view
of a belief state as a single classical model in which each atomic fact is either
true and false, versus a three-valued model in which each fact is either true,
false or unknown.

– Extended Datalog. This extension (see extended logic programs in [11])
makes it possible to state explicitly negative knowledge. This is achieved
by allowing negative literals of the form −p, where “−” is called the strong
negation connective, in the heads of rules as well as in the bodies. In addition
NAF literals are also allowed in the bodies. For example the rule

−healthy(X)← hasFever(X)

allows to draw an explicit negative conclusion.
– Rulebases with priorities. Datalog rulebases employing strong negation

may be inconsistent, i.e., may allow to draw contradictory conclusions. For
example, the rules

fly(X)← bird(X)
bird(Y )← penguin(Y )
−fly(X)← penguin(X)

penguin(tweety)←

allow to conclude fly(tweety) and −fly(tweety). In Defeasible Logic [2] and
in Courteous Logic Programs [54], the user is allowed to specify a priority
relation on rules of the rulebase to resolve contradictions in the derived
conclusions.
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– Disjunctive Datalog (see Disjunctive Logic Programs in [11]) admits dis-
junction of atoms in rule heads, and conjunction of atoms and NAF literals
in the bodies, e.g.,

male(X) ∨ female(X)← person(X).

A commonly used semantics of Disjunctive Datalog rulebases is an extension
of Answer Set Semantics.

The rule languages are supported by implementations which make it possible to
query and/or to construct the models of rulebases.

1.2.4 Rule Interchange Format RIF

While there are already standard languages for ontologies viz. RDFS and OWL
(which are becoming increasingly used), there is no standard for a rules language
available yet.Many rules languages and systems have been proposed, and they
offer varying features to reason over Semantic Web data. The Rule Interchange
Format (RIF) working group of W3C is currently developing a standard exchange
format for rules on the Web [13, 12]. The Rule Interchange Format Basic Logic
Dialect (RIF-BLD) [12] proposed by the group is basically a syntactic variant of
Horn rules, which most available rule systems can process.

1.2.5 Approaches to Integration

Integration of a given rule language with a given ontology language is usually
achieved by defining a common extension of both, to be called the integrated
language. Alternatively, one can adopt an existing knowledge representation
language expressive enough to represent rules and ontologies. As OWL is a
standard ontology language the ontology languages considered in integration
proposals are usually its subsets. The approaches can be classified by the degree
of integration of rules and ontologies achieved in the integrated language (see
e.g. [4, 81]).

Heterogeneous Integration. In this approach, the distinction between rule
predicates and ontology predicates is preserved in the integrated language. Inte-
gration of rules and ontologies is achieved by allowing ontology predicates in the
rules of the integrated language. Assume for example that an ontology classifies
courses as project courses and lecture courses.

Project t Lecture = Course

It also includes assertions like Lecture(cs05), Project(cs21) or Course(cs32) (e.g.
for courses including lectures and projects). The assertions indicate offered
courses. A person is considered a student if he/she is enrolled in an offered lecture
or project. This can be expressed by the following rules, using the ontology
predicates
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student(X)← enrolled(X,Y ),Lecture(Y )
student(X)← enrolled(X,Y ),Project(Y )

In addition, the rulebase includes enrollment facts, e.g., enrolled(joe, cs32). The
extended language allows thus to define ontologies using the constructs of the
ontology language and the rulebases with rules referring to the ontologies. An
extended rulebase together with an ontology is called a hybrid knowledge base.
In heterogeneous approaches, implementations are often based on the hybrid
reasoning principle, where a reasoner of the ontology language is interfaced with
a reasoner of the rule language to reason in the integrated language.

Two kinds of heterogeneous approaches can be distinguished:

– Loose coupling. In this approach, the body of a rule may contain queries to
the ontology. A ground set of rules with ontology queries can be reduced to a
set of rules without ontology predicates. If the answer to a ground ontology
query is positive the query is removed from the rule, otherwise the rule is
removed from the set. The semantics of knowledge bases with loose coupling
is based on this idea.
With loose coupling applied to the example above, it cannot be concluded
that Joe is a student. This is because neither Lecture(cs32) nor Project(cs32)
can be derived from the ontology.
Examples of loose coupling include:

– dl-programs [46, 43, 47, 42] combining (disjunctive) Datalog with nega-
tion under answer set semantics with OWL DL. So-called dl-queries,
querying the ontology, are allowed in rule bodies. They may also refer
to a variant of the ontology, where the set of its assertions is modified
by the dl-query. This enables bi-directional flow of information between
rules and ontologies. This work was partly supported by REWERSE and
is discussed in more detail in Section 1.3.2.

– HEX-programs [44] extending logic programs under the answer set
semantics with support for higher/order and external atoms. This work
was partly supported by REWERSE and is discussed in more detail in
Section 1.3.3.

– TRIPLE [101] a rule language with the syntax inspired by F-logic which
admits queries to the ontology in rule bodies.

– SWI Prolog11 a logic programming system with a Semantic Web library
which makes it possible to invoke RDF Schema and OWL reasoners from
Prolog programs.

– Tight integration. In this approach, a semantics for the integrated language
is given which defines models of hybrid knowledge bases by referring to
the semantics of the original rule language and to the FOL models of the
ontology. For example, tight integration of Datalog (without negation) with
a Description Logic can be achieved within FOL by interpreting Datalog
rules as implications. In this semantics, student(joe) is a logical consequence

11 http://www.swi-prolog.org/
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of the example hybrid knowledge base. As Course(cs32) is an assertion of
the ontology, it follows by the axiom Project t Lecture = Course that in
any FOL model of the ontology Project(cs32) or Lecture(cs32) is true. As
enrolled(joe, cs32) is true in every model so the premises of at least one of
the implications

student(joe)← enrolled(joe, cs32),Lecture(cs32)
student(joe)← enrolled(joe, cs32),Project(cs32)

must be true in any model. Hence student(joe) is concluded.
Examples of tight integration include:

– AL-log [33] and CARIN [68], classical works on integrating Datalog
with a family of Description Logics under the FOL semantics.

– DL+log [97] and its predecessor r-hybrid knowledge bases [96] integrating
Disjunctive Datalog under Answer Set Semantics with OWL DL. For
each FOL model of the ontology, the rules of the knowledge base are
reduced to rules of Disjunctive Datalog, with stable models defined by the
Answer Set Semantics. Similar to DL+log is the approach of [57]. The
guarded hybrid (g-hybrid) knowledge bases introduced therein integrate
so-called guarded programs with ontologies in a particular DL close to
OWL DL.

– Hybrid Rules [39] integrating logic programs under the well-founded
semantics with OWL DL. For each FOL model of the ontology, the
rules of the knowledge base are reduced to a logic program with the
model defined by the well-founded semantics. This work was done within
REWERSE and is reported in more details in Section 1.3.4.

– Tightly Coupled dl-Programs [73] combine disjunctive logic programs
under the answer set semantics with description logics. They are based
on a well-balanced interface between disjunctive logic programs and
description logics, which guarantees the decidability of the resulting
formalism without assuming syntactic restrictions. They faithfully extend
both disjunctive programs and description logics. We refer to [73] for a
detailed comparison to the above loosely coupled dl-programs.

The theoretical foundations developed by studying integration of ontologies
with variants of Datalog provide a basis for further extensions. This includes
dealing with uncertain and inconsistent knowledge, and using integrated Datalog-
based languages as condition languages for ECA-rules.

Homogeneous Integration. The integrated language makes no distinction
between rule predicates and ontology predicates. It includes the original rule
language and the original ontology language as sublanguages. The integration is to
be faithful in the sense that the sublanguages should have the same semantics as
the respective original languages. Homogeneous integration is difficult to achieve
since usually ontology languages are based on FOL and rule languages often
support non-monotonic reasoning. An interesting related question is if existing
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proposals for heterogeneous integration can be embedded into more expressive
logical languages.

Examples of homogeneous integration include:

– DLP (Description Logic Programs) [53], a language obtained by in-
tersection of a Description Logic with Datalog rules interpreted as FOL
implications. DLP has a limited expressive power, but a DLP ontology can be
compiled into rules and easily integrated into a rulebase of a more expressive
rule language. For example Sweet Rules12 combine DLP and Datalog with
strong negation and priorities. The technique of compiling ontologies to rules
is also used in DR-Prolog [3] based on Defeasible Logic [2].

– SWRL (Semantic Web Rule Language)13 extending OWL DL with
rules interpreted as FOL implications. Thus SWRL is based on FOL and
does not offer nonmonotonic features, such as negation-as-failure. SWRL is
undecidable. More recent works define decidable subsets of SWRL: Description
Logic Rules [66] and ELP [67].

– F-logic [62] extending classical predicate calculus with the concepts of objects,
classes, and types. It is expressive enough to represent ontologies, rules and
their combinations [61].

– Hybrid MKNF Knowledge Bases [85, 87] take Lifschitz’s bimodal Logic
of Minimal Knowledge and Negation as Failure (MKNF) [69] as a basis of
faithful integration of Description Logic with Disjunctive Datalog. In addition,
more recent results define the well-founded semantics for a subclass of Hybrid
MKNF KBs [63, 64].

– Extended RDF Ontologies [1] is an extension of RDF graphs with rules
which admits NAF and strong negation. A stable model semantics defined
for ERDF extends the semantics of RDF Schema. It is based on the partial
logic of [56] and supports both closed-world and open-world reasoning.

The issue of embedding existing heterogeneous approaches into unifying logics
was addressed by several authors. In particular, [31] shows how the Quantified
Equilibrium Logic can be used for embedding heterogeneous approaches, like
DL+log and g-hybrid knowledge bases. The first-order autoepistemic logic [65]
is considered as a unifying framework for integration of rules and ontologies
in [29, 30]. The latter paper shows how dl-programs, r-hybrid knowledge bases
and hybrid MKNF knowledge bases can be embedded in this logic.

1.3 Hybrid Rules and Ontologies in REWERSE

In this section, we give a brief exposition of work that has been done in REWERSE
regarding the combination of rules and ontologies. In fact, this problem has been
approached in different ways, aiming at the support of different semantics and
operability of the combination.
12 http://sweetrules.projects.semwebcentral.org/
13 http://www.w3.org/Submission/SWRL/
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The main achievements are combinations for the two standard semantics
of non-monotonic logic programs to date that were already mentioned in Sec-
tion 1.2.3, viz. the stable model semantics [50] (which is called answer set semantics
[52] in the version where strong negation is supported), and the well-founded
semantics [103].

The stable model semantics [51] associates with each rulebase some (pos-
sibly zero) two-valued Herbrand models called stable models (or answer sets).
Intuitively, a model is stable, if it can be recreated by applying the rules of the
program starting from facts, where negation-as-failure in rule bodies is evaluated
with respect to that model. Formally, stable models may be defined by using the
famous Gelfond-Lifschitz reduct [51].

