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Abstract. The answer set semantics may assign a logic program no model due to
classic contradiction or cyclic negation. The latter can be remedied by resorting to
a paracoherent semantics given by semi-equilibrium (SEQ) models, which are
3-valued interpretations that generalize the logical reconstruction of answer sets
given by equilibrium models. While SEQ-models have interesting properties, they
miss modularity in the rules, such that a natural modular (bottom up) evaluation of
programs is hindered. We thus refine SEQ-models using splitting sets, the major
tool for modularity in modeling and evaluating answer set programs. We consider
canonical models that are independent of any particular splitting sequence from
a class of splitting sequences, and present two such classes whose members are
efficiently recognizable. Splitting SEQ-models does not make reasoning harder,
except for deciding model existence in presence of constraints (without constraints,
split SEQ-models always exist).

1 Introduction

As well-known, the answer set semantics [11] does not assign to every logic program
a model. This can be either due to a logical contradiction, as emerging e.g. in the
program {open ← not closed , ¬open ← }, or due to cyclic negation, as e.g. present
in the program {shaves(joe, joe) ← not shaves(joe, joe)}, which is a paraphrase of
Russell’s paradox (where joe is the barber).

In order to avoid trivialization of reasoning from such programs, Inoue and Sakama
[28] have introduced paraconsistent semantics for answer set programs. While dealing
with explicit contradictions can be achieved with similar methods as for (non-)classical
logic (cf. also [5, 1, 17]), dealing with cyclic negation turned out to be tricky. With
the idea that atoms may also be possibly true (i.e., by belief), Inoue and Sakama de-
fined a semi-stable semantics which for Russell’s paradox above yields the model that
shaves(joe, joe) is possibly true, which seems reasonable. In fact, semi-stable seman-
tics approximates answer set semantics and coincides with it whenever a program has
some answer set; otherwise, it yields under Occam’s razor models with a least set of
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atoms believed to be true. That is, the intrinsic closed world assumption (CWA) of logic
programs is slightly relaxed for achieving stability of models.

In a similar vein, we can regard many semantics for non-monotonic logic programs
that relax answer sets as paracoherent semantics, e.g. [3, 9, 18, 22, 23, 25, 27, 29, 31,
32].3 Ideally, such a relaxation meets for a program P the following desiderata [8]:

(D1) Every (consistent) answer set of P corresponds to a model (answer set coverage).
(D2) If P has some (consistent) answer set, then its models correspond to answer sets

(congruence).
(D3) If P has a classical model, then P has a model (classical coherence).

In particular, (D3) intuitively says that in the extremal case, a relaxation should renounce
to the selection principles imposed by the semantics on classical models (in particular, if
a single classical model exists).

However, only few paracoherent semantics satisfy all three desiderata (cf. [8]). A
recent one are semi-equilibrium (SEQ) models [8], which improve semi-stable models
by avoiding some anomalies. SEQ-models are a relaxation of Pearce’s well-known
equilibrium models [19], which provide a logical reconstruction of answer sets alias
stable models in terms of a non-monotonic version of Heyting’s [12] logic of here and
there. Roughly speaking, SEQ-models are 3-valued interpretations in which atoms can
be true, false or believed to be true; the gap between believed and derivably true atoms
is globally minimized by SEQ-models. Note that the distinction between believed and
derivably true atoms in models is important; other approaches, e.g. CR-Prolog [3], make
a distinction at the rule level.

While the SEQ-semantics has nice properties, it may select models that do not
respect modular structure in the rules. To illustrate this, consider the following example.

Example 1 Suppose we have a program that captures knowledge about friends of a
person regarding visits to a party, where go(X) informally means that X will go:

P =

 go(John)← not go(Mark);
go(Peter)← go(John), not go(Bill);
go(Bill)← go(Peter)


Then P has no answer set; its semi-equilibrium models are M1 = (∅, {go(Mark)}),

and M2 = ({go(John)}, {go(John), go(Bill)}). Informally, a key difference between
M1 and M2 concerns the beliefs on Mark and John. In M2 Mark does not go, and,
consequently, John will go (moreover, Bill is believed to go, and Peter will not go). In
M1, instead, we believe Mark will go, thus John will not go (likewise Peter and Bill).

None of the two models provides a fully coherent view (on the other hand, the
program is incoherent, having no answer set). Nevertheless, M2 appears preferable over
M1, since, according with a layering (stratification) principle, which is widely agreed
in LP, one should prefer go(John) rather than go(Mark), as there is no way to derive
go(Mark) (which does not appear in the head of any rule of the program).

Modularity via rule dependency as in the example above is widely used in problem
modeling and logic programs evaluation; in fact, program decomposition is crucial for

3 Notably, Seipel’s Evidential Stable Models for disjunctive LPs [29] coincide with SEQ-models.



efficient answer set computation. For the program P above, advanced answer set solvers
like DLV and clasp immediately set go(Mark) to false, as go(Mark) does not occur
in any rule head. In a customary bottom up computation along program components,
answer sets are gradually extended until the whole program is covered, or incoherence is
detected at some component (in our example for the last two rules). But rather than to
abort the computation, we would like to switch to a paracoherent mode and continue
with building semi-equilibrium models, as an approximation of answer sets.

In this general setting, we refine SEQ-models with the following contributions.

– Resorting to splitting sets [15], the major tool for modularity in modeling and evaluat-
ing answer set programs, we define split SEQ-models (Section 3), for which the program
is evaluated in progressive layers according to a splitting sequence of the atoms. In
the example above, the natural sequence S = ({go(Mark)}, {go(Mark), go(John)},
{go(Mark), go(John), go(Bill), go(Peter)}) will yield the expected result.

