
Reactive Maintenance Policies over Equalized States in
Dynamic Environments?

Zeynep G. Saribatur1, Chitta Baral2, and Thomas Eiter1

1 Technische Universität Wien, Austria
{zeynep,eiter}@kr.tuwien.ac.at

2 Arizona State University, USA
chitta@asu.edu

Abstract. We address the problem of representing and verifying the behavior of
an agent following a policy in dynamic environments. Our focus is on policies
that yield sequences of actions, according to the present knowledge in the state,
with the aim of reaching some main goal. We distinguish certain cases where the
dynamic nature of the environment may require the agent to stop and revise its next
actions. We employ the notion of maintenance to check whether a given policy can
maintain the conditions of the main goal, given a respite from environment actions.
Furthermore, we apply state clustering to mitigate the large state spaces caused
by having irrelevant information in the states, and under some conditions this
clustering might change the worst-case complexity. By preserving the behavior of
the policy, it helps in checking for maintenance with a guarantee that the result
also holds in the original system.

1 Introduction

Dynamic environments may change the state of the world and interfere with the behavior
of a reactive agent that follows a given policy. During the execution of a plan given by
the policy, a state change may require the agent to stop and examine the current situation,
to determine the next steps. In such cases, rather than “achieving” certain conditions of a
main goal, the focus is more on “maintaining” the conditions. Baral et al. [3] introduced
maintenance given a window of opportunity, a respite from the environment actions.
This notion enables us to distinguish the agent following a policy and doing its best to
maintain the goal, if the environment does not interfere during a time period.

For an example, consider an agent that is looking for a person in a supermarket with
a layout shown in Fig. 1(a). Although the agent knows the layout, it does not know where
the person might be, and is given a policy (Fig. 1(b)) to follow. If the agent observes
the person at any time step, then it stops and moves towards him. If the environment
is static, i.e., the person does not move, then the agent’s behavior following the policy
can be represented as in [13]. However, our focus is on the dynamic nature of the
environment; the person may also be moving, while the agent executes its actions. Thus,
the environment actions play a role in the agent’s behavior and need to be distinguished.

? This work has been supported by Austrian Science Fund (FWF) project W1255-N23, and
Zeynep G. Saribatur’s visit to ASU was supported by the Austrian Marshall Plan Foundation.

Fig. 1: Supermarket example

?
?

?
? ? ? ?

?
?
? ?

?
?

? ? ? ?
?
?
?

A

B

1 2 3 4 5
(a) agent’s observation in a state

If at row A: walk towards right to the next aisle.
If reached the end of row A: walk towards row B.
If at row B: walk towards left to the next aisle.
If reached the end of row B: walk towards row A.
If observed the person: move towards the person.

(b) a policy

Different from [3], we are interested in policies that yield sequences of actions, which
requires awareness of environment actions that may concurrently be made. Furthermore,
while [3] considers explicit states, our focus is on implicit state representations, which
allows for the use of logical formalisms to represent transitions. Moreover, the policies
that we consider are defined using the representation power of logic programs, action
theories or QBFs. Online planning and decision making are governed by these policies.

One concern of representing an agent’s behavior for a given policy is the issue
of keeping irrelevant information in the state which the policy does not use; having
to represent such information adds to the state explosion problem. State clustering
considered by [13] is a form of abstraction that omits such information, while preserving
the behavior of the policy in static environments. We employ this notion by extending it
to distinguish environment actions, which helps in defining the maintenance of a policy.
Although such a clustering might not change the worst-case complexity in general, it
makes a difference in practice, as one deals with information only related to the behavior.
However, in certain situations the clustering may significantly decrease the complexity.