The well-founded semantics [103] instead associates with a rulebase a unique
(three-valued) Herbrand model, called the well-founded model of P , in which
each ground atom is assigned one of three logical values true, false or unknown.
Intuitively, the facts of a program should be true, and the ground atoms which
are not instances of the head of any rule should be false. This information can
be used to reason which other atoms must be true and which must be false in
any Herbrand model. Such a reasoning gives in the limit the well-founded model,
where the truth values of some atoms may still be undefined.

The properties and relationships between stable and well-founded semantics
are well-understood and explored, and we do not embark on this issue here
but refer to the literature, cf. [10]. We mention, though, that for a large class
of programs relevant in practice (so-called stratified programs [11]), the two
semantics coincide.

However, the different nature of the two semantics, and the available methods
and algorithms for program evaluation in them is important with respect to
possible combinations with ontologies. Indeed, the stable model semantics as a
multiple-models semantics has to cope with several possible outcomes (that is,
with nondeterminism in the evaluation), while the well-founded semantics as a
canonical model semantics is determined; this makes it also more amenable to use
proof-oriented methods for evaluation. In line with this, well-founded semantics
engines (e.g., XSB) may be top-town oriented, while stable model engines, by
current technology, are very much bottom up oriented (e.g., DLV and Smodels).

Within REWERSE, combinations of rules and ontologies have been developed
that fall into the heterogeneous integration class described in Section 1.2.5. More
in detail, non-monotonic dl-programs [46, 43] and the more general hex-programs
[44] have been developed in order to have a loose coupling of OWL ontologies
with nonmonotonic logic programs under the answer set semantics, while Hybrid
Rules (HD-rules) have been developed in order to tightly couple OWL ontologies
with nonmonotonic logic programs under the well-founded semantics.

The combinations faithfully extend the underlying logic programming seman-
tics, and prototypes have been implemented that build on existing standard
reasoning engines for logic programs and OWL ontologies. In fact, they were the
first implementations of this kind, giving REWERSE a lead in the realization of
expressive non-monotonic combinations of rules and ontologies. An application
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within REWERSE was a tool for computing credentials from rule-based policy
specifications, based on the engine for hex-programs.

In the following subsections, we briefly present the two streams of work that
have been carried out by the groups in Linköping and Vienna, respectively. For
space reasons, we must confine to the essential aspects and conveying the flavor;
more details are available in the background publications.

1.3.1 Extensions of Expressive Non-Monotonic Logic Programs by
DL-Programs and HEX-Programs

The first stream of work for combining rules and ontologies in REWERSE was
directed towards the stable models and answer set semantics, and led to two
formalisms: dl-programs and hex-programs.

The development of dl-programs was motivated by providing an extension to
ordinary logic programs that allows one to couple a logic programming engine
and description logic reasoner in a meaningful way. However, apart from the
usual software engineering problems in coupling heterogeneous systems, the real
challenge consisted in a smooth semantic integration, given that logic programs
and OWL ontologies are based on rather different semantic grounds which are
difficult to bridge (cf. [40]). To overcome this problem, as described in Section 1.2.5
non-monotonic dl-programs foster a loose integration, which takes an interfacing
view where the logic program rules and the OWL ontologies can exchange
information in terms of extensional data through so called description-logic atoms
(dl-atoms), which may appear in the logic program. In a nutshell, such atoms
can update and query an ontology, i.e., information can flow in both directions
of the integrated knowledge bases.

This concept appeared to be quite fruitful and allows an easy definition of
the semantics of dl-programs, by generalizing the stable model resp. answer set
semantics of ordinary logic programs in a natural way. Furthermore, abstraction
of description logic atoms to generic external atoms (which is somewhat related
to the notion of generalized quantifiers in logic) opened the door to combine
ordinary logic programs not only with ontologies, but with (in principle) any kind
of external software via an interface at the extensional level. In particular, this
facilitates to access and combine data and information in different formats (e.g.,
in OWL and RDF simultaneously), and to “out-source” parts of computations
from the logic program to external functions, which can use tailored and problem-
specific methods; the rules in the logic program then serve the role to generate
different scenarios (e.g., by making guesses) and constrain solution candidates,
for which the results of different computations might be suitably combined.

It turned out that such capabilities were useful for a problem of credential
computation in rule-based policy specifications, and that a prototype for this
task could be easily built on top of a prototype implementation of hex-programs.
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1.3.2 DL-Programs

Description logic programs (dl-programs), which had been introduced in [46],
are a novel type of hybrid knowledge bases combining description logics and
logic programs. They form another contribution to the attempt in finding an
appropriate formalisms for combined rules and ontologies for the Semantic Web.

Roughly speaking, dl-programs consist of a normal logic program P and a
description logic knowledge base (DL-KB) L. The logic program P might contain
special devices called dl-atoms. Those dl-atoms may occur in the body of a rule
and involve queries to L. Moreover, dl-atoms can specify an input to L before
querying it, thus in dl-programs a bidirectional data flow is possible between the
description logic component and the logic program.

The way dl-programs interface DL-KBs allows them to act as loosely coupled
formalism. This feature brings the advantage of reusing existing logic program-
ming and DL system in order to build an implementation of dl-programs.

In the following, we provide the syntax of dl-programs and an overview of
the semantics. An in-detail treatise is given in [43].

Syntax of DL-Programs. Informally, a dl-program KB = (L,P ) consists
of a description logic knowledge base L and a generalized normal program P ,
which may contain queries to L. Roughly, such a query asks whether a specific
description logic axiom is entailed by L or not.

We first define dl-queries and dl-atoms, which are used to express queries to
the description logic knowledge base L. A dl-query Q(t) is either

– a concept inclusion axiom F or its negation ¬F , or
– of the forms C(t) or ¬C(t), where C is a concept and t is a term, or
– of the forms R(t1, t2) or ¬R(t1, t2), where R is a role and t1, t2 are terms.

A dl-atom has the form

DL[S1op1p1, . . . , Smopm pm;Q](t) , m ≥ 0, (1.7)

where each Si is either a concept or a role, opi ∈ {], −∪, −∩}, pi is a unary resp.
binary predicate symbol, and Q(t) is a dl-query. We call p1, . . . , pm its input
predicate symbols. Intuitively, opi = ] (resp., opi = −∪) increases Si (resp., ¬Si)
by the extension of pi, while opi = −∩ constrains Si to pi.

A classical literal (or simply literal) l is an atom p or a negated atom −p
with a rule predicate symbol (hence not a predicate symbol of L). A dl-rule r
has the form

a← b1, . . . , bn,not bn+1, . . . ,not bm, (1.8)

where a is a literal and any literal b1, . . . , bm may be a dl-atom. We define H(r) =
a and B(r) = B+(r) ∪B−(r), where B+(r) = {b1, . . . , bn} and B−(r) = {bn+1,
. . . , bm}. If B(r) = ∅ and H(r) 6= ∅, then r is a fact. A dl-program KB = (L,P )
consists of a description logic knowledge base L and a finite set of dl-rules P .

The next example will illustrate main ideas behind the notion of dl-program.
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Fig. 1.2: Hightraffic network

Example 3. An existing network must be extended by new nodes (Fig. 1.2). The
knowledge base LN contains information about existing nodes (n1, . . . , n5) and
their interconnections as well as a definition of “overloaded” nodes (concept
HighTrafficNode), which are nodes with more than three connections:

≥ 1 wired v Node; > v ∀wired .Node; wired = wired−;
≥ 4 wired v HighTrafficNode; n1 6= n2 6= n3 6= n4 6= n5;

Node(n1); Node(n2); Node(n3); Node(n4); Node(n5);
wired(n1, n2); wired(n2, n3); wired(n2, n4);
wired(n2, n5); wired(n3, n4); wired(n3, n5).

In LN , only n2 is an overloaded node, and is highlighted in Fig. 1.2 with a
criss-cross pattern.

To evaluate possible combinations of connecting the new nodes, the following
program PN is specified:

newnode(x1 ). (1.9)
newnode(x2 ). (1.10)
overloaded(X)← DL[wired ] connect ; HighTrafficNode](X). (1.11)
connect(X,Y )← newnode(X),DL[Node](Y ), (1.12)

not overloaded(Y ),not excl(X,Y ).
excl(X,Y )← connect(X,Z),DL[Node](Y ), Y 6= Z. (1.13)
excl(X,Y )← connect(Z, Y ),newnode(Z),newnode(X), Z 6= X. (1.14)
excl(x1 , n4). (1.15)

Rules (1.9)–(1.10) define the new nodes to be added. Rule (1.11) imports knowl-
edge about overloaded nodes in the existing network, taking new connections
already into account. Rule (1.12) connects a new node to an existing one, pro-
vided the latter is not overloaded and the connection is not to be disallowed,
which is specified by Rule (1.13) (there must not be more than one connection
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for each new node) and Rule (1.14) (two new nodes cannot be connected to the
same existing one). Rule (1.15) states a specific condition: Node x1 must not be
connected with n4.

Semantics of DL-Programs. Two different semantics have been defined for
dl-programs, the (strong) answer-set semantics [46] and the well-founded seman-
tics [47]. The former extends the notion of Gelfond-Lifschitz reduct incorporating
the presence of dl-atoms: dl-programs can have, in general, multiple answer
sets. The latter extends the well-founded semantics of [103] to dl-programs. The
well-founded semantics is based on an appropriate notion of greatest unfounded
set which embraces the presence of dl-atoms, and assigns a single three-valued
model to every logic program.

More formally, given a consistent set I of classical literals (using the constants
in P and L), I satisfies (i) a classical ground literal l, denoted I |=L l, iff l ∈ I,
and (ii) a dl-atom a = DL[λ;Q](c) with input list λ = S1op1p1, . . . , Smopmpm,
denoted I |=L a, iff L ∪ λ(I) |= Q(c), where λ(I) =

⋃m
i=1Ai(I) and

– Ai(I) = {Si(d) | pi(d) ∈ I}, for opi = ];
– Ai(I) = {¬Si(d) | pi(d) ∈ I}, for opi = −∪;
– Ai(I) = {¬Si(d) | pi(d) ∈ I does not hold}, for opi = −∩.

Given a ground dl-rule r, we define (i) I |=L B(r) iff I |=L l for all l ∈ B+(r)
and I 6|=L l for all l ∈ B−(r), and (ii) I |=L r iff I |=L H(r) whenever I |=L B(r).
We say that I is a model of KB = (L,P ), or I satisfies KB , denoted I |= KB , iff
I |=L r for all r in the grounding of P , ground(P ).

Strong answer sets can then be defined as follows. The Gelfond-Lifschitz
transform of a dl-program KB = (L,P ) relative to consistent set I of ground
literals for P is the dl-program KBI = (L,P I), where P I is obtained from
ground(P ) by (i) deleting every rule r with I |=L l for some l ∈ B−(r) (ii) deleting
all literals not bi from all remaining rules. Assuming that all dl-atoms a that
occur in P I are monotone (i.e., I |=L a implies I ′ |=L a, for all consistent sets
I ⊆ I ′ of ground literals for P ), I is a strong answer set of KB iff it is a minimal
model (w.r.t. set inclusion) of KBI . For more details, see [43].