– In general, the resulting split SEQ-models depend on the particular splitting se-
quence S. We thus introduce canonical splitting sequences, with the property that
the models are independent of any particular from a class of splitting sequences, and
thus yield canonical models (Section 4). This is analogous to the perfect models of
a (disjunctive) stratified program, which are independent of a concrete stratification
[2, 26]. For constraint-free programs P , the class derived from the strongly connected
components (SCCs) of P warrants this property, as well as modularity property. For
arbitrary programs, independence is held by a similar class derived from the maximal
joined components (MJCs), merging SCCs involved in constraints.

– We characterize the computational complexity of split SEQ-model semantics, for
canonical models and various classes of logic programs (Section 5). It appears that the
refined semantics has the same complexity as SEQ-semantics, except for the model
existence problem, which gets harder in general. This provides useful insight for defining
canonical models that satisfy all desiderata (D1)-(D3) for arbitrary programs, which we
briefly discuss here (Section 7).

The refined semantics, and in particular the SCC -models semantics, lends for a
modular use and bottom up evaluation of programs. Cautious merging of components,
as done for MJC -models, aims at preserving independence of components and thus
possible parallel evaluation. This makes the refined semantics attractive for incorporation
into answer set evaluation frameworks, in order to add paracoherent features.

2 Preliminaries

We start with recalling answer set semantics and fixing notation, and then present the
paracoherent semantics of semi-equilibrium models.

Answer Set Programs. Following the traditional grounding view [11], we concentrate
on programs over a propositional signature Λ. A disjunctive rule r is of the form

a1 ∨ · · · ∨ al ← b1, ..., bm, not bm+1, ..., not bn, (1)

where all ai and bj are atoms (from Λ) and l ≥ 0, n ≥ m ≥ 0 and l + n > 0; not
represents negation-as-failure. The set H(r) = {a1, ..., al} is the head of r, while



B+(r) = {b1, ..., bm} and B−(r) = {bm+1, . . . , bn} are the positive body and the
negative body of r, respectively; the body of r is B(r) = B+(r) ∪B−(r). We denote
by At(r) = H(r) ∪ B(r) the set of all atoms occurring in r. For any set of atoms S,
we let not S = {not a | a ∈ S}; rules of form (1) will also be written (in abuse of
notation) H(r)← B+(r), not B−(r). A rule r is a fact, if B(r) = ∅ (we then omit←);
a constraint, if H(r) = ∅; normal, if |H(r)| ≤ 1 and positive, if B−(r) = ∅.

A (disjunctive logic) program P is a finite set of disjunctive rules. P is called normal
[resp. positive] if each r ∈ P is normal [resp. positive]. We let At(P ) =

⋃
r∈P At(r).

Any set I ⊆ Λ is an interpretation; it is a model of a program P (denoted I |= P )
iff for each rule r ∈ P , I ∩ H(r) 6= ∅ if B+(r) ⊆ I and B−(r) ∩ I = ∅ (denoted
I |= r). A model M of P is minimal, iff no model M ′ ⊂M of P exists. We denote the
by MM (P ) set of all minimal models of P and by AS(P ) the set of all answer sets (or
stable models) of P , i.e., the set of all interpretations I such that I ∈ MM (P I), where
P I is the well-known Gelfond-Lifschitz reduct [11] of P w.r.t. I .

Semi-equilibrium paracoherent semantics. We call logic programs that lack answer
sets due to cyclic dependency of atoms among each other by rules through negation in-
coherent (cf. Russel’s paradox). The semi-equilibrium semantics [8] avoids incoherence
by resorting to the view of answer sets in the logic of here and there (HT-logic) [19, 20].
We focus here on formulas φ of the form

b1 ∧ ... ∧ bm ∧ ¬bm+1 ∧ ... ∧ ¬bn → a1 ∨ ... ∨ al, (2)

which correspond in an obvious way to rules of form (1). In HT-logic, interpretations
are pairs (X,Y ), X ⊆ Y ⊆ Λ, where X is the here world and Y the there world.
Intuitively, the atoms in X are true (value t), atoms not in Y are false (f ), and the atoms
in gap(X,Y ) = Y \X are believed to be true (bt). For any set A of HT-interpretations,
we denote by mc(A) the set of maximal canonical interpretations (X,Y ) ∈ A, i.e., no
(X ′, Y ′) ∈ A exists such that gap(X ′, Y ′) ⊂ gap(X,Y ). We define (X,Y ) to be an
HT-model of the formula φ, denoted (X,Y ) |= φ, in a recursive way:

1. (X,Y ) |= a iff a ∈ X;
2. (X,Y ) 6|= ⊥; (⊥ is falsity)
3. (X,Y ) |= φ ∧ ψ iff (X,Y ) |= φ and (X,Y ) |= ψ;
4. (X,Y ) |= φ ∨ ψ iff (X,Y ) |= φ or (X,Y ) |= ψ;
5. (X,Y ) |= φ→ ψ iff (i) (X,Y ) 6|= φ or (X,Y ) |= ψ, and (ii) Y |= φ→ ψ;4

6. (X,Y ) |= ¬φ iff (X,Y ) |= φ→ ⊥.

In particular, (X,Y ) |= ¬a iff a /∈ Y , and (X,Y ) |= r for a rule r of form (2)
iff either {a1 . . . , ak} ∩ X 6= ∅, {b1, . . . , bm} 6⊆ Y , or {bm+1, . . . , bn} ∩ Y 6= ∅. A
HT-interpretation (X,Y ) is an HT-model of a theory (i.e., a set of formulas) Θ, denoted
(X,Y ) |= Θ iff (X,Y ) |= φ for each φ ∈ Θ. It is an equilibrium (EQ) model of Θ iff
X = Y and for every X ′ ⊂ Y it holds that (X ′, Y ) 6|= Θ.

Example 2 Consider the program P = {a ← b; b ← not c; c ← not a}, and the
corresponding theory ΘP = {b → a; ¬c → b; ¬a → c}. As easily checked, (∅, ac),
(a, ab), (a, abc), and (c, c) are HT-models of ΘP ; the only equilibrium model is (c, c).