Our contributions are briefly summarized as follows:
(1) We extend the notion of maintainability to consider concurrent actions and focus
on policies that yield sequences of actions (Sect. 3). We consider the possible outcomes
of executing the latter in a dynamic environment. In our representation, we distinguish
cases such as (a) the agent executes the actions with no interference, (b) the environment
acts in a way that prevents the agent from executing the remainder of its actions, and
(c) the agent realizes a way to reach the main goal, and stops executing its remaining
actions. Case (c) can also occur in a static environment, but was not considered in [13].
(2) We introduce a state clustering that can distinguish environment movements and
define a system that represents the policy’s behavior in the dynamic environment (Sect. 4).
We show that such a system preserves the relevant information, and helps in checking the
maintenance with a guarantee that the result also holds in the original system (Sect. 5).
(3) We discuss complexity issues regarding the representation, such as checking for
maintainability of a system for a given policy, and the effect of the clustering (Sect. 6).
We also discuss the synthesis problem, i.e., constructing some maintenance policy.

2 Preliminaries

We define a system that represents dynamic environments as follows.

Definition 2.1 (System). A (dynamic) system is a quadruple A=〈S,S0,A, Φc〉, where
- S is the finite set of states;

- S0 ⊆ S is the set of initial states;
- A = Aa ∪ Ae is the finite set of agent (Aa) and environment (Ae) actions;
- Φc : S ×Aa ×Ae → 2S is a non-deterministic transition function.

The idle action anop (resp. enop) is included inAa (resp.Ae) andΦc considers concurrent
actions, where for all s ∈ S, Φc(s, anop, enop) = {s}. A sequence a = a1, a2, . . . , an
of agent actions is executable if

∃s0, . . . , sn : ∀i < n, si+1 ∈Φc(si, ai+1, enop) ∧ ai+1 6= anop.
We denote such (potential) plans by Σa, and by Σa(s) those that are executable from s.
We use the notation Σ′a = Σa ∪ {anop} to also consider the idle agent action.

We consider policies that have a main goal µ in mind, and guide the agent with
action sequences that are computed according to the knowledge base KB, which is the
formal representation of the world’s model with a transition system view (as in [13]).

Definition 2.2 (Policy). Given a system A = 〈S,S0,A, Φc〉 and a set Σa of plans with
actions ofAa⊆A, a policy is a functionPµ,KB : S→2Σ

′
a s.t.Pµ,KB(s)⊆Σa(s)∪{anop}.

For any state s, {anop} ⊆ Pµ,KB(s) should hold, for the cases of a moving environment
while the agent is idle. We say that Pµ,KB is undefined for a state s if Pµ,KB(s) =
{anop}. For readability, we omit subscripts of P , as they are considered to be fixed.

Notice that a plan given by the policy might become inexecutable if the environment
acts. In order to consider environments that may interfere with the agent’s plan execution,
we will express possible outcomes of the desire towards executing the policy plans.

3 Behavior of a policy in dynamic environments

We describe a system that represents possible outcomes of executing a policy plan in a
dynamic environment, and define the maintenance by the policy.
Transitions as action sequences To consider execution of action sequences, we first
extend the system A = 〈S,S0,A, Φc〉 to AΣ = 〈S,S0, Σ, ΦΣ〉, where Σ = Σ′a ∪Σe
with Σe = A∗e as the set of sequences of environment actions. The transition function
ΦΣ : S×Σ′a×Σe → 2S yields the states resulting from executing concurrent action
sequences: For a = 〈a1, . . . , an〉 and e = 〈e1, . . . , en〉,
ΦΣ(s, a, e)={s′ | ∃s0, . . . , sn : ∀i < n, si+1 ∈Φc(si, ai+1, ei) ∧ s0 = s ∧ sn = s′};

it is undefined if |a| 6= |e|. We use ΦΣ(s, P (s), e) as a shorthand for
⋃
a∈P (s) ΦΣ(s, a, e).

The evolution of the world described by the system is characterized by trajectories
and the closure of a system is defined using these trajectories as follows.