Example 4. As specified by the strong answer set semantics of dl-programs, the
program (LN , PN ) in Example 3 has four strong answer sets (we show only atoms
with predicate connect): M1 = {connect(x1, n1), connect(x2, n4), . . . }, M2 =
{connect(x1, n1), connect(x2, n5), . . . }, M3 = {connect(x1, n5), connect(x2, n1),
. . . }, and M4 = {connect(x1, n5), connect(x2, n4), . . . }. Note that the ground
dl-atom DL[wired ] connect ; HighTrafficNode](n2) from rule (3) is true in any
partial interpretation of PN . According to the proposed well-founded semantics
for dl-programs in [47], the unique well-founded model of (LN , PN ) contains thus
overloaded(n2 ).

Features and Properties of DL-Programs. The strong answer set semantics
of dl-programs is nonmonotonic, and generalizes the stable semantics of ordinary
logic programs. In particular, satisfiable positive dl-programs (programs without
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default negation and −∩ operator) have a least model semantics, and satisfiable
stratified dl-programs have a unique minimal model which is iteratively described
by a finite sequence of least models. Similarly, the well-founded semantics for
dl-programs is a generalization of the well-founded semantics for ordinary logic
programs. The two generalized semantics preserve some of the relationships that
the answer set semantics and the well-founded semantics for normal programs
have. In particular, given a knowledge base KB = (L,P ), the well-founded model
of KB is contained in the set of cautious consequences of KB under strong answer
set semantics [47, 42]. Also, the two notions coincide in case stratified programs
are considered.

The computational complexity of the formalism does not dramatically increase
for dl-programs compared to normal logic programs: under strong answer set
semantics, deciding satisfiability of general dl-programs over SHIF(D) DL-KBs
is NEXP-complete, and PNEXP-complete if the DL-KB is in SHOIN (D). dl-
programs have been generalized to a framework for incorporation of arbitrary
knowledge sources other than description logic bases (see Section 1.3.3).

Applications. The bidirectional flow of knowledge between a description logic
base and a logic program component enables a variety of possibilities. A major
application for dl-programs is nonmonotonic reasoning on top of monotonic
systems. We will present two flavors: default logic [95] and closed world assumption
(CWA) [94]. Both reasoning applications can be implemented in dl-programs to
support nonmonotonic reasoning for description logics.

We will give an example on how to implement default reasoning on top of
ontologies. Since description logics are fragments of first-order logic, Reiter’s
default logic over description logics can be realized in dl-programs (cf. also
terminological default logics [9]).

Let ∆ = 〈L,D〉 be a default theory, where

L =
{

redWine v ¬whiteWine, lambrusco v sparklingWine u redWine,
sparklingWine(veuveCliquot), lambrusco(lambrusco di modena)

}
and

D =
{

sparklingWine(X) : whiteWine(X)
whiteWine(X)

,
whiteWine(X) : servedCold(X)

servedCold(X)

}
.

The embedding of ∆ into a dl-program KBdf = (L,P ) is demonstrated next. Let
P be the program

inwhiteWine(X)← not outwhiteWine(X) (1.16)
outwhiteWine(X)← not inwhiteWine(X) (1.17)
inservedCold(X)← not outservedCold(X) (1.18)

outservedCold(X)← not inservedCold(X) (1.19)
fail ← DL[λ′; whiteWine](X), outwhiteWine(X),not fail (1.20)
fail ← DL[λ′; servedCold ](X), outservedCold(X),not fail (1.21)
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g1(X)← DL[λ; sparklingWine](X),not DL[λ′;¬whiteWine](X) (1.22)
g2(X)← DL[λ; whiteWine](X),not DL[λ′;¬servedCold ](X) (1.23)

fail ← not DL[λ; whiteWine](X), inwhiteWine(X),not fail (1.24)
fail ← DL[λ; whiteWine](X), outwhiteWine(X),not fail (1.25)
fail ← not DL[λ; servedCold ](X), inservedCold(X),not fail (1.26)
fail ← DL[λ; servedCold ](X), outservedCold(X),not fail (1.27)

corresponding to the default rules in D, where λ and λ′ are update lists of
form whiteWine ] g1, servedCold ] g2 and whiteWine ] inwhiteWine , servedCold ]
inservedCold , respectively. Intuitively, the predicates inwhiteWine and inservedCold

encode that an individual is a member of concept whiteWine and servedCold ,
resp. Similarly, outwhiteWine and outservedCold are used to state that an individual
is not a member of these concepts. The rules (1.16)–(1.19) guess an extension
of those predicates, whereas (1.20) and (1.21) check whether the guessed model
is compliant with the ontology L. Rules (1.22) and (1.23) are used to test the
applicability of the defaults in D, and (1.24)–(1.27) then check whether the
guess agrees with the semantics of default logic. In order to have models that
agree with the conclusions of L, λ and λ′ take over the task to communicate the
current world view of P to the ontology L. Under strong answer set semantics,
the above program has, as expected, among its cautious consequences the facts
inwhiteWine(veuveCliquot) and outwhiteWine(lambrusco), which correctly denotes
the fact that sparkling wines are white by default. Above encoding has been
improved in [28], where various translations from default logic over description
logic into cq-programs (see also Section 1.4.3) are given and further analyzed.

A second line of nonmonotonic reasoning is Reiter’s CWA [95]. In this rea-
soning principle, we can infer the negative fact ¬p(c) from a first-order theory T
whenever we are unable to prove the positive fact p(c) from T . The CWA of a
theory T , denoted CWA(T ), is defined as the set of all literals {¬p(c) | T 6|= p(c)}.

Take, for instance, the DL knowledge base

L = {apple v fruit , fruit(williams)}

describing that apples are fruits, and that williams is a particular fruit. The
above knowledge base L leaves open whether williams is an apple or not. Closing
L by means of CWA enables us to deduce that CWA(L) |= ¬apple(williams),
i.e., under CWA we can infer that williams is not an apple.

A particular encoding of above reasoning task in dl-programs is accomplished
by the rule

apple(X)← not DL[apple](X) ,

where apple is a fresh predicate. Given L, we can now infer apple(williams).
A well-known drawback of the CWA is that it faces inconsistency in case of

disjunctive information. Let L′ = {apple t pear(williams)}, i.e., williams is an
apple or a pear. Under CWA, we can infer that williams is neither an apple nor
a pear, which is inconsistent with our assertion in L′. The extended closed-world
assumption (ECWA) is a refined version of CWA, which is able to treat cases
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like the one above in a reasonable manner. Full details on CWA and ECWA in
dl-programs is given in [43].

1.3.3 HEX-Programs

hex-programs [45] are declarative nonmonotonic logic programs with support for
external knowledge and higher-order disjunctive rules. In spirit of dl-programs,
they allow for a loose coupling between general external knowledge sources and
declarative logic programs through the notion of external atoms, which take
input from the logic program and exchange inferences with the external source.
In addition, meta-reasoning tasks may be accomplished by means of higher-order
atoms. hex-programs are evaluated under a generalized answer-set semantics,
thus are in principle capable of capturing many proposed extensions in answer-set
programming.

Syntax of HEX-Programs. Let C, X , and G be mutually disjoint sets whose
elements are called constant names, variable names, and external predicate names,
respectively. Unless explicitly specified, elements from X (resp., C) are denoted
with first letter in upper case (resp., lower case), while elements from G are
prefixed with the “&” symbol. We note that constant names serve both as
individual and predicate names.

Elements from C ∪ X are called terms. A higher-order atom (or atom) is a
tuple (Y0, Y1, . . . , Yn), where Y0, . . . , Yn are terms; n ≥ 0 is the arity of the atom.
Intuitively, Y0 is the predicate name, and we thus also use the more familiar
notation Y0(Y1, . . . , Yn). The atom is ordinary, if Y0 is a constant.

For example, (x, rdf :type, c), node(X), and D(a, b), are atoms; the first two
are ordinary atoms.

An external atom is of the form

&g [Y1, . . . , Yn](X1, . . . , Xm) , (1.28)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input and output
lists, respectively), and &g ∈ G is an external predicate name. We assume that
&g has fixed lengths in(&g) = n and out(&g) = m for input and output lists,
respectively. Intuitively, an external atom provides a way for deciding the truth
value of an output tuple depending on the extension of a set of input predicates: in
this respect, an external predicate &g is equipped with a function f&g evaluating
to true for proper input values.

A rule r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βm,notβm+1, . . . ,notβn , (1.29)

where m, k ≥ 0, α1, . . . , αk are atoms, and β1, . . . , βn are either atoms or external
atoms. We define H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪B−(r), where
B+(r) = {β1, . . . , βm} and B−(r) = {βm+1, . . . , βn}. If H(r) = ∅ and B(r) 6= ∅,
then r is a constraint, and if B(r) = ∅ and H(r) 6= ∅, then r is a fact; r is ordinary,
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if it contains only ordinary atoms. A hex-program is a finite set P of rules. It is
ordinary, if all rules are ordinary.

We next give an illustrative example.

Example 5 ([44]). Consider the following hex-program P :

subRelation(brotherOf , relativeOf ). (1.30)
brotherOf (john, al). (1.31)
relativeOf (john, joe). (1.32)
brotherOf (al ,mick). (1.33)
invites(john, X) ∨ skip(X)← X 6= john,&reach[relativeOf , john](X). (1.34)
R(X,Y )← subRelation(P,R), P (X,Y ). (1.35)
someInvited ← invites(john, X). (1.36)
← not someInvited . (1.37)
← &degs[invites](Min,Max ),Max > 2. (1.38)

Informally, this program randomly selects a certain number of John’s relatives
for invitation. The first line states that brotherOf is a subrelation of relativeOf ,
and the next three lines give concrete facts. The disjunctive rule (1.34) chooses
relatives, employing the external predicate &reach. This latter predicate takes in
input a binary relation e and a node name n, returning the nodes reachable from
n when traversing the graph described by e (see the following Example 7). Rule
(1.35) axiomatizes subrelation inclusion exploiting higher-order atoms; that is,
for those couples of binary predicates p, r for which it holds subRelation(p, r), it
must be that r(x, y) holds whenever p(x, y) is true.

The constraints (1.37) and (1.38) ensure that the number of invitees is between
1 and 2, using (for illustration) an external predicate &degs from a graph library.
Such a predicate has a valuation function f&degs where f&degs(I, e,min,max ) is
true iff min and max are, respectively, the minimum and maximum vertex degree
of the graph induced by the edges contained in the extension of predicate e in
interpretation I.

Semantics of HEX-Programs. In the sequel, let P be a hex-program. The
Herbrand base of P , denoted HBP , is the set of all possible ground versions of
atoms and external atoms occurring in P obtained by replacing variables with
constants from C. The grounding of a rule r, grnd(r), is defined accordingly,
and the grounding of program P is given by grnd(P ) =

⋃
r∈P grnd(r). Unless

specified otherwise, C, X , and G are implicitly given by P .

Example 6 ([44]). Given C = {edge, arc, a, b}, ground instances of E(X, b) are
for instance edge(a, b), arc(a, b), a(edge, b), and arc(arc, b); ground instances of
&reach[edge, N ](X) are all possible combinations where N and X are replaced
by elements from C, for instance &reach[edge, edge](a), &reach[edge, arc](b),
&reach[edge, edge](edge), etc.
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An interpretation relative to P is any subset I ⊆ HBP containing only atoms.
We say that I is a model of atom a ∈ HBP , denoted I |= a, if a ∈ I.