4 Note that in condition 5.(ii) ’|=’ is the standard operator of classical propositional logic.



As shown by Pearce [19], M ⊆ At(P ) fulfills M ∈ AS(P ) iff (M,M) is an EQ-
model of ΘP . Paracoherent answer sets emerge with minimal sets of believed atoms.

Definition 1 ([8]) A semi-equilibrium (SEQ) model (or paracoherent answer set) of
a program P is any HT-model (X,Y ) of P s.t. (i) (X ′, Y ) 6|= P , for all X ′ ⊂ X (h-
minimality) and (ii) no HT-model (X ′, Y ′) of P satisfies h-minimality and gap(X ′, Y ′)⊂
gap(X,Y ) (gap-minimality).

The set of all semi-equilibrium models of P is denoted by SEQ(P ).

Example 3 Consider the program P = {a← b; b← not a}. Its HT-models are (∅, a),
(∅, ab), (a, a), (a, ab), (b, ab) and (ab, ab). Hence, there is no equilibrium model for P ,
while SEQ(P ) = {(∅, a)}.

3 Split Semi-Equilibrium Semantics

In this section, we introduce a refinement to the semi-equilibrium semantics. In fact we
observe that sometimes gap minimization is too weak. Consider the following example.

Example 4 Let P = {c ← b, not c; b ← not a}; then SEQ(P )= { (b, bc), (∅, a)}.
Here (b, bc) is more appealing than (∅, a) because a is not derivable, as no rule has a in
the head. Moreover, intuitively, P1 = {b ← not a} is a lower (coherent) part feeding
into the upper part P2 = {c← b, not c}.

To overcome this limitation, we introduce a refined paracoherent semantics, called
split semi-equilibrium semantics. It coincides with the answer sets semantics in case of
coherent programs, and selects a subset of the SEQ-models otherwise. The main results
of this section are two model-theoretic characterizations which identify necessary and
sufficient conditions for deciding whether a SEQ-model is selected.
Splitting sets and sequences. Splitting sets [15] allow us to divide a program P into
a lower and a higher part which can be evaluated bottom up. More formally, a set
S ⊆ At(P ) is a splitting set of P , if for every rule r in P such that H(r) ∩ S 6= ∅ we
have that At(r) ⊆ S. We denote by bS(P ) = {r ∈| At(r) ⊆ S} the bottom part of P ,
tS(P ) = P \ bS(P ) the top part of P relative to S.

Splitting sets naturally lead to splitting sequences. A splitting sequence S = (S1, . . . ,
Sn) of P is a sequence of splitting sets of P such that Si ⊆ Sj for each i < j.
Split semi-equilibrium models. We now introduce the notion of SEQ-models related
to a splitting set. First given a splitting set S for a program P and an HT-interpretation
(I, J) for bS(P ), we let
PS(I, J) = P \ bS(P ) ∪ {a | a ∈ I} ∪ {← not a | a ∈ J} ∪ {← a | a ∈ S \ J}.

Informally, the bottom part of P w.r.t. S is replaced with rules and constraints which
fix in any EQ-model of the remainder (= tS(P )) the values of the atoms in S to (I, J).

Definition 2 (Semi-equilibrium models related to a splitting set) Let S be a splitting
set of a program P . Then the semi-equilibrium models of P related to S are defined as

SEQS(P ) = mc
( ⋃

(I,J)∈SEQ(bS(P ))

SEQ(PS(I, J))
)
. (3)



Example 5 (cont’d) For the splitting set S = {a, b} of P in Example 4, bS(P ) = {b←
not a} and SEQ(bS(P )) = {(b, b)}. Hence, PS(b, b) = {c← b, not c; b; ← a} and
SEQS(P ) = SEQ(PS(b, b)) = {(b, bc)}.

For any HT-model (X,Y ) and splitting set S of a program P , we define the restric-
tion of (X,Y ) to S as (X,Y )|S = (X ∩ S, Y ∩ S).

Proposition 1 Let S be a splitting set of a program P . If (X,Y )∈SEQS(P ), then
(X,Y )|S ∈ SEQ(bS(P )).

The following result shows that each semi-equilibrium model related to a given
splitting set is always a semi-equilibrium model of the program.

Theorem 1 (Soundness) Let S be a splitting set of a programP . If (X,Y )∈SEQS(P ),
then (X,Y ) ∈ SEQ(P ).

The converse does not hold in general; in fact if we consider the program of Ex-
ample 4 and the splitting set S = {a, b} we have SEQS(P ) = {(b, bc)}, while
SEQ(P ) = {(b, bc), (∅, a)}. It is also clear that SEQS(P ) depends on the choice
of S; in fact if S = ∅ then SEQ∅(P ) = SEQ(P ).

Moreover for the validity of Theorem 1, the selection of maximal canonical HT-
models is necessary. Indeed, for P = {a ← not b; b ← not a; c ← b, not c}
and the splitting set S = {a, b}, we have SEQ(bS(P )) = {(a, a), (b, b)}; hence
SEQ(PS(a, a)) ∪ SEQ(PS(b, b)) = {(a, a), (b, bc)}, while SEQ(P ) = {(a, a)}.

We have seen so far two necessary conditions for an HT-model to qualify as a semi-
equilibrium model related to a given splitting set. These conditions are also sufficient.

Theorem 2 (Completeness) Let S be a splitting set of a program P . If (X,Y ) ∈
SEQ(P ) and (X,Y )|S ∈ SEQ(bS(P )), then (X,Y ) ∈ SEQS(P ).