Definition 3.1 (Trajectory and Closure). In a system AΣ=〈S,S0, Σ, ΦΣ〉, an alter-
nating sequence of states and action sequences s0, σ1, s1, . . . , σn, sn is a trajectory if
si ∈ ΦΣ(si−1, ai, ei), i ≥ 0, for σi = (ai, ei) ∈ Σ. The closure w.r.t. a set S⊆S is
ClΣ(S,AΣ)=

⋃
s∈S{sn | ∃ trajectory s0, σ1, s1, . . . , σn, sn in AΣ , n ≥ 0 : s0 = s}.

Following the policy in a dynamic environment. We consider three outcomes of
executing a policy plan in the dynamic environment:
(1) The environment’s actions may not interfere with the execution of the plan, and the
agent can execute the whole plan and reach the state that the policy was aiming for.

(2) The environment may act in a way that a state is reached, from which the remainder
of the plan becomes non executable (even if the environment does no longer move).
(3) The agent may reach a state that has a possibility to reach the main goal, so that,
instead of executing the remaining plan, a new plan can be determined towards the goal.

Formally, a transition function ΨP,Σe
: S ×Σ′a → 2S yields the states by executing

some plan returned by P :

ΨP,Σe
(s, a) = {s′ | a ∈ P (s),∃e ∈ Σe : s′ ∈ ΦΣ(s, a, e)} ∪ (1)⋃

a=a′a′′∈P (s)

{s′ | ∃e ∈ Σe, s′ ∈ ΦΣ(s, a′, e) ∧ ΦΣ(s′, a′′, enop) |= ⊥} ∪ (2)

⋃
a=a′a′′∈P (s)

{s′ | ∃e∈Σe, s′ ∈ΦΣ(s, a′, e) ∧ ∃s′′ ∈ΦΣ(s′, P (s′), enop) : s′′ |=µ} (3)

where for a set S of states, S|=α⇔∀s∈S, s|=α and enop ∈{enop}∗. In (2) and (3), we
focus on prefixes a′ of a to compute the (middle) states reached while executing a.

The states reachable from s if all of the plan a can be executed are computed
in (1). The states in (2) are those reached due to some environment actions e during
the execution of a, where the remaining plan a′′ is no longer executable, even if the
environment is idle after this point. From the middle states in (3), the main goal µ can be
reached with a new policy plan (if the environment remains idle).

We represent the case when the environment remains idle with ΨP,enop
, where

ΨP,enop
(s, a) = {s′ | a ∈ P (s), s′ ∈ ΦΣ(s, a, enop)} ∪⋃

a=a′a′′∈P (s)

{s′ ∈ ΦΣ(s, a′, enop) | ∃s′′ ∈ΦΣ(s′, P (s′), enop) : s′′ |=µ}.

Notice that ΨP,enop
(s, a) ⊆ ΨP,Σe

(s, a).
From a state s, a state s′ reached after trying to execute a plan a, i.e., s′ ∈ΨP,Σe

(s, a),
is referred as a checkpoint state from s, where the agent determines its next policy actions.
The set of all such states from a set S of states is similar to Defn. 3.1 when the closure
ClP,Σe is defined over the trajectories of ΨP,Σe .

Maintenance. The idea is to keep track of the checkpoint states when the policy is
followed, and define the maintenance over them. First, the notion of unfolding a policy is
defined as a sequence of states the system may go through if it follows the policy, while
the environment remains idle, for at most some k steps.

Definition 3.2 (Unfold). For a systemAΣ=〈S,S0, Σ, ΦΣ〉 and s∈S , Unfoldk(s,AΣ ,
P) is the set of all sequences s = s0, . . . , sl where l ≤ k and s0 = s s.t. P (sj) is defined
for all j < l, sj+1 ∈ ΨP,enop(sj , P (sj)\{anop}), and if l < k, then P (sj) is undefined.

Based on this, we define the k-maintainability.

Definition 3.3 (k-Maintainability). For a system AΣ = 〈S,S0, Σ, ΦΣ〉, the policy P
k-maintains S ⊆ S w.r.t. a goal condition µ, if for each state s ∈ ClP,Σe

(S,AΣ) and
sequence s0, s1 . . . , sl in Unfoldk(s,AΣ , P) some j ≤ l exists s.t. sj |= µ.