With every external predicate name &g ∈ G, we associate an (n+m+1)-ary
boolean function f&g assigning each tuple (I, y1 . . . , yn, x1, . . . , xm) either 0 or
1, where n = in(&g), m = out(&g), I ⊆ HBP , and xi, yj ∈ C. We say that
I ⊆ HBP is a model of a ground external atom a = &g [y1, . . . , yn](x1, . . . , xm),
denoted I |= a, if and only if f&g(I, y1, . . . , yn, x1, . . . , xm) = 1.

Example 7 ([44]). Let us associate with the external atom &reach a function
f&reach such that f&reach(I, E,A,B) = 1 iff B is reachable in the graph E
from A. Let I = {e(b, c), e(c, d)}. Then, I is a model of &reach[e, b](d) since
f&reach(I, e, b, d) = 1.

Note that in contrast to the semantics of higher-order atoms, which in essence
reduces to first-order logic as customary (cf. [98]), the semantics of external atoms
is in spirit of second order logic since it involves predicate extensions.

Considering example 5, as John’s relatives are determined to be Al, Joe,
and Mick, P has six answer sets, each of which contains one or two of the facts
invites(john, al), invites(john, joe), and invites(john,mick).

Let r be a ground rule. We define (i) I |= H(r) iff there is some a ∈ H(r) such
that I |= a, (ii) I |=B(r) iff I |= a for all a ∈ B+(r) and I 6|= a for all a ∈ B−(r),
and (iii) I |= r iff I |=H(r) whenever I |=B(r). We say that I is a model of
a hex-program P , denoted I |= P , iff I |= r for all r ∈ grnd(P ). We call P
satisfiable, if it has some model.

Given a hex-program P , the FLP-reduct of P with respect to I ⊆ HBP ,
denoted fPI , is the set of all r ∈ grnd(P ) such that I |= B(r). I ⊆ HBP is an
answer set of P iff I is a minimal model of fPI .

In principle, the truth value of an external atom depends on its input and
output lists and on the entire model of the program. In practice, however,
we can identify certain types of input terms that allow to restrict the input
interpretation to specific relations. The Boolean function associated with the
external atom &reach[edge, a](X) for instance will only consider the extension of
the predicate edge and the constant value a for computing its result, and simply
ignore everything else of the given input interpretation.

Features and Properties of HEX-Programs. As mentioned above, hex-
programs are a generalization of dl-programs, consisting indeed in a form of
coupling of rules with arbitrary external computation sources, within a declarative
logic-based setting. The higher-order features are similar to those of HiLog [26],
i.e., the semantics of this high-order extension is still within first-order logic.

The semantics of hex-programs conservatively extends ordinary answer-set
programs, and it is easily extendable to support weak constraints [17]. External
predicates can define other ASP features like aggregate functions [48]. Computa-
tional complexity of the language depends on external functions. The former is
however not affected if external functions evaluate in polynomial time.
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The dlvhex prototype,14 an implementation of hex-programs, is based on
a flexible and modular architecture. The evaluation of the external atoms is
realized by plugins, which are loaded at run-time. The pool of available external
predicates can be easily customized by third-party developers.

Applications. hex-programs have been applied in many applications in different
contexts. Hoehndorf et al. [59] showed how to combine multiple biomedical upper
ontologies by extending the first-order semantics of terminological knowledge
with default logic. The corresponding prototype implementation of such kind of
system is given by mapping the default rules to hex-program. Fuzzy extensions of
answer-set programs and their relationship to hex-programs are given in [88, 58].
The former maps fuzzy answer set programs to hex-programs, whereas the latter
defines a fuzzy semantics for hex-programs and gives a translation to standard
hex-programs. In [89], the planning language Kc has been introduced which
features external function calls in spirit of hex-programs.

REWERSE has related applications, where a rule-based solution for solving
credential selection problems (see below) was discussed. We also refer the reader
to Chapter 4, which is devoted to reasoning about policies.

As stated in [16], selecting an “appropriate” set of credentials for satisfying
trust negotiation tasks is an important problem. Since users typically want
to disclose as little sensitive information as possible, an “appropriate” set of
credentials is the least sensitive set of credentials needed to obtain a service. This
minimization effort is referred to as the credential selection problem [16], which
will be explained in the following.

In a nutshell, each participant in a rule-based policy specification environment
expresses its policies by logic programs, and credentials provided by the requesting
client are encoded by facts. The combination of the policies and a set of credentials
should satisfy the given authorization request of the client.

More formally, a credential selection problem (CSEL) consists of

– a finite, stratified logic program P , representing the server’s and client’s
policies,

– a goal G modeling the authorization requested by the client,
– a finite set of integrity constraints IC , representing forbidden combinations

of credentials,
– a finite set of ground facts C, representing the portfolio of credentials and

declarations of the client, and
– a sensitivity aggregation function sen : 2C → Σ, where Σ is a finite set (of

sensitivity values) partially ordered by �.

A solution for the credential selection problem is a set S ⊆ C such that

1. P ∪ S |= G,
2. P ∪ S ∪ IC is consistent, and
3. sen(S) is minimal among all S which satisfy 1. and 2.

14 http://www.kr.tuwien.ac.at/research/systems/dlvhex/
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Expressing this kind of credential selections is a valuable application for hex-
programs. The next example from [99] shows how to encode a CSEL instance in
a hex-program. The stratified program P is encoded in Server policy.

Server policy
% if resource is public, no authentication is necessary

allow(download,Resource) :- public(Resource).

% user may download if she has a subscription and is authenticated

allow(download,Resource) :- authenticated(User),

hasSubscription(User,Subscription),

availableFor(Resource,Subscription).

% user may download if she has paid and is authenticated

allow(download,Resource) :- authenticated(User),

paid(User,Resource).

% user is authenticated, if she has a valid credential

authenticated(User) :- valid(Credential),

attr(Credential,name,User).

% a selected credential is valid, if its type is trusted

valid(Credential) :- selectedCred(Credential),

attr(Credential,type,T),

attr(Credential,issuer,CA),

isa(T,id),

trustedFor(CA,T).

% types that are ids, i.e., a hierarchy of identifiers

isa(id,id).

isa(ssn,id).

isa(passport,id).

isa(driving_license,id).

The goal G as fact resource(“paper01234 .pdf ”), the set C of the client’s
credentials, and (implicitly by credSens) the set Σ = {1, 2, 4} of sensitivity values
is given below in Client example.

Client example
hasSubscription("John Doe",law_basic).

hasSubscription("John Doe",computer_basic).

availableFor("paper01234.pdf",computer_basic).

% the client requests this goal G

resource("paper01234.pdf").

% credential authorities and their ID types

trustedFor("Open University",id).

trustedFor("Visa",id).
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trustedFor("UK Government",ssn).

% next are three credentials and their

% associated properties and sensitivities

credential(cr01).

attr(cr01,type,id).

attr(cr01,name,"John Doe").

attr(cr01,issuer,"Open University").

credSens(cr01,1).

credential(cr02).

attr(cr02,type,ssn).

attr(cr02,name,"John Doe").

attr(cr02,issuer,"UK Government").

credSens(cr02,2).

credential(cr03).

attr(cr03,type,id).

attr(cr03,name,"John Doe").

attr(cr03,issuer,"Visa").

credSens(cr03,4).

The final part of the CSEL is given below, encoding the minimal sen(S) of
credentials S ⊆ C, which satisfies the program. The solution is given as ground
facts with predicate sens. We make use of the external atom &policy , whose
associated Boolean function f&policy(I, p, n) = 1 iff n =

∑
p(c,i)∈I i. That is, in

a model of the program encoding our CSEL, polSens(s) holds the sum s of
sensitivity values i from all ground sens(c, i) atoms.

Optimization rules
% open a search space

selectedCred(X) v -selectedCred(X) :- credential(X).

sens(C,S) :- selectedCred(C), credSens(C,S).

% remove models that don’t accomplish the goal

:- not allow(download,R), resource(R).

% compute model sensitivity

polSens(S) :- &policy[sens](S).

% select least sensitive model

:∼ polSens(S). [S:1]

The solution is given in the abridged answer set {sens(cr01 ,1), polSens(1), . . .},
which specifies that credential cr01 is sufficient for achieving the goal G and is the
least sensitive one among the possible subsets of the credentials C. Note that the
program makes use of the weak constraint construct :∼ polSens(S). [S:1],
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whose intuitive meaning is adding a cost s to answer sets in which polSens(s)
holds, and then selecting optimal answer sets by minimizing the costs (for an
in-detail account on weak constraints (in hex-programs) we refer to [17, 99]).

1.3.4 Extensions of Well-Founded Semantics by Hybrid
Well-Founded Semantics

This section gives an introduction to the REWERSE work on tight integration
presented in [39, 38]. This work developed a framework for hybrid combination
of normal logic programs under the well-founded semantics with various theories
of the FOL. The hybrid programs defined in this way extend faithfully both
normal programs and the underlying theories. The framework gives principles of
implementation showing how a rule engine supporting the well-founded semantics
of normal programs can be combined with a reasoner for the underlying theory
to get a reasoner for the hybrid programs which is sound w.r.t. their declarative
semantics. The implemented instance of the framework was the language of HD-
rules [38, 37], integrating Datalog with negation and OWL DL. The framework
itself is not restricted to Datalog; compound terms are permitted in addition to
constants.

To present this work we first illustrate on an example the well-founded
semantics of normal programs. Then we discuss the syntax and the declarative
semantics of the hybrid programs. Finally we explain the principles of the
operational semantics.

The Well-Founded Semantics. The well-founded semantics associates with a
normal logic program a unique 3-valued Herbrand model, called its well-founded
model. For the Herbrand base H of a program denote ¬H = {¬a | a ∈ H}. Then
a 3-valued Herbrand interpretation I of P is a subset of H ∪ ¬H such that for
no ground atom A both A and ¬A are in I. Intuitively, the set I assigns the
truth value t (true) to all its members. Thus A is false (has the truth value f)
in I iff ¬A ∈ I, and ¬A is false in I iff A ∈ I. If A 6∈ I and ¬A 6∈ I then the
truth value of A (and that of ¬A) is u (undefined). The truth value of compound
formulae is defined in a usual way. For instance the truth value of F1 ∧ F2 is t
if the truth values of both F1 and F2 are t, it is f if the truth value of some of
them is f , and it is u if some of them has the truth value u and none has f . The
notation I |=3 F will be used to denote that a formula F is true in a 3-valued
interpretation I.

We illustrate the notion of the well-founded model by some examples. Several
(equivalent) formal definitions can be found elsewhere, see for instance [102, 5, 49].