Putting together the various results obtained so far we have proved the following
semantic characterization for semi-equilibrium models related to a splitting set:

Theorem 3 Let S be a splitting set of a program P . Then (X,Y ) ∈ SEQS(P ) iff
(X,Y ) ∈ SEQ(P ) and (X,Y )|S ∈ SEQ(bS(P )).

Now we generalize the use of splitting sets to compute the SEQ-models of a program
via splitting sequences.

Definition 3 (Semi-equilibrium models related to a splitting sequence)Given a split-
ting sequence S = (S1, . . . , Sn) for a program P , we let S′ = (S2, ..., Sn) and define
the semi-equilibrium models of P related to the splitting sequence S = (S1, ..., Sn) as

SEQS(P ) = mc
( ⋃

(I,J)∈SEQ(bS1
(P ))

SEQS′(PS1(I, J))
)
. (4)

The SEQ-models related to a splitting sequence can be characterized similarly
as those related to a splitting set. To ease presentation, for a program P and split-
ting sequence S = (S1, ..., Sn), we let P0 = P and Pk = (Pk−1)

Sk(Ik, Jk), where
(Ik, Jk) ∈ SEQ(bSk

(Pk−1)), k = 1, ..., n. We now state the main result of this section.



Theorem 4 Let S=(S1, ..., Sn) be a splitting sequence of a program P . Then (X,Y ) ∈
SEQS(P ) iff (X,Y ) ∈ SEQ(P ) and (X,Y )|Sk

∈ SEQ(bSk
(Pk−1)), for k = 1, ..., n.

Finally we observe that a classically consistent program does not necessarily have
split semi-equilibrium models (but always semi-equilibrium models). In fact, if we con-
sider P = {← b; b← not a} and the splitting set S = {a}, we obtain SEQ(bS(P )) =
{(∅, ∅)} and so SEQS(P ) = ∅. However (a, a) and (∅, a) are HT-models of P .

4 Canonical Semi-Equilibrium Models

The split semi-equilibrium semantics depends on the choice of the particular splitting
sequence, which is not much desirable. We thus consider a way to obtain a refined
split SEQ-semantics that is independent of a particular splitting sequence, but imposes
conditions on sequences that come naturally with the program and can be easily tested.

Attractive for this purpose are the strongly connected components (SCCs) of a given
program, which are at the heart of bottom up evaluation algorithms in ASP systems. In
absence of constraints, we get the desired independence of a particular splitting sequence,
such that we can then talk about the SCC -models of a program. Allowing for constraints
will need a slight extension.

4.1 SCC -split sequences and models
Recall that the dependency graph of a program P is the directed graph DG(P ) =
〈VDG, EDG〉, where VDG = At(P ) and EDG = {(a, b) | a ∈ H(r), b ∈ B(r) ∪
(H(r) \ {a}), r ∈ P}. The SCCs of P , denoted SCC (P ), are the SCCs of DG(P ),
and the supergraph of P is the graph SG(P ) = 〈VSG, ESG〉, where VSG = SCC (P )
and ESG = {(C,C ′) | C 6= C ′ ∈ SCC (P ),∃a ∈ C,∃b ∈ C ′, (a, b) ∈ EDG}. Note
that SG(P ) is a directed acyclic graph (dag); recall that a topological ordering of a dag
G = 〈V,E〉 is an ordering v1, v2, ..., vn of its vertices, denoted ≤, such that for every
(vi, vj) ∈ E we have i > j. Such an ordering always exists, and the set O(G) of all
topological orderings of G is nonempty. Any such ordering of SG(P ) naturally induces
a splitting sequence as follows.

Definition 4 Let P be a program and let≤ = (C1, ..., Cn) be a topological ordering of
SG(P ). Then the splitting sequence induced by ≤ is S≤ = (S1, ..., Sn), where S1 = C1

and Sj = Sj−1 ∪ Cj , for j = 2, ..., n.

We call any such S≤ a SCC -splitting sequence; note that S≤ is indeed a splitting
sequence of P . We now have the following result.

Theorem 5 Let P be a constraint-free program. For every≤,≤′∈ O(SG(P )), we have
SEQS≤(P ) = SEQS≤′ (P ).

This result allows to define the SCC -models of P as M SCC (P ) = SEQS≤(P ) for
an arbitrary topological ordering of SG(P ). We then obtain:

Proposition 2 The SCC -models semantics, given by M SCC (P ) for constraint-free P ,
satisfies (D1)-(D3).



Example 6 Consider P = {a ← c, not a; a ← not b; c ← not d; b ← not e};
its SCCs are C1 = {a}, C2 = {b}, C3 = {c}, C4 = {d} and C5 = {e}. For ≤ =
(C4, C5, C3, C2, C1), we obtain that SEQS≤(P ) = SEQ (S2,S3,S4,S5)(PS1(∅, ∅)) =

SEQ (S3,S4,S5)(PS2
1 (∅, ∅)) = SEQ (S4,S5)(PS3

2 (c, c))=SEQ (S5)(PS4
3 (bc, bc))= {(bc,

abc)}; hence M SCC (P ) = {(bc, abc)}. For ≤′= (C5, C2, C4, C3, C1), we obtain
SEQS≤′ (P ) = {(bc, abc)}, in line with Theorem 5. Note that SEQ(P ) = {(bc, abc),
(b, bd), (ac, ace)}.

Finally, if we replace in Equation (4) SEQ , SEQS , and SEQS′ all by MSCC , then
the resulting equation holds; i.e., we can compute SCC -models modularly bottom up
along an arbitrary splitting sequence (using always MSCC ).