We say that the original system AΣ is k-maintained by policy P w.r.t. µ, if P
k-maintains the initial states S0 w.r.t. µ.

r,dN d,dD u,dU

r,dN u,dD

r,dU
r,dN

r,dD

r,dU

d,dN

r,dD

u,dN

u,dN

u,dN

(r, dN), (r, dU)

s02

s01

(r, dN), (r, dN)

Fig. 2: Closure w.r.t. the initial states in the sliding door example

We illustrate over a simple example for better understanding of the concepts. We
consider a basic scenario, since even a simplified (yet still interesting) supermarket
example has quite a number of states and is difficult to visualize within the space limits.

Example 3.1. Consider a sliding door scenario, where an agent, initially located at (0,0),
can move right (r), down (d) or up (u), and a sliding door, located between columns 1-2,
can move up (dU), down (dD) or remain still (dN). The agent can look horizontally and
detect if the door is located in its row. The main goal is to reach (0,2). Consider a policy
P that tells to move right whenever possible and if not possible then to move up/down
(depending on which one is executable). In case (0,2) is observable, the policy returns
the plan to reach that cell. Once the agent reaches (0,2), no more action is taken.

Figure 2 shows possible trajectories from the initial states s01 , s02 , including those
where the agent does not move (dashed arrows). All shown states constitute the closure
w.r.t. the initial states according to the policy and the possible environment actions. The
trajectories in which the environment remains still gives the unfolding trajectories from
the initial states (thick arrows). One can see that the system is 4-maintained by the policy.

The door scenario is simplistic, and as one adds new properties of the agent, the
environment, or a more involved policy, the state space immediately gets larger. Further-
more, as in the supermarket example, the state may contain information irrelevant to the
agent’s behavior, which leads to a large number of states with unnecessary information.

Note that if we restrict the concurrent action transition function Φc to only allow for
execution of (a, enop) and (anop, e), this can model an alternating execution of agent
and environment actions described in [3]. The transition (anop, enop) then corresponds
to having no possible actions for the agent or the environment at a state. Thus, we have
the following proposition when only policies with 1-step plans are considered.

Proposition 3.1 (Connection to Baral et al. [3]). A system AΣ = 〈S,S0, Σ, ΦΣ〉,
where ΦΣ is built over a restricted Φc, is k-maintained by a 1-step policy P iff the
corresponding system defined as in [3] is k-maintainable, due to existence of P .

4 Omitting unnecessary information

State clustering by getting rid of irrelevant information w.r.t. the policy or the observabil-
ity of the environment was considered in [13] with a focus on static environments, which
guarantees any information gain in a state to hold in the successor state. This allows the
state clusters to become more explicit as the agent traverses the environment.

However, in case of dynamic environments, such a clustering idea is unable to
distinguish the environment’s movement in a state’s irrelevant/unobserved part. Fig. 3(a)
shows some part of the system when the notion in [13] is applied to the supermarket
example; the states where the agent observes the person are omitted for simplicity. The
agent only knows that the environment did some actions e. Therefore, whenever the
person is not observed, the unobserved part is considered to be unknown, because the
dynamic nature can not guarantee that some gained information holds in the next state.

To define maintenance, we must be able to distinguish the transitions where the
environment does not move (especially, in the unobserved parts) and represent how this
affects the knowledge about the state clusters. To this end, we use equalized d-states.

Definition 4.1. An equalized dynamic (d-) state is a pair 〈ŝ, θ̂〉, where
(1) the equalized state, ŝ, contains the indistinguishable states w.r.t the policy, and
(2) the inferred state, θ̂, contains the states which are inferred to possibly hold by using
the knowledge of the environment’s movements.