Example 8. The well-founded model of program { p← p; q ← ¬p; r ← q,¬r } is
{¬p, q }. Informally, the value of p is false independently from the values of q, r
(as p is defined by a single rule p← p). From ¬p we derive q (by rule q ← ¬p).
However neither r nor ¬r can be derived. The program does not have stable
models.
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ee

ffbb aa cc

dd

Fig. 1.3: The game graph

Example 9. A two person game consists in moving a token between vertices of
a directed graph. Each move consists in traversing one edge from the actual
position. Each of the players in order makes one move. The graph is described by
a database of facts m(X,Y ) corresponding to the edges of the graph. A position
X is said to be a winning position X if there exists a move from X to a position
Y which is a losing (non-winning) position:

w(X)← m(X,Y ),¬w(Y )

Consider the graph in Fig. 1.3 and assume that it is encoded by the factsm(bb, aa),
m(aa, bb), . . . ,m(ee,ff ) of the program. Now ff is a losing position – there is no
move from ff . This is reflected by the well-founded model of the program; in the
model w(ff ) is false, as no program rule has a ground instance w(ff )← . . . with
a true body (as the program contains no fact of the form m(ff , t)). Thus ee is a
winning position: w(ee) is true, due to rule instance w(ee)← m(ee,ff ),¬w(ff ).
Similarly, w(cc) is true and w(dd) is false. However each of aa, bb is neither
winning nor losing, from each of them the player has an option of moving to the
other one. Literals w(aa), w(bb) have value u in the well-founded model of the
program. The model contains the following literals with the predicate symbol w:
w(cc), w(ee),¬w(dd),¬w(ff ).

The program has two stable models, in each of them w(aa) and w(bb) have
the opposite logical values (and the values of w(cc), w(ee), w(dd), w(ff ) are the
same as those in the well-founded model).

The previous sections considered logic programs under the stable model
semantics (or, more generally, answer set semantics). Both semantics coincide for
a wide class of programs relevant in practice, including the stratified programs.
The well-founded model of such a program is 2-valued, and it is its unique stable
model. Usually the pragmatics of knowledge representation is different for the two
semantics. With the answer set semantics, each stable model represents a solution
to a problem. With the well-founded semantics, the solutions are represented by
consequences (i.e. answers) of the program.

Hybrid Programs. Informally, a hybrid program consists of a set of axioms T ,
called external theory and of a generalized normal program P , which may contain
formulae of the language of T , called constraints15 in the bodies of the rules.
15 This term is used due to similarities with constraint logic programming [83].
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More precisely, one considers a first-order alphabet including, as usual, dis-
joint alphabets of predicate symbols P, function symbols F (including a set of
constants) and variables V. Following the heterogeneous approach to integra-
tion, it is assumed that P consists of two disjoint sets PR (rule predicates) and
PC (constraint predicates). The atoms and the literals constructed with these
predicates are called respectively rule atoms (rule literals) and constraint atoms
(constraint literals). The bodies of the rules of normal programs over alphabets
PR, F , V may now be extended with constraints over alphabets PC , F , V . (It is
also allowed that the set of function symbols of the external theory T is a subset
of F .) In a particular instance of the framework one has to be specific about the
kind of formulae allowed as constraints of the rules.

A hybrid rule has the form

a← c, b1, . . . , bn, (1.39)

where c is a constraint over PC , F , V and b1, . . . , bn are rule literals. If constraints
allow quantifiers, some variables may not be free in a rule. A safeness restriction
on the syntax of rules introduced in [36] for discussing semantic issues is somewhat
elaborate. A sufficient condition for a rule to be safe is that each its free variable
has to appear in a positive rule literal.

A hybrid program is a pair (P, T ) where P is a set of hybrid rules and T is a
set of axioms over PC , F , V. A hybrid program is said to be safe if all its rules
are safe.

Remember that we deal with two kinds of negation: the classical negation of
FOL and nonmonotonic negation of the rules. The former is applied to (formulae
containing only) constraint predicates, and the latter only to (atoms with) rule
predicates. So the same symbol ¬ can be used to denote both.

The following example [39] shows a safe hybrid program with constraints
referring to an ontology.

Example 10. Consider a classification of geographical locations. For example
the classification may concern the country (Finland (Fi), Norway (No), etc.),
the continent (Europe (E), etc.), and possibly other categories. We specify a
classification by axioms in a DL logic. The ontology provides, among others, the
following information

– subclass relations (T-box axioms): e.g. (Fi v E);
– classification of some given locations represented by constants (A-box axioms).

For instance, assuming that the positions of Example 9 represent locations
we may have: bb is a location in Finland (Fi(bb)), cc is a location in Europe
(E(cc)).

Now the ontology will be used as an external theory for a program. We describe
a variant of the game from Example 9, with the rules subject to additional
restrictions (see Fig. 1.4). Assume that the positions of the graph represent
geographical locations described by the ontology. The restrictions will be expressed
as ontological constraints added in rule bodies. For instance let constraints be
added to the facts m(ee,ff ) and m(cc,ff ):
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¬E(ff )

ffbb aa cc

dd ee

¬Fi(ff )

Fig. 1.4: The modified game graph

w(X)← m(X,Y ),¬w(Y )

m(bb, aa)
m(aa, bb)
m(aa, cc)
m(cc, dd)
m(dd , ee)

m(cc,ff )← ¬Fi(ff )
m(ee,ff )← E(ff )

Intuitively, this would mean that the move from ee to ff is allowed only if ff
is in Europe and the move from cc to ff – only if ff is not in Finland. These
restrictions may influence the outcome of the game: ff will still be a losing
position but if the axioms of the ontology do not allow to conclude that ff is
in Europe, we cannot conclude that ee is a winning position. However, we can
conclude that if ff is not in Europe then it cannot be in Finland. Thus, at least
one of the conditions E(ff ),¬Fi(ff ) holds. Therefore cc is a winning position: If
E(ff ) then, as in Example 9, ee is a winning position, dd is a losing one, hence
cc is a winning position. On the other hand, if ¬Fi(ff ) the move from cc to ff is
allowed in which case cc is a winning position.

An example employing non-nullary function symbols is given in [37].

Declarative Semantics. The declarative semantics of hybrid programs is
defined as a generalization of the well-founded semantics of normal programs;
it refers to the (2-valued) models of the external theory T of a hybrid program.
Given a hybrid program (P, T ) we cannot define a unique well-founded model of
P since we have to take into consideration the logical values of the constraints in
the rules. However, for any given model M of T one can consider the well-founded
model of the normal program P/M obtained by replacing the constraints in the
rules by their logical values in M .

More precisely, let ground(P ) be the set of ground instances of the hybrid
rules in P . Then P/M is the normal program obtained from ground(P ) by

– removing each rule constraint C which is true in M (i.e. M |= C),
– removing each rule whose constraint C is not true in M , (i.e. M 6|= C).

The well-founded model of P/M is called the well-founded model of P based on
M .
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A formula F (over PR,F ,V) holds (is true) in the well-founded semantics of a
hybrid program (P, T ) (denoted (P, T ) |=wf F ) iff M |=3 F for each well-founded
model M of (P, T ).

We say that F is false in the well-founded semantics of (P, T ) if (P, T ) |=wf ¬F ,
and that F is undefined if the logical value of F in each well-founded model
of (P, T ) is u. Notice that there is a fourth case: if F does not have the same
logical value in all well-founded models of P then F is neither true, nor false, nor
undefined. Notice that the negation in the rule literals is nonmonotonic, and the
negation in the constraints is that from the external theory, thus monotonic.

Example 11. For the hybrid program (P, T ) of Example 10 we have to consider
models of the ontology T . For every model M0 of T such that M0 |= E(ff ) the
program P/M0 includes the fact m(ee,ff ). The well-founded model of P/M0

includes thus the literals ¬w(ff ), w(ee),¬w(dd), w(cc) (independently of whether
M0 |= Fi(ff )).

On the other hand, for every model M1 of the ontology such that M1 |=
¬Fi(ff ) the program P/M1 includes the fact m(cc,ff ). The well-founded model
of P/M1 includes thus the literals ¬w(ff ), w(cc) (independently of whether
M1 |= E(ff ) ).

Notice that each of the models of the ontology falls in one of the above
discussed cases. Thus, w(cc) and ¬w(ff ) hold in the well-founded semantics of
the hybrid program, while w(ee),¬w(ee), w(dd) and ¬w(dd) do not hold in it
(provided that the logical value of E(ff ) is not the same in all the models of T ).
The logical value of w(aa) and that of w(bb) is u in each well-founded model of
the program. Thus w(aa) and w(bb) are undefined in the well-founded semantics
of the program, and w(dd) and w(ee) are not (they are neither true, nor false,
nor undefined).

Consider a case of hybrid rules without negative rule literals. So the non-
monotonic negation does not occur. Such rules can be seen as implications of
FOL and treated as axioms added to T . For such case the well-founded semantics
and the logical consequence |= of FOL are similar. They are not equivalent,
as the well-founded semantics deals only with Herbrand models of the rules.
However they coincide in the following sense. (1) For any ground rule atom
A if (P, T ) |=wf A then P ∪ T |= A. The reverse implication does not hold16.
(2) Assume that only such interpretation domains are considered in which each
element is a value of a ground term, and the values of distinct terms are distinct.
Then A is true in all models of P ∪ T iff (P, T ) |=wf A, for any rule atom A.

As the well-founded semantics of normal programs is undecidable, so is the
well-founded semantics of hybrid programs. It is however decidable for Datalog
hybrid programs with decidable external theories.

The declarative semantics of hybrid programs is based on Herbrand models
of the rules. Thus it treats distinct terms as having distinct values. The syntactic
16 As a counterexample take P = { p ← q(x), r(x); r(x)←} and T = { ∃x.q(x) }.

P ∪ T |= p but (P, T ) 6|=wf p, as there exist models of T in which each ground atom
q(t) is false.
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equality of the well-founded semantics may be different from the equality of the
external theory. This may lead to strange consequences. For instance consider
a hybrid program (P, T ), where P = { p(a) }. Both p(a) and ¬p(b) hold in the
well-founded semantics of (P, T ), even if T implies that a = b. One may avoid
such anomalies by requiring that – speaking informally – terms which are equal
according to T are treated in the same way by the rules of P . For more details
the reader is referred to [36]. To avoid technical difficulties let us require that, in
what follows, the external theory satisfies the axioms of the free equality theory
(CET, Clark equality theory [27]). Thus ground terms have the same values (in
a model of T ) iff they are syntactically equal.

Operational Semantics. In this section we present the operational semantics
[39, 36] of hybrid programs. The semantics is a basis for implementation; a
prototype implementation has been described in [38, 37]. Our presentation is
informal. For a precise description the user is referred to [39, 36].

Like in logic programming, the task of a computation is to find instances of
a given goal formula G which are true in the well-founded semantics of a given
program. Similarly to logic programming, the operational semantics is defined in
terms of search trees. It is based on the idea of constructive negation presented
in [34, 35]. In that work the only constraint predicate was the equality and the
constraint theory was the free equality theory (CET) [27].