4.2 MJC -split sequences and models

Theorem 5 fails if we allow constraints in P . E.g., the program P = {b; ← b, not a} has
the SCCs {a} and {b}; henceO(SG(P )) = {({a}, {b}), ({b}, {a})}. But the respective
semi-equilibrium models are different: SEQ ({a},{a,b})(P ) = ∅ and SEQ ({b},{a,b})(P )
= {(b, ba)}. Note here that semi-equilibrium semantics is able to distinguish constraints
← Body from rules f ← Body , not f ; the latter can always be satisfied by believing f
(and thus be viewed as soft constraints). On the other hand, Theorem 5 extends to the
case without cross-component constraints, i.e., each constraint r is embedded in some
SCC Ci (B(r) ⊆ Ci ∈ SCC (P )); otherwise, the order in which unrelated components
appear in a splitting sequence may matter.

We thus consider merging SCCs of a program in such a way that independence of
concrete topological orderings is preserved and merging is done only if deemed necessary.
This is embodied by the maximal joinable components of a program, which lead to so
called MJC -split sequences and models. Informally, relevant SCCs that are unordered
(thus unproblematic in evaluation) are merged if they intersect with a constraint.

We start with introducing related pairs and joinable pairs of SCCs. We call (K1,K2)
from SCC (P )2 a related pair, if either K1 = K2 or some constraint r ∈ P fulfills
At(r) ∩K1 6= ∅ and At(r) ∩K2 6= ∅; by C(K1,K2)(P ) we denote the set of all such
constraints.

Definition 5 A related pair (K1,K2) is a joinable pair iff K1 = K2 or some (C1, . . . ,
Cn) in O(SG(P )) exists such that (i) K1 = Cs and K2 = Cs+1 for some 1 ≤ s < n,
(ii) (K2,K1) /∈ ESG and (iii) there exists r ∈ C(K1,K2)(P ) s.t.At(r) ⊆ C1∪ ...∪Cs+1.

We denote by JP (P ) the set of all joinable pairs. Intuitively item (i) states that in
some topological ordering K1 immediately precedes K2; item (ii) states that no atom
in K2 directly depends on an atom from K1. If this does not hold, joining K1 and K2

to achieve independence is not necessary as their ordering is fixed. Finally item (iii)
requires that some constraint must access the two SCCs and appear in the evaluation in
the bottom of the program computed so far.

Example 7 For P = {← b, not a; ← b, not c; d ← not a; c ← not e; b ← c}, we
have SCC (P ) = {{a}, {b}, {c}, {d}, {e}}. We observe that ({c}, {b}) is a related, but
not a joinable pair, because ({c}, {b}) satisfies conditions (i) and (iii), but not (ii). On
the other hand, ({a}, {b}) is a joinable pair.



We now extend joinability from pairs to any number of SCCs.

Definition 6 Let P be a program. Then K1, ...,Km ∈ SCC (P ) are joinable iff m = 2
and some K ∈ SCC (P ) exists such that (K1,K), (K,K2) ∈ JP (P ), or other-
wise Ki,Kj are joinable for each i, j = 1, ...,m. We let JC(P ) = {

⋃m
i=1Ki |

K1, ...,Km ∈ SCC (P ) are joinable} and call MJC (P ) = {J ∈ JC(P ) | ∀J ′ ∈
JC(P ) : J 6⊂ J ′} the set of all maximal joined components (MJC s) of P .

Note that (K1,K2) ∈ JP (P ) implies that K1 and K2 are joinable.

Example 8 In Ex. 7, ({a}, {b}) is the only nontrivial joinable pair; hence MJC(P ) =
{{a, b}, {c}, {d}, {e}}.

As easily seen, MJC (P ) is a partitioning of At(P ) that results from merging SCCs.
We define the MJC graph of P as JG(P ) = 〈VJG, EJG〉, where VJG = MJC (P ) and
EJG = {(J, J ′) | J 6= J ′ ∈ MJC (P ),∃a ∈ J, ∃b ∈ J ′, (a, b) ∈ EDG}. Note that
JG(P ) is like SG(P ) a dag, and hence admits a topological ordering; we denote by
O(JG(P )) the set of all such orderings. We thus define

Definition 7 Let P be a program and ≤ = (J1, ..., Jm) be a topological ordering of
JG(P ). Then the splitting sequence induced by ≤ is S≤ = (S1, ..., Sm), where S1 = J1
and Sk = Sk−1 ∪ Jk, for k = 2, . . . ,m.

The sequence S≤ is again indeed a splitting sequence, which we call a MJC -splitting
sequence. We obtain a result analogous to Theorem 5, but in presence of constraints.

Theorem 6 Let P be a program. For every≤,≤′∈ O(JG(P )), we have SEQS≤(P ) =
SEQS≤′ (P ).

Similarly as SCC -models, we thus can define the MJC -models ofP as MMJC (P ) =
SEQS≤(P ) for an arbitrary topological ordering ≤ of JG(P ).

Example 9 (cont’d) Reconsider P in Example 7. Then for the ordering ≤= ({a}, {d},
{e}, {c}, {b}) we obtain SEQS≤(P ) = ∅, while for ≤′= ({e}, {c}, {b}, {a}, {d}) we
obtain SEQS≤′ (P ) = {(bc, abc)}. On the other hand, JG(P ) has the single topo-
logical ordering ≤= ({e}, {c}, {a, b}, {d}), and SEQS≤(P ) = {(bc, abc)}; hence
MMJC (P ) = {(bc, abc)}. Note that SEQ(P ) = {(bc, abc), (d, de)}.

The problem in Section 4.2 disappears when we use the MJCs. The program P =
{← b, not a; b} there has the single MJC J = {a, b}, since the two SCCs {a} and {b}
are related through the constraint← b, not a and thus joinable. As desired, we get (b, ab)
as the (single) MJC -model of P .

Note that trivially, the MJC - and the SCC -semantics coincide for constraint-free
programs (in fact, also in absence of cross-constraints). As for the desiderata, we note:

Proposition 3 The MJC -models semantics, given by MMJC (P ) for any program P ,
satisfies (D1)-(D2).