The state ŝ contains the information relevant to the policy or the observability of the
environment, while the state θ̂ makes further inferences to represent the effect of the
environment’s movements; in particular, whether the environment moved or not. Thus,
there can be multiple pairs with identical equalized states, but different inferred states.
Building the clusters We consider two classification functions described by surjections:
- h : S→Ω, where Ω is the set of possible equalized states, and
- hr : S→2Θ, where Θ is the set of possible inferred states.
Necessarily, h and hr should satisfy that for every 〈ŝ, θ̂〉, we have h−1r (θ̂) ⊆ h−1(ŝ). A
state may be mapped to more than one inferred state cluster, as these clusters depend on
the previous states and the movement of the environment.

The classification function h is based on the notion of indistinguishability, as in [13].
The state clustering is done only to omit the irrelevant information w.r.t the policy, so that
P returns the same output for the cluster. Formally, the clustering satisfies the condition

∀s ∈ S, P (s) = P (h(s)) (4)
which makes sure that for states that are mapped to the same cluster, the policy returns
the same plans, i.e., ∀d, e ∈ S, h(d) = h(e)⇒ P (d) = P (e).

As said, inferred states depend on the previous states and the taken environment
actions. In detail, the initial set of inferred states is Θ0 = {h(s) | s ∈ S0}, and the
clustering satisfies the constraint: for all d, e ∈ S such that hr(d) = hr(e) it holds that
h(d) = h(e) and ∃d′, e′: d ∈ ΨP,Σe\enop

(d′, P (d′)), e ∈ ΨP,Σe\enop
(e′, P (e′)) with

hr(d
′) = hr(e

′). In other words, only the states that can be reached from a previous
state, due to some sequence of environment actions, are mapped into the inferred states.
This is similarly done for the case of enop, to distinguish the states reached only by enop.

How to do state clustering h for action languages was shown in [13]. Inferred state
clustering hr is possible along the same lines, but not elaborated here due to space limits.
Abstract environment actions Clustering the states by omitting the information about
the irrelevant part of the state leads to abstracting the irrelevant environment actions.
Since the main aim is to represent whether or not the environment concurrently moved,
we distinguish between the actions enop and ê which is an abstraction of all other
environment actions; we let Âe={enop, ê} and consider the mapping φh :Ae→Âe.

Fig. 3: State clusters that distinguish environment actions

?
?

?
?

?? ?
?

?? ?
? ? ?

? ? ? ?
?
? ? ?

?
?

.....
?? ?

? ?
?

a, e a, e a, e a, e

a, e

(a) Equalization is unable to distinguish the unobserved environment movements

?
?

?? ?
?

?
?

??

? ?
? ? ? ?

?

s1 s21

? ?
? ? ? ?

?
? ?

?

s22 s23

a, ê

θ1 θ21 θ22 θ23

a, enop

(b) Pair states with inferred states that distinguish if the environment moved or not

Such an abstraction can be seen as the coarsest one possible, as it only distinguishes
whether the environment moved or not. It is sufficient for defining maintenance, since
the focus is on cases in which the environment does not move.

Example 4.1. Fig. 3(b) shows an example of equalized d-states. As expected, the inferred
states have less possible locations for the person than the equalized states, since the
possible locations are inferred more precisely depending on whether he/she moved or not.
Furthermore, whether or not the person concurrently moves results in different inferred
states. From state 〈s1, θ1〉, enop causes the cells observed at θ1 to remain the same in θ21 ,
although to the agent’s view, s21 , they become unknown. If the person executes some
actions ê, his possible locations in θ22 are inferred from θ1. Notice that θ22 is not the
same as s22 , as it shows the locations the person can move to in the same time steps as
the agent. A transition may also result in the agent observing the person; then s23=θ23
holds, since the person is obviously not in the unobserved parts.

5 Equalized dynamic systems

A system that represents the policy execution in a dynamic environment is defined over
the original system by taking the classification functions and the policy into account.