The operational semantics is similar to SLDNF- and SLS-resolution [70, 93],
extended by handling constraints originating from the hybrid rules. For an input
goal a derivation tree is constructed; its nodes are goals. Whenever a negative
literal is selected in some node, a subsidiary derivation tree is constructed. In
logic programming an answer to a goal is a binding for goal variables. In hybrid
programs an answer is a constraint satisfiable in a given theory T . Thus, to develop
an implementation it is necessary to have a constraint solver for T . However, the
constraint solver is only used as a black box deciding the satisfiability of a given
constraint.

A hybrid goal (shortly: goal) has the form

c, b1, . . . , bm

where m ≥ 0, each bi is a rule literal and c is a constraint, called the constraint
of the goal. The definition of safeness and the sufficient condition for safeness
applies also to hybrid goals.

The computation is controlled by a selection function which selects a rule
literal in a goal. If the selected literal is positive the goal is resolved, as usual, by
matching the selected rule literal with the head of a renamed variant of a hybrid
rule of the program. However, the unification is replaced by adding a constraint
to the derived goal. More precisely, consider a goal G = c, L, b, L′ and a rule
r = h← c′,K, such that no variable occurs both in G and r. The goal

G′ = b=h, c, c′, L,K,L′

is said to be derived from G by r, with the selected atom b, if the constraint
b=h, c, c′ is satisfiable. As usual, several rules of the program may match the
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selected atom and give rise to different computations, visualized by a tree with
nodes labeled by goals and edges representing the derivation steps. A goal c with
no rule literals is called successful (and ends a successful branch of the tree).

Consider such a tree with root G, with no negative literal selected. Let us
denote by c|G the constraint ∃ . . . c, where the quantified variables are those
variables of c that do not occur (free) in G. Then by an answer of the tree we
mean any constraint (c1 ∨ . . .∨ cn)|G, where c1, . . . , cn are some of the successful
leaves of the tree. Every answer, speaking informally, implies G in the well-
founded semantics of the program. (A precise formulation is given later on.) The
most general answer is the disjunction of all the successful leaves. If the Herbrand
universe is infinite, the set of (the constraints of) successful leaves may be infinite
and the most general answers may not exist.

The negation of the most general answer is a negative answer of the tree; it
implies ¬G in the well-founded semantics of the program. Less general negative
answers may be obtained without constructing the whole tree. By a cross-section
we mean a set F of tree nodes such that each successful branch has a node in F . If
c1, . . . , cn are the constraints of the goals of a cross-section then ¬((c1∨. . .∨cn)|G)
is a negative answer. We skip here a definition of negative answers corresponding
to infinite cross-sections. Each negative answer implies that the root G is false.

In the general case negative literals may be selected in the tree, and we have
to deal with three logical values t, u, f . Due to this we introduce two kinds of
trees, t-trees and tu-trees. A t-tree tells when its root G is t (in the well-founded
semantics of the program). Speaking informally, each answer of the t-tree implies
G. A tu-tree tells when its root G is t or u; G being t or u implies some answer of
the tree. Thus each negative answer of the tu-tree implies ¬G. We are interested
in the answers of t-trees and the negative answers of tu-trees.

The two kinds of trees differ by the treatment of negative selected literals.
In a t-tree, when a negative literal ¬b is selected in a goal G′ = c, L,¬b, L′
then a subsidiary tu-tree for c, b is constructed, and some its negative answer
d is obtained. The literal ¬b is replaced by d. If the resulting constraint c, d is
satisfiable then the obtained goal G′′ = c, d, L, L′ is the (only) child of G′ in the
t-tree. Otherwise (c, d unsatisfiable) G is a leaf. (An informal justification is that
d implies that ¬b is t.) One may avoid constructing the subsidiary tu-tree; then
G′ does not have a child (as d = ¬c is a trivial negative answer of any tu-tree for
c, b, and c,¬c is unsatisfiable).

In a tu-tree, when a negative literal ¬b is selected in a goal G′ = c, L,¬b, L′
then a subsidiary t-tree for c, b is constructed, and some its answer c′ is obtained.
The literal ¬b is replaced by the negation d = ¬c′ of c′. If c, d is satisfiable
then the obtained goal G′′ = c, d, L, L′ is the (only) child of G′ in the tu-tree.
Otherwise G′ is a leaf. (An informal justification is that c′ implies ¬b being f ;
hence ¬b being t or u implies d.) One may avoid constructing the subsidiary
tu-tree; then G′ has G′′ = c, L, L′ as its child (as c′ = false is a trivial answer of
any t-tree).
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To avoid circularity (e.g. a t-tree for p refers to a tu-tree for q, and the latter
tree refers to the former) ranks are assigned to the trees, similarly as it is done
in the definitions of SLDNF- and SLS-resolutions [70, 93].

We now illustrate the operational semantics of hybrid programs by an example.
In the example we apply certain simplifications to the tree nodes.17 The same
example without the simplifications is presented in [39, 36].

Example 12. Consider the hybrid program of Example 10. A query w(cc) can
be answered by constructing the following trees: a t-tree for w(cc), a tu-tree for
w(dd), a t-tree for w(ee), and a tu-tree for w(ff ); of ranks 3, 2, 1, 0 respectively.
In the goals with more than one rule literals, the selected one is underscored.

w(cc)
|

m(cc, Y ),¬w(Y )
/ \

¬Fi(ff ),¬w(ff ) ¬w(dd)
| |

¬Fi(ff ) E(ff )

w(dd)
|

m(dd , Y ′),¬w(Y ′)
|

¬w(ee)
|

¬E(ff )

w(ee)
|

m(ee, Y ′′),¬w(Y ′′)
|

E(ff ),¬w(ff )
|

E(ff )

w(ff )
|

m(ff , Y ′),¬w(Y ′)

The empty cross-section of the tu-tree for w(ff ) provides a negative answer true,
the t-tree for w(ee) has an answer E(ff ), the tu-tree for w(dd) has a negative
answer E(ff ) (the cross-section consisting of the leaf), and the t-tree for w(cc)
has an answer ¬Fi(ff ) ∨ E(ff ) (which in T is equivalent to true).

An implementation of hybrid programs based on the described ideas is pre-
sented in [38, 37]. The operational semantics makes it possible to employ an
existing constraint solver (e.g. a description logic reasoner) and treat it as a black
box. Also, construction of t-trees and tu-trees can be implemented on top of a
Prolog system with the well-founded semantics. Thus the costs of implementation
is rather low. We also mention that – similarly as in CLP – it is not necessary to
check satisfiability of the constraint for each tree node. The answers (negative
answers) of trees obtained in such way are logically equivalent to those described

17 Any constraint may be replaced by an equivalent one. In any node C, L of a t- or
tu- tree for G, the constraint C of the node can be replaced by C|G,L. Instead of
referring to a lower rank tree for C, A, a tree for (C|A), A can be used. Also, a goal
may be replaced by a logically equivalent one (e.g. X=a, p(X) by X=a, p(a)). These
modifications do not change the (negative) answers of the trees. This is rather obvious
in the particular example; we omit a formal justification for a general case.
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above. This provides an opportunity to decrease the interaction with the con-
straint solver, and to improve efficiency. The prototype of [38, 37] invokes the
solver once, after having constructed the main tree.

For safe hybrid programs the operational semantics is sound w.r.t. to the
well-founded semantics. More precisely if (P, T ) is a safe hybrid program and
G = c0, L a goal then for any substitution θ

1. if c is an answer of a t-tree for (P, T ) and G, and T |= cθ then (P, T ) |=wf Lθ;
2. if c is a negative answer of a tu-tree for (P, T ) and G, and T |= cθ then

(P, T ) |=wf ¬Lθ.

The safeness condition may be abandoned, if additional restrictions are
imposed on the existential quantifier used in constraints see [36] for details).
This is related to the fact that constraints are interpreted on arbitrary domains,
without assuming that each element of a domain is represented by ground term,
while the well-founded semantics defines a Herbrand model.

In the general case, the operational semantics is not complete. The reason
is that only finite constraint formulae are used as (negative) answers. However
the method is complete in the case of Datalog, with safe rules and goals. More
precisely, assume that the Herbrand universe is finite. Consider a safe program
(P, T ) and a safe goal G = c0, L. For any grounding substitution θ for the
variables of G such that c0θ is satisfiable

1. if (P, T ) |=wf Lθ then there exists a t-tree (of a finite rank) for G with an
answer c such that T |= cθ;

2. if (P, T ) |=wf ¬Lθ then there exists a tu-tree (of a finite rank) for G with a
negative answer c such that T |= cθ.

A stronger result, which includes independence from the selection rule, also holds.

1.4 Variants and Extensions of the Basic Formalisms

In this section, we discuss some variants and extensions of the above basic
formalisms, which have been crafted in order to make them more versatile or to
overcome some restrictions. More specifically, we summarize extensions of the
basic formalisms that allow for handling uncertainty and vagueness. We also
describe an extension of loosely coupled dl-programs by (unions of) conjunctive
queries as dl-atoms and disjunctions in rule heads (called cq-programs).

From a more general perspective, during the recent years, handling uncertainty
and vagueness has started to play an important role in Semantic Web research.
A recent forum for approaches to uncertainty reasoning in the Semantic Web is
the annual Workshop on Uncertainty Reasoning for the Semantic Web (URSW).
There also exists a W3C Incubator Group on Uncertainty Reasoning for the
World Wide Web. The research focuses especially on probabilistic and fuzzy
extensions of description logics, ontology languages, and formalisms integrating
rules and ontologies. Note that probabilistic formalisms allow to encode ambiguous
information, such as “John is a student with the probability 0.7 and a teacher with
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the probability 0.3”, while fuzzy approaches allow to encode vague or imprecise
information, such as “John is tall with the degree of truth 0.7”. Formalisms for
dealing with uncertainty and vagueness are especially applied in ontology mapping,
data integration, information retrieval, and database querying. Vagueness and
imprecision also abound in multimedia information processing and retrieval, and
are an important aspect of natural language interfaces to the Web.

We first consider extensions of dl-programs by probabilistic uncertainty, and
we then discuss fuzzy extensions. We finally focus on cq-programs.

1.4.1 Probabilistic DL-Programs

We now summarize the main ideas behind loosely and tightly coupled probabilistic
dl-programs, introduced in [71, 74, 75, 19] and [18, 22, 20, 21], respectively. For
further details on the syntax and semantics of these programs, their background,
and their semantic and computational properties, we refer to the above works.

Loosely coupled probabilistic dl-programs [71, 74, 75] are a combination of
loosely coupled dl-programs under the answer set and the well-founded semantics
with probabilistic uncertainty as in Bayesian networks. Roughly, they consist of a
loosely coupled dl-program (L,P ) under different “total choices” B (they are the
full joint instantiations of a set of random variables, and they serve as pairwise
exclusive and exhaustive possible worlds), and a probability distribution µ over the
set of total choices B. One then obtains a probability distribution over Herbrand
models, since every total choice B along with the loosely coupled dl-program
produces a set of Herbrand models of which the probabilities sum up to µ(B).
As in the classical case, the answer set semantics of loosely coupled probabilistic
dl-programs is a refinement of the well-founded semantics of loosely coupled
probabilistic dl-programs. Consistency checking and tight query processing (i.e.,
computing the entailed tight interval for the probability of a conditional or
unconditional event) for in such probabilistic dl-programs under the answer set
semantics can be reduced to consistency checking and query processing in loosely
coupled dl-programs under the answer set semantics, while tight query processing
under the well-founded semantics can be done in an anytime fashion by reduction
to loosely coupled dl-programs under the well-founded semantics. For suitably
restricted description logic components, the latter can be done in polynomial time
in the data complexity. Query processing in the special case of stratified loosely
coupled probabilistic dl-programs can be reduced to computing the canonical
model of stratified loosely coupled dl-programs. Loosely coupled probabilistic
dl-programs can especially be used for (database-oriented) probabilistic data
integration in the Semantic Web, where probabilistic uncertainty is used to handle
inconsistencies between different data sources [19].