Classical coherence (D3), however, is not ensured by MJC -models, due to lean
component merging that fully preserves dependencies. To obtain a model, blurring strict
dependencies can be necessary, where two aspects need to taken into account.

(A1) Inconcistency may still emerge from cross-component constraints.

Example 10 The program P = {← b, not a; b; b ← a} has MJC (P ) = {{b}, {a}}
as {b}, {a} are not joinable. As the single MJC -splitting sequence, ({a}, {a, b}), admits
no split SEQ-model, MMJC (P ) = ∅.

This can be remedied by suitably merging components that intersect the same constraint.
(A2) A second, orthogonal aspect is dependence.

Example 11 The program P = {← b; b← not a} has no MJC -model, as the MJC -
splitting sequence S = ({a}, {a, b}) admits no split SEQ-model; the culprit is a, which
does not occur in the constraint.

Clearly, the problem extends to dependence via an (arbitrarily long) chain of rules
(e.g., change in Example 11 the rule to b ← c1, c1 ← ci+1, 1 ≤ i < n, cn ← not a).
Again, this can be remedied by merging components. Many merging policies to ensure
(D3) are conceivable; however, such a policy should ideally not dismiss structure unless
needed, and it should be efficiently computable; we defer further discussion to Section 7,
as the next section will provide useful insight for it.

5 Complexity and Computation

In this section, we consider the computational complexity of the following major reason-
ing tasks for programs under split SEQ-semantics.

(MCH) Given a program P , a splitting sequence S and an HT-interpretation (X,Y ),
decide whether (X,Y ) is a split semi-equilibrium model of P .

(INF) Given a program P , a splitting sequence S, an atom a and v ∈ {t, f ,bt}, decide
if a is a brave [resp. cautious] SEQS-consequence of P with value v, denoted
P |=b,v

S a [resp. P |=c,v
S a], i.e., a has in some (all) (X,Y ) ∈ SEQS(P ) value v.

(CON) Given a program P and a splitting sequence S, decide whether SEQS(P ) 6= ∅.

We consider also SCC - and MJC -splitting sequences and several classes of pro-
grams, viz. normal, disjunctive, stratified, and headcycle-free programs.5 Recall that
a program P is stratified, if for each r ∈ P and C ∈ SCC (P ) either H(r) ∩ C = ∅
or B−(r) ∩ C = ∅; P is headcycle-free (hcf), if |H(r) ∩ C| ≤ 1 for each r ∈ P and
C ∈ SCC (P ′), where P ′ = {a← B+(r) | r ∈ P, a ∈ H(r)}.

Positive programs are here of less interest, as SEQS(P ) = {(M,M) | M ∈
MM (P )} for each splitting sequence S. Furthermore, hcf-programs are under SEQ-
semantics sensitive to body shifts; e.g., P = {a ∨ b; a← not a; b← not b} has the
SEQ-models (a, ab) and (b, ab), while its shift P→ = {a← not b; b← not a; a←
not a; b← not b} has the single SEQ-model (∅, ab).

5 Note that [8] did not consider stratified and hcf programs.



Table 1. Complexity of split SEQ-models (completeness results). The same results hold for
canonical models (SCC -, MJC -split seq. S); diverging results for SEQ-models are in brackets.

Problem / Program P : normal, strat. normal,
headcycle-free

disj. stratified,
disjunctive

(MCH) Model checking: (X,Y )∈SEQS(P )? coNP Πp
2

(INF) Brave reasoning: P |=b,v
S a ? Σp

2 Σp
3

Cautious reasoning: P |=c,v
S a ? Πp

2 Πp
3

(CON) Existence: SEQS(P ) 6= ∅ ? Σp
2 [NP ] Σp

3 [NP ]

Overview of complexity results. Our complexity results are summarized in Table 1.
Briefly, they show that split SEQ-models have the same complexity as SEQ-models (i.e.,
structural information does not affect complexity) except on Problem CON, which is
harder. The reason is that coherence (D3) no longer holds. In particular, this means that
imposing a structural condition on building SEQ-models along SCC s may eliminate
such models. Furthermore, it implies that no polynomial-time method µ exists that
associates with P a splitting sequence S = µ(P ), using a polynomial-time checkable
criterion on P , such that (i) µ respects structure, i.e., µ(P ) 6= (At(P )) if SEQS(P ) 6= ∅
for some S 6= (At(P )), and (ii) µ preserves consistency, i.e., SEQ(P ) 6= ∅ implies
SEQS(P ) 6= ∅; this holds even if µ may be nondeterministic, i.e., can “guess” a suitable
S for P . In other words, the price for ensuring coherence with tractable (or NP) effort is
to merge sometimes more components than necessary.

Problems MCH and INF do not become harder, as MCH reduces to polynomially
many MCH instances without splitting. The hardness results for arbitrary splitting
sequences are inherited from respective results without splitting; we also provide results
for stratified and hcf programs.

For SCC and MJC splitting sequences, we obtain analogous results; informally, the
problems do not get easier as splitting can be blocked by irrelevant rules.

Details on the derivation of the results in Table 1 are omitted for space reasons and
included in extended version of this paper.
Constructing and recognizing canonical splitting sequences. It is well-known that
SCC (P ) and SG(P ) are efficiently computable from P (using Tarjan’s [30] algorithm
even in linear time); hence, it is not hard to see that one can recognize a SCC -splitting
sequence S in polynomial time, and that every such S can be (nondeterministically)
generated in polynomial time (in fact, in linear time). We obtain similar tractability results
for MJC (P ) and MJC-splitting sequences. To this end, we first note the following
useful proposition.

Proposition 4 Let P be a program and letK1,K2 ∈ SCC (P ). ThenK1 andK2 satisfy
(i) and (ii) of Definition 5 iff they are disconnected in SG(P ), i.e., no path from K1 to
K2 and vice versa exists.