Definition 5.1. An equalized dynamic system Ah,hr

P , w.r.t. the classification functions
h, hr and the policy P , is defined as Ah,hr

P = 〈Ŝ, Ŝ0, Σ′a, Σ̂e, Ψ̂P,Σe
〉, where

- Ŝ is the finite set of equalized d-states;
- Ŝ0 ⊆ Ŝ is the set of initial equalized d-states, if h−1(θ̂) ∩ S0 6= ∅;
- Σ′a is the union of the set Σa, possible plans with agent actions Aa, and {anop};
- Σ̂e=Â∗e is the set of sequences of abstract environment actions (for Âe={enop, ê});
- Ψ̂P,Σ̂e

: Ŝ×Σ′a→2Ŝ is the policy transition function in the dynamic environment, i.e.,

Ψ̂P,Σ̂e
(〈ŝ, θ̂〉, a) = {〈h(s′), hr(s

′)〉 | a ∈ P (ŝ),∃s ∈ h−1r (θ̂), s′ ∈ ΨP,Σe
(s, a)}.

The transitions Ψ̂P,enop
show an idle environment. For simplicity, 〈ŝ, θ̂〉 is denoted as ŝθ̂.

The equalized dynamic system is defined over the state clusters of the checkpoint
states in the original system. Reduced number of states and transitions help to focus on
the details important for the policy, without losing any property of the behavior.

The closure Ĉl(Ŝ, Ah,hr

P) is defined akin to Defn. 3.1, using the trajectories of Ψ̂P,Σ̂e
.

Lemma 5.1. For a given set S of states, any state s in ClP,Σe
(S ,AΣ), has a corre-

sponding state ŝθ̂ in Ĉl(Ŝ ,Ah,hr

P), where ŝ = h(s) and θ̂ = hr(s).

The result holds since for every pair of successor states in AΣ , there is a corresponding
pair of equalized d-states in Ah,hr

P . So any sequence of states considered in the closure
of AΣ w.r.t. a set S, has a corresponding sequence in the closure of Ah,hr

P w.r.t. Ŝ.

Maintenance over the equalized dynamic system. We define the unfolding of the
policy over the equalized d-states, similar to Defn 3.2, by considering Ψ̂P,enop

. The
clustering condition (4) ensures that no transitions will be introduced different from how
the policy behaves in the original system. Furthermore, it ensures the following result.

Lemma 5.2. For some k, for each sequence s0, . . . , sl in Unfoldk(s,AΣ , P), some se-
quence ŝθ̂0, . . . , ŝθ̂l in Ûnfoldk(ŝθ̂, Ah,hr

P) exists with ŝi=h(si) and θ̂i=hr(si), 0≤ i≤ l.
We define the k-maintainability of the equalized dynamic system as follows, where

ŝθ̂ |= µ⇔ ∀s ∈ h−1(ŝ) : s |= µ.

Definition 5.2 (Equalized k-Maintainability). Ah,hr

P = 〈Ŝ, Ŝ0, Σ′a, Σ̂e, Ψ̂P,Σe〉 is k-
maintainable, if P k-maintains Ŝ0 w.r.t. µ: For each state ŝθ̂ in Ĉl(Ŝ0, A

h,hr

P) and
sequence ŝθ̂0, ŝθ̂1, . . . , ŝθ̂l in Ûnfoldk(ŝθ̂, Ah,hr

P) some j ≤ l exists s.t. ŝθ̂l |= µ.

Example 5.1. In the supermarket example for environment size 5 × 9 (Fig. 1(a)), the
given policy 9-maintains the set of initial states. At any state in the closure, the person
may be located at the farthest possible point, and if he does not move for at least 9 steps,
then the agent will eventually observe the person and catch him.

The following theorem shows that the clustering does not introduce false positives.

Theorem 5.1 (Soundness). If Ah,hr

P is k-maintainable, then AΣ is k-maintained by P .