Example 13. A university database may use a loosely coupled dl-program (L,P )
to encode ontological and rule-based knowledge about students and exams. A
probabilistic dl-program KB = (L,P ′, C, µ) then additionally allows for encoding
probabilistic knowledge. For example, the following two probabilistic rules in P ′

along with a probability distribution on a set of random variables may express
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that if two master (resp., bachelor) students have given the same exam, then
there is a probability of 0.9 (resp., 0.7) that they are friends:

friends(X, Y ) ← given same exam(X, Y ),DL[master student(X)],

DL[master student(Y )], choicem ;

friends(X, Y ) ← given same exam(X, Y ),DL[bachelor student(X)],

DL[bachelor student(Y )], choiceb .

Here, we assume the set C = {{choicem,not choicem}, {choiceb,not choiceb}}
of values of two random variables and the probability distribution µ on all their
four joint instantiations, given by µ : choicem,not choicem, choiceb,not choiceb

7→ 0.9, 0.1, 0.7, 0.3 under probabilistic independence. For example, choicem,
choiceb is associated with the probability 0.9 × 0.7 = 0.63. Asking about the
entailed tight interval for the probability that john and bill are friends can then
be expressed by a probabilistic query of the form ∃(friends(john, bill))[R,S],
whose answer depends on the available concrete knowledge about john and bill
(whether they have given the same exams, and are both master or bachelor
students).

Tightly coupled probabilistic dl-programs [18, 22] are a tight combination of
disjunctive logic programs under the answer set semantics with description logics
and Bayesian probabilities. They are a logic-based representation formalism that
naturally fits into the landscape of Semantic Web languages. Tightly coupled
probabilistic dl-programs can especially be used for representing mappings be-
tween ontologies [20, 21], which are a common way of approaching the semantic
heterogeneity problem on the Semantic Web. In this application, they allow in
particular for resolving inconsistencies and for merging mappings from different
matchers based on the level of confidence assigned to different rules (see below).
Furthermore, tightly coupled probabilistic description logic programs also provide
a natural integration of ontologies, action languages, and Bayesian probabilities
towards Web Services. Consistency checking and query processing in tightly
coupled probabilistic dl-programs can be reduced to consistency checking and
cautious/brave reasoning, respectively, in tightly coupled disjunctive dl-programs.
Under certain restrictions, these problems have a polynomial data complexity.

Example 14. The two correspondences between two ontologies O1 and O2 that
(i) an element of Collection in O1 is an element of Book in O2 with the probabil-
ity 0.62, and (ii) an element of Proceedings in O1 is an element of Proceedings
in O2 with the probability 0.73 (found by the matching system hmatch) can be
expressed by the following two probabilistic rules:

O2 : Book(X)← O1 : Collection(X) ∧ hmatch1;

O2 : Proceedings(X)← O1 : Proceedings(X) ∧ hmatch2.

Here, we assume the set C = {{hmatchi,not hmatchi} | i ∈ {1, 2}} of values of
random variables and the probability distribution µ on all joint instantiations
of these variables, given by µ : hmatch1,not hmatch1, hmatch2,not hmatch2 7→
0.62, 0.38, 0.73, 0.27 under probabilistic independence.
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Similarly, two other correspondences between O1 and O2 (found by the
matching system falcon) are expressed by the following two probabilistic rules:

O2 : InCollection(X)← O1 : Collection(X) ∧ falcon1;

O2 : Proceedings(X)← O1 : Proceedings(X) ∧ falcon2,

where we assume the set C′ = {{falconi,not falconi} | i ∈ {1, 2}} of values
of random variables and the probability distribution µ′ on all joint instantia-
tions of these variables, given by µ′ : falcon1,not falcon1, falcon2,not falcon2 7→
0.94, 0.06, 0.96, 0.04 under probabilistic independence.

Using the trust probabilities 0.55 and 0.45 for hmatch and falcon, respectively,
for resolving inconsistencies between rules, we can now define a merged mapping
set that consists of the following probabilistic rules:

O2 : Book(X)← O1 : Collection(X) ∧ hmatch1 ∧ sel hmatch1;

O2 : InCollection(X)← O1 : Collection(X) ∧ falcon1 ∧ sel falcon1;

O2 : Proceedings(X)← O1 : Proceedings(X) ∧ hmatch2;

O2 : Proceedings(X)← O1 : Proceedings(X) ∧ falcon2,

Here, we assume the set C′′ of values of random variables and the proba-
bility distribution µ′′ on all joint instantiations of these variables, which are
obtained from C ∪ C′ and µ ·µ′ (which is defined as (µ ·µ′)(BB′) = µ(B) ·µ′(B′),
for all joint instantiations B of C and B′ of C′), respectively, by adding the
values {sel hmatch1, sel falcon1} of a new random variable along with the prob-
abilities sel hmatch1, sel falcon1 7→ 0.55, 0.45 under probabilistic independence,
for resolving the inconsistency between the first two rules.

1.4.2 Fuzzy DL-Programs

We next briefly describe loosely and tightly coupled fuzzy dl-programs, which have
been introduced in [72, 76] and [78, 80], respectively, and extended by probabilities
in [77] and by a top-k retrieval technique in [79], respectively. All these fuzzy
dl-programs have natural special cases where query processing can be done in
polynomial time in the data complexity. For further details on their syntax and
semantics, background, and properties, we refer to the above works.

Towards dealing with vagueness and imprecision in the reasoning layers of the
Semantic Web, loosely coupled (normal) fuzzy dl-programs under the answer set
semantics [72, 76] are a generalization of normal dl-programs under the answer
set semantics by fuzzy vagueness and imprecision in both the description logic
and the logic program component. This is the first approach to fuzzy dl-programs
that may contain default negations in rule bodies. Query processing in such fuzzy
dl-programs can be done by reduction to normal dl-programs under the answer
set semantics. In the special cases of positive and stratified loosely coupled fuzzy
dl-programs, the answer set semantics coincides with a canonical least model and
an iterative least model semantics, respectively, and has a characterization in
terms of a fixpoint and an iterative fixpoint semantics, respectively.
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Example 15. Consider the fuzzy DL knowledge base L of a car shopping Web site,
which defines especially (i) the fuzzy concepts of sports cars (SportsCar), “at
most 22 000€” (LeqAbout22000 ), and “around 150 horse power” (Around150HP),
(ii) the attributes of the price and of the horse power of a car (hasInvoice and
hasHP , respectively), and (iii) the properties of some concrete cars (such as a
MazdaMX5Miata and a MitsubishiES ). Then, a loosely coupled fuzzy dl-program
KB = (L,P ) is given by the set of fuzzy dl-rules P , which contains only the
following fuzzy dl-rule encoding the request of a buyer (asking for a sports car
costing at most 22 000€ and having around 150 horse power), where ⊗ may be
the conjunction strategy of, e.g., Gödel Logic (that is, x⊗ y = min(x, y) for all
x, y ∈ [0, 1], used to evaluate the logical connectives ∧ and ← on truth values):

query(x) ←⊗ DL[SportsCar ](x) ∧⊗ DL[∃hasInvoice.LeqAbout22000 ](x)∧⊗
DL[∃hasHP .Around150HP ](x) ≥ 1 .

The above fuzzy dl-program KB = (L,P ) is positive, and has a minimal model
MKB , which defines the degree to which some concrete cars in the DL knowledge
base L match the buyer’s request, for example,

MKB (query(MazdaMX5Miata)) = 0.36 , MKB (query(MitsubishiES)) = 0.32 .

That is, the MazdaMX5Miata is ranked top with the degree 0.36, while the
MitsubishiES is ranked second with the degree 0.32.

Towards an infrastructure for additionally handling uncertainty in the rea-
soning layers of the Semantic Web, probabilistic fuzzy dl-programs [77] combine
fuzzy description logics, fuzzy logic programs (with stratified default-negation),
and probabilistic uncertainty in a uniform framework for the Semantic Web.
Intuitively, they allow for defining several rankings on ground atoms using fuzzy
vagueness, and then for merging these rankings using probabilistic uncertainty
(by associating with each ranking a probabilistic weight and building the weighted
sum of all rankings). Such programs also give rise to important concepts dealing
with both probabilistic uncertainty and fuzzy vagueness, such as the expected
truth value of a crisp sentence and the probability of a vague sentence.

Example 16. A loosely coupled probabilistic fuzzy dl-program is given by a
suitable fuzzy DL knowledge base L and the following set of fuzzy dl-rules P ,
modeling some query reformulation / retrieval steps using ontology mapping rules:

query(x) ←⊗ SportyCar(x) ∧⊗ hasPrice(x, y1) ∧⊗ hasPower(x, y2) ∧⊗
DL[LeqAbout22000 ](y1) ∧⊗ DL[Around150HP ](y2) ≥ 1 , (1.40)

SportyCar(x) ←⊗ DL[SportsCar ](x) ∧⊗ scpos ≥ 0.9 , (1.41)

hasPrice(x, y) ←⊗ DL[hasInvoice](x, y) ∧⊗ hipos ≥ 0.8 , (1.42)

hasPower(x, y) ←⊗ DL[hasHP ](x, y) ∧⊗ hhppos ≥ 0.8 , (1.43)

where we assume the set C = {{scpos, scneg}, {hipos, hineg}, {hhppos, hhpneg}}
of values of random variables and the probability distribution µ on all joint
instantiations of these variables, given by µ : scpos, scneg, hipos, hineg, hhppos,
hhpneg 7→ 0.91, 0.09, 0.78, 0.22, 0.83, 0.17 under probabilistic independence. Rule
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(1.40) is the buyer’s request, but in a “different” terminology than the one of
the car selling site. Rules (1.41)–(1.43) are so-called ontology alignment mapping
rules. For example, rule (1.41) states that the predicate “SportyCar” of the
buyer’s terminology refers to the concept “SportsCar” of the selected site with
probability 0.91.

The following may be some tight consequences of the above probabilistic
fuzzy dl-program (where for ground atoms q, we use (E[q])[L,U ] to denote that
the expected truth value of q lies in the interval [L,U ]):

(E[query(MazdaMX5Miata)])[0.21, 0.21] , (E[query(MitsubishiES)])[0.19, 0.19] .

That is, the MazdaMX5Miata is ranked first with the degree 0.21, while the
MitsubishiES is ranked second with the degree 0.19.