Theorem 7 Given a program P , MJC(P ) and JG(P ) are computable in polynomial
time (in time O(cs·‖P‖), where cs = |{r ∈ P | H(r) = ∅}| and ‖P‖ is the size of P ).



Proof (Sketch). For every constraint r, determine all C1, . . . , Ck in SCC (P ) such that
Ci ∩ B(r) 6= ∅; suppose C1, . . . , Cl, l ≤ k are the maximal among them in SG(P ).
Using Proposition 4, it can be shown that the pairs (Ci, Cj), 1 ≤ i 6= j ≤ l are
the joinable pairs witnessed by r (i.e., satisfying (iii)). One can compute C1, . . . , Cl

efficiently, e.g. using a stratified program Pr with the following rules:
1. rj ← , for each Cj ∈ VSG such that Cj ∩B(r) 6= ∅;
2. rj ← ri and n max rj ← ri, for each (Ci, Cj) ∈ ESG;
3. max rj ← rj , not n max rj , for each Ci ∈ VSG.

The answer set of Pr yields C1, . . . , Cl, whose union Cr =
⋃l

i=1 Ci is contained in
a (unique) MJC C (i.e., Cr ⊆ C). The set MJC (P ) is built by merging Cr and Cr′ s.t.
Cr ∩ Cr′ 6= ∅ repeatedly. From MJC(P ) and SG(P ), computing JG(P ) is easy.

Each step: building SCC (P ), SG(P ) and P ; evaluating Pr; computing Cr; merging
the Cr’s; and building JG(P ) from MJC(P ) and SG(P ) is feasible in linear time,
except evaluating Pr, which takes O(cs·‖P‖) time; in total, this is O(cs·‖P‖) time. 2

6 Application: Inconsistency-Tolerant Query Answering

The standard answer set semantics may be regarded as appropriate when a knowledge
base, i.e., logic program, is properly specified adopting the CWA principle to deal
with incomplete information. Query answering over a knowledge base then resorts
usually to brave or cautious inference from the answer sets of a knowledge base; let
us focus on the latter here. However, if (unexpected) incoherence arises, then we lose
all information and query answers are trivial. This, however, may not be satisfactory,
especially if it is not possible to modify the knowledge base, which may be due to various
reasons. Paracoherent semantics can be exploited to overcome this problem and to render
query answering operational, without trivialization. In particular, SEQ-semantics is
attractive as it builds on simple grounds and (1) brings in “unsupported” assumptions,
(2) stays in model building close to answer sets, but distinguishes atoms that require
such assumptions from atoms derivable without them, (3) keeps the CWA/LP spirit
of minimal assumptions, and (4) easily lifts to extensions (nested programs, arbitrary
formulas, aggregates, etc).

For instance, consider a variant of the Russell paraphrase from the Introduction [28]:
P = {shaves(joe,X )← not shaves(X ,X ); man(paul)}.

While this program has no answer set, SEQ-semantics gives us the model
({shave(joe, paul),man(paul)}, {shave(joe, paul),man(paul), shave(joe, joe)});

here the incoherent rule shaves(joe, joe)← not shaves(joe, joe) obtained by ground-
ing is isolated from rest of the program, avoiding the absence of solutions (a similar intu-
ition is underlying the definition of CWA inhibition rule in [21], used for contradiction
removal in a logic program), and allows us to derive, for instance, that shave(joe, paul)
and man(paul) are true; furthermore, we can infer that shave(joe, joe) can not be false.
Such a capability seems very attractive in query answering.

Now reconsider the program in Example 1, and let us ask for query go(John).
Again answer set semantics yields only a trivial answer to the query. However the
local incoherence is due to the second and the third rule, and the CWA implies that



go(Mark) is false; hence there is no reason to avoid the answer. Moreover split-SEQ
semantics yields the unique model ({go(John)}, {go(John), go(Bill)}) and removes
the SEQ-model ambiguity, as it makes stronger gap minimization through the bottom-up
evaluation. In this way, the relaxation of CWA is minimized.

Notice that also the well-founded semantics (WFS) [31] avoids cyclic incoherence,
but resorts to undefinedness that is cautiously propagated, such that reasoning by cases
may be abandoned. For example, consider the program

P = {a← not b; b← not a; c← a; c← b; d← not d}.
and ask the query c. The program is incoherent due to the last rule; under WFS, c is
undefined (as a and b are, due to the first two rules), while split-SEQ semantics yields
the models (ac, acd) and (bc, bcd), from which c is a cautious consequence as expected.

7 Discussion and Conclusion

Related work. CR-Prolog [3] adds, roughly speaking, a subset-minimal set R of rules
from a pool R′ to program P such that P ∪R is coherent, and accepts all answer sets of
P ∪R. This is a (syntactic) inconsistency management strategy (possibly missing cases),
not a logic-level semantic treatment of incoherence. Even for R′ consisting of all atoms,
it may disagree with SEQ-semantics, as adding facts is stronger than blocking negated
atoms (admitting more answer sets).

To our knowledge, modularity aspects of paracoherent semantics have not been
studied extensively. A noticeable exception is [9], which studied the applicability of split-
ting sets for several partial models semantics, among them the L-stable semantics. The
latter is in spirit close to semi-equilibrium semantics but uses a different 3-valued logic.
Unsurprisingly, it does not satisfy the splitting property. Huang et al. [13] showed that
hybrid knowledge bases, which generalize logic programs, have modular paraconsistent
semantics for stratified knowledge bases; however, the semantics aims at dealing with
classical contradictions and not with incoherence in terms of instability through cyclic
negation. Pereira and Pinto [24], using the layering notion, that is similar to SCC-split
sequences, introduce Layered Models (LM) semantics which is an alternative semantics
that extends the stable models semantics for normal logic programs. But LM are just
a superset of stable models, and do not coincide with them on coherent programs, so
the CWA is too relaxed. Finally, Faber et al. [10] introduced a notion of modularity for
answer set semantics, based on syntactic relevance, which has paracoherent features.
However, this notion was geared towards query answering rather than model building,
and did not incorporate gap minimization at a semantic level.