Proof. Assume that AΣ is not k-maintained by P . Let s∈ClP,Σe(S0, AΣ) be a state
and τ=s0, s1 . . . , sl in Unfoldk(s,AΣ , P) such that sl 2µ. By Lemma 5.1-5.2, we know
that ∃ŝθ̂∈ Ĉl(Ŝ0, A

h,hr

P) with ŝ = h(s) and ∃τ̂=ŝθ̂0, ŝθ̂1 . . . , ŝθ̂l in Ûnfoldk(ŝθ̂, Ah,hr

P)

with ŝi=h(si), 0≤ i≤ l. By assumption on sl, ŝθ̂l 2µ. Hence,Ah,hr

P is not k-maintainable.

In order to have completeness, we need further restrictions on the state clustering h,
to avoid introducing spurious trajectories. We consider the properness condition [13]

ŝθ̂′ ∈ Ψ̂P,Σ̂e
(ŝθ̂, a) ⇐⇒ ∀s′ ∈ h−1(ŝ′),∃s ∈ h−1(ŝ) : ΨP,Σe

(s, a) (5)

which ensures that if Ah,hr

P has a transition from ŝθ̂1 to ŝθ̂2, then any state mapped to
ŝθ̂2 has a transition from some state mapped to ŝθ̂1. This allows for the possibility of
backtracking any trajectory found in Ah,hr

P and map it back to AΣ (see details in [13]).

Theorem 5.2 (Completeness). If AΣ is k-maintained by P and h is proper, then Ah,hr

P

is k-maintainable.

The equalized dynamic system can represent static environments by only allowing
enop and can be related to the equalized static system [13]. Assuming that the actions
are reversible (as in the supermarket example), if the agent’s observations during a plan
execution contribute to the decision making in the next state, then we get the following.

Corollary 5.1. If the equalized dynamic systemAh,hr

P is k-maintainable, then the policy
P works in at most k steps in the equalized static system Ah,P .

The result follows, since the assumptions help in emulating (3) (for enop case) in the
static setting. If the agent reaches a state while also observing the main goal on the way,
then the policy will have the agent reach the main goal in the next state. However, the
reverse of the corollary may not hold, as the dynamic nature of the environment may
have the agent end up in a state that was not considered in the static environment.

6 Computational Complexity

In this section, we consider the computational complexity of k-maintainability.
Assumptions We assume that given states s, s′ ∈ S , which are given in a binary encoding,
and (a, e) ∈ Σ′a×Σe, deciding Φc(s, (a, e), s′) is in Σp

i , for some i ≥ 0; this reflects
theory-based specification by action theories, logic programs, or QBFs possibly with
projective auxiliary variables. Checking executability of any sequences ā, ē on A∗a,
resp. A∗e , at a state s is thus in Σp

j , where j = max(1, i) (and complete for Σp
j , under

mild assumptions). Consequently, deciding whether a sequence ā ∈ A∗a may occur in
P (s) at all (thanks to a suitable ē) has the same complexity; we (reasonably) assume
that P (s) selects among those ā only polynomially many and of polynomial length (in
the state size), called p-jump plans, and that recognizing plans ā in P (s) and deciding
P (s) 6= {anop} is feasible in polynomial time (this holds e.g. if P (s) is computable in
logspace). Assuming that the goal test s |= µ is also in polynomial time, we obtain:

Lemma 6.1. Deciding (i) given s, ā and s′ whether ΨP,Σe
(s, ā, s′) holds is in Σp

j+1

and (ii) given an action sequence s̄ whether s̄ ∈ Unfoldk(s,AΣ , P) is in Σp
j .

The increase to Σp
j+1 in (i) is due to part (2) of ΨP,Σe(s, ā). The lemma also holds for

goal tests in Πp
i . If the initial state check s ∈ S0 is in Πp

j , we obtain the following result.

Theorem 6.1 (k-Maintaining Check). Deciding whether a systemAΣ=〈S,S0, Σ, ΦΣ〉
is k-maintained, k≥ 0, by a given policy P w.r.t. a goal µ is PSpace-complete.

To see this, deciding s ∈ ClP,Σe
(S0, AΣ) is by Lemma 6.1.(i) in NPSpace. We can

thus check the existence of a counterexample to k-maintenance (i.e., a state