Tightly coupled fuzzy dl-programs under the answer set semantics [78, 80]
are a tight integration of fuzzy disjunctive logic programs under the answer set
semantics with fuzzy description logics. From a different perspective, they are
a generalization of tightly coupled disjunctive dl-programs by fuzzy vagueness
in both the description logic and the logic program component. This is the first
approach to fuzzy dl-programs that may contain disjunctions in rule heads. Query
processing in such programs can essentially be done by a reduction to tightly
coupled disjunctive dl-programs. A closely related work [79] explores the problem
of evaluating ranked top-k queries. It shows in particular how to compute the
top-k answers in data-complexity tractable tightly coupled fuzzy dl-programs.

Example 17. A tightly coupled fuzzy dl-program KB = (L,P ) is given by a suit-
able fuzzy DL knowledge base L and the set of fuzzy rules P , which contains
only the following fuzzy rule (where x⊗ y = min(x, y)):

query(x) ←⊗ SportyCar(x) ∧⊗ hasInvoice(x, y1) ∧⊗ hasHorsePower(x, y2)∧⊗
LeqAbout22000 (y1) ∧⊗ Around150 (y2) > 1 .

Informally, query collects all sports cars, and ranks them according to whether
they cost at most around 22 000€ and have around 150 HP. Another fuzzy rule
involving also a negation in its body and a disjunction in its head is given as
follows (where 	x= 1− x and x⊕ y = max(x, y)):

Small(x)∨⊕Old(x) ←⊗ Car(x) ∧⊗ hasInvoice(x, y)∧⊗
not	GeqAbout15000 (y) > 0.7 .

This rule says that a car costing at most around 15 000€ is either small or old.
Notice here that Small and Old may be two concepts in the fuzzy DL knowledge
base L. That is, the tightly coupled approach to fuzzy dl-programs under the
answer set semantics also allows for using the rules in P to express relationships
between the concepts and roles in L. This is not possible in the loosely coupled
approach to fuzzy dl-programs under the answer set semantics in [72, 76], since
the dl-queries there can only occur in rule bodies, but not in rule heads.
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1.4.3 CQ-Programs

An extension for dl-programs are cq-programs [41], which allow for expressing
(union of) conjunctive queries (U)CQ over description logics in the dl-atoms,
and disjunctions in the head of the rules.

This approach for hybrid reasoning with rules and ontologies is following the
loose coupling approach, i.e., it is a heterogeneous integration that differentiates
between logic programming predicates and description logic concept and roles. cq-
programs benefit of some of the advantages of the loose coupling approach, such as
the possibility of immediate integration of existing solvers for the implementation
of the language. Also, the clear separation of the involved components enables
the possibility of designing a modular architecture, as may be imagined.

In contrast with dl-programs, the cq-program combination is tighter in a
sense that it allows to existentially quantify over unknown individuals that are
implicit in a DL knowledge base.

Example 18. Consider the following simplified version of a scenario in [86].

L =


hates(Cain,Abel), hates(Romulus,Remus),
father(Cain,Adam), father(Abel ,Adam),
father v parent ,
∃father .∃father−.{Remus}(Romulus)


P = {BadChild(X)← DL[parent ](X,Z),DL[parent ](Y,Z),DL[hates](X,Y )}

Apart from the explicit facts, L states that each father is also a parent
and that Romulus and Remus have a common father. The single rule in P
specifies that an individual hating a sibling is a BadChild . From this dl-program,
BadChild(Cain) can be concluded, but not BadChild(Romulus).

Instead of P , let us use
P ′ = {BadChild(X)← DL[parent(X,Z), parent(Y, Z), hates(X,Y )](X,Y )},

where the body of the rule is a CQ {parent(X,Z), parent(Y, Z), hates(X,Y )} to
L with distinguished variables X and Y . We then obtain the desired result; that
is, we can derive the fact BadChild(Romulus).

The semantics of the cq-programs is in spirit of dl-programs, and mainly
differs in the generalized entailment notion for cq-atoms, which extend that
of dl-atoms. Informally, a cq-atom α is in form DL[λ; q](X), where q can be a
union of conjunctive queries with output variables X, while λ represents a list of
modifiers for the description logic base L at hand, with the same meaning given
in dl-programs. The CQ-extension adds additional expressivity to dl-programs, as
is evident by results that show an increase in complexity from NEXP to 2-EXP
for the description logic SHIF(D).

A further plus of this extension is that it opens the floodgates for exploiting
optimizations in dl-programs, via a technique able to produce rewritten programs
where the computational burden can be shifted to and from one of the two
reasoners at hand. For instance, conjunctions of atoms can be computed, whenever

40



semantically equivalent, on the description logic base side instead that on the logic
program side. In [41], several forms of optimizing rewriting rules have been defined
to rewrite DL-queries in rule bodies to more efficient ones. Experimental results
comparing unoptimized to rewritten programs show a substantial performance
improvement.

1.5 Conclusion

In this chapter, we have briefly shown work that has been done in REWERSE
on the issue of combining rules and ontologies. To this end, we have first given
an overview of different combination approaches, which have been systematically
grouped into a classification that takes different degree of integration and of rules
and ontologies into account.

We have then presented the two streams of genuine approaches which have
been pursed in REWERSE by the groups in Vienna and Linköping, respectively,
to give meaningful and expressive combinations that faithfully generalize the
stable models and the well-founded semantics of logic programs, respectively,
leading to nonmonotonic combinations of rules and ontologies whose prototype
implementations reflected the state of the art in this area. Furthermore, several
extensions to these approaches have been briefly discussed, which address needs
such as handling probabilistic information, fuzzy values, or more expressive
queries to ontologies than simple instance checks or consistency tests.

While the work on combinations of rules and ontologies in REWERSE has
broken new ground and was fruitfully taken up by other groups within REWERSE
but also outside (in particular, hex-programs and dlvhex have found applications
in various contexts), its impact on the development of the rules layer of the
Semantic Web, and in particular to emerging standards, has yet to materialize.
The reason is that different from ontologies, the standardization of rules that is
targeted by the RIF working group of the W3C (see Section 1.2.4) is a formidable
challenge, given that there are very many notions of rules and their semantics;
this is one of the reasons that at the time of this writing, merely a compromise
for a core rule dialect (RIF-BLD) is what has been achieved so far; features
such as negation (even stratified one) have been targeted in more comprehensive
packages, but not realized so far. We expect that stable models and the well-
founded semantics will be the premier semantics that are reflected in a RIF
standard for non-monotonic negation that is beyond stratified negation in logic
programs, and that the ideas and concepts which have been developed in the
REWERSE streams will impact on the definition of possible interfacing between
rules and ontologies in the emerging standards.

At present, the issue of combining rules and ontologies for the Semantic Web
is not regarded to be satisfactorily solved; a number of different approaches have
been made so far, but they all have some features that do not suggest them to
be regarded the ultimate solution to the problem; let alone that perhaps there
is no single, “universal” such solution, but a range of different solutions which
cater different features and needs that have to be fulfilled in different contexts.
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This already manifests in different types of rules; in REWERSE, the focus
was on logic-based rules, but other rule types such as production rules are equally
important and require different treatment; in fact, an integration of production
rules and ontologies with bidirectional information flow is an interesting subject
for future work, in which the operational and logical semantics of the rules and
the ontology, respectively, have to be bridged. The OntoRule project will within
the “7th Framework Program” (FP7) of the EU Commission target business
rules and policies, and will to a great deal be based on a lower layer that
integrates production rules and ontologies, aside with logic programming rules.
By way of this project, results of REWERSE will migrate more towards practical
exploitation and into commercial rules engines.

In order to make expressive combinations of rules and ontologies available for
deployment to applications, a number of research tasks remain to be pursued.

Currently, we lack extended case studies and large scale examples beyond the
toy examples that have been considered in the seminal papers that introduced
the approaches. Such case studies might provide helpful insight and give some
guidance in the development of a “gold standard” for rules plus ontologies. At
the least, required constructs in the language, be they just syntactic sugar or
really increasing the expressiveness of a formalism, should be identifiable in this
way. The trouble is, however, to single out a set of representative cases, which is
by no means trivial. A benchmark suite would be very valuable and, if carefully
composed, undoubtedly an important step forward.

Another issue are complex data structures, and realizations of the combi-
nations beyond the Datalog fragment. Indeed, in practice, one needs to handle
complex data that are aggregations of other data, such as records, lists, sets, etc.
Such data structures can be modeled in many logic programming systems using
function symbols, and support in terms of explicit syntax is offered. However, in
the current solvers for stable model and answer set semantics, function symbols
are largely banned because they are a well-known source of undecidability, even in
rather plain settings; only more recently, work on decidable classes and prototype
implementations of stable models semantics with function symbols has been
carried out (cf. [15, 14, 24, 100] and references therein), and function symbols
also increasingly attract attention as a modeling construct. The DLV-Complex
system [23, 24] aims at providing functions symbols in a decidable setting, giving
support to lists, sets along with libraries for their manipulations. It remains to see
how logic programs in this setting can be combined with ontologies; semantically,
the gap between rules and ontologies widens by the use of such function symbols,
and decidability issues has to be reconsidered.

An obvious task is the development of better algorithms and efficient im-
plementations. The current prototype implementations serve more as proofs of
concept and experimental testbeds, but are not largely optimized. There is a lot of
room for improvement, even though the optimization methods are expected to be
tailored to a particular semantics and implementation setting. The intertwining
of a rules and an ontology engine, as done in the prototype implementations
of dl-programs and HD-rules, imposes specific requirements that can not be
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easily transferred to other implementations. Developing an integrated engine that
processes rules and ontologies en par is an interesting issue; whether a conversion
of logic programs into ontology axioms or vice versa a mapping of ontologies
into logic programming rules is a viable approach remains to be explored. This,
however, may work well for fragments of combinations in which such conversions
are easily possible.

In close connection to the previous issue are semantic and computational
properties of combinations. There is clearly a trade-off between the expressiveness
of a formalism on the one hand and its intrinsic complexity on the other. If we
expect to have fast reasoning over knowledge bases with large extensional part,
comprising millions (or even billions) of facts, then naturally the reasoning tasks
per se must not have high intrinsic complexity. For this reason, it is important
to have an understanding of the complexity characteristics of combinations, to
know about fragments with tractable and low complexity (just polynomial time
as such might not be sufficient for practical applications, if the data volume is
large), and to respect such characteristics in implementations in a way that easy
instances are solved with little effort while more computation time is spent on
harder instances. Recent research on rules and conjunctive query answering over
description logics from the lower expressiveness end like EL and EL++ [6, 7], or
DL-Lite [25, 92] may be here a starting point.

Finally, an important issue is also to combine knowledge sources beyond rules
and ontologies. Indeed, a rule base and an ontology may be just two components
in an information system that consists of many other components that are in
different formats. And while throughout this chapter, the rules and the ontology
have been considered as more or less integral parts of one description, this
picture may no longer be valid if the components are independently conceived
and autonomous, like they happen to be in a peer to peer system. In such a
case, also the viewpoint of semantic combination should be rather different, and
incorporating trust is an important requirement.
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