Further issues. By the results of Section 5, tractable merging policies that ensure
classical coherence (D3) will sometimes merge more components than necessary. To
deal with the issues (1) and (2) in Section 4.2, a parametric approach that gradually
merges SCCs seems attractive. Let Dk(C) denote the set of all descendants of C in
SG(P ) within distance k ≥ 0; then we may proceed as follows.

Create a graph Gk with a node vr for each constraint r in P , which is labeled with
the set of SCCs λ(vr) = clp(

⋃
{Dk(Ci) | Ci ∈ SCC (P ), Ci ∩ B(r) 6= ∅}); here

clp(D) is a ‘closure operation that for a set D of SCCs yields D plus all SCCs that are



in SG(P ) on some path between two SCCs from D. Merge then nodes vr and vr′ (and
their labels, using clp) such that λ(vr) ∩ λ(v′r) 6= ∅ as long as possible. After that, add
an edge from v to v′, if v 6= v′ and SG(P ) has some edge (Ci, Cj) where Ci ∈ λ(v)
and Cj ∈ λ(v′). The resulting graph Gk is acyclic and distinct nodes have disjoint labels.
Similar as for JG(P ), any topological ordering≤ ofGk induces a splitting sequence S≤
(via the node labels); thanks to an analog of Theorem 6, one can define the Mk-models
of P as Mk(P ) = SEQS≤(P ) for an arbitrary ≤.

Clearly, Mk(P ) ⊆ Mk+1(P ) holds for every k ≥ 0, and Mk(P ) = SEQ(P ) for
large enough k; as MMJC (P ) ⊆M0(P ) holds, we have a hierarchy of models between
MMJC (P ) and SEQ(P ) which eventually establishes (D3); however, predicting the
least k such that Mk(P ) 6= ∅ is intractable.

Other relaxed notions of models (using different parameters for cross-constraints
and direct dependency) are conceivable; we leave this for future study.

Summary and outlook. We have studied a refinement of SEQ-semantics that respects
modular structure, and we gave a semantics via splitting sets that is amenable to bottom
up evaluation of programs.

The generic framework of Equilibrium Logic makes it easy to define SEQ-semantics
via gap minimization for many extensions of the programs considered here, such as
nested programs, programs with aggregates and external atoms, hybrid knowledge bases
etc; programs with classical negation require to use more truth values [17]. It remains
to consider modularity in these extensions and to define suitable refinements of SEQ-
models. Particularly interesting are modular logic programs [14, 6] where explicit (by
module encapsulation) and implicit modularity (by splitting sets) occur at the same time.

Besides language extensions, another issue is generalizing the model selection. To
this end, preference of gap minimization at higher over lower levels must be supported;
however, this intuitively requires more guessing and hinders bottom up evaluation.
Finally, efficient algorithms and an implementation are to be done, as well integration
into an answer set building framework.
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9. Eiter, T., Leone, N., Saccà, D.: On the partial semantics for disjunctive deductive databases.
Ann. Math. & Artif. Intell. 19(1/2), 59–96 (1997)

10. Faber, W., Greco, G., Leone, N.: Magic sets and their application to data integration. J.
Comput. Syst. Sci. 73(4), 584–609 (2007)

11. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9, 365–385 (1991)

12. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der Preussis-
chen Akademie der Wissenschaften 16(1), 42–56 (1930)

13. Huang, S., Li, Q., Hitzler, P.: Reasoning with inconsistencies in hybrid MKNF knowledge
bases. Logic Journal of the IGPL 21(2), 263–290 (2013)

14. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of disjunctive stable
models. J. Artif. Intell. Res. (JAIR) 35, 813–857 (2009)

15. Lifschitz, V., Turner, H.: Splitting a logic program. In: Proc. ICLP-94. pp. 23–38. MIT-Press
(1994)

16. Minker, J. (ed.): Foundations of Deductive Databases and Logic Programming. Morgan
Kaufman, Washington DC (1988)

17. Odintsov, S.P., Pearce, D.: Routley semantics for answer sets. In: Proc. LPNMR-05. LNCS
3662, pp. 343–355. Springer (2005)

18. Osorio, M., Ramı́rez, J.R.A., Carballido, J.L.: Logical weak completions of paraconsistent
logics. J. Log. Comput. 18(6), 913–940 (2008)

19. Pearce, D.: Equilibrium logic. Ann. Math. & Artif. Intell. 47(1-2), 3–41 (2006)
20. Pearce, D., Valverde, A.: Quantified equilibrium logic and foundations for answer set pro-

grams. In: Proc. ICLP-08. LNCS 5366, pp. 546–560. Springer (2008)
21. Pereira, L.M., Alferes, J.J., Aparı́cio, J.N.: Contradiction removal semantics with explicit

negation. In: Logic at Work. LNCS 808, pp. 91–105. Springer (1992)
22. Pereira, L.M., Pinto, A.M.: Revised stable models - a semantics for logic programs. In: Proc.

EPIA-05. LNCS 3808, pp. 29–42. Springer (2005)
23. Pereira, L.M., Pinto, A.M.: Approved models for normal logic programs. In: Proc. LPAR-07.

LNCS 4790, pp. 454–468. Springer (2007)
24. Pereira, L.M., Pinto, A.M.: Layered models top-down querying of normal logic programs. In:

Proc. PADL-09. LNCS 5418, pp. 254–268. Springer (2009)
25. Przymusinski, T.: Stable semantics for disjunctive programs. New Generation Computing 9,

401–424 (1991)
26. Przymusinski, T.C.: On the declarative semantics of deductive databases and logic programs.

In: Minker [16], pp. 193–216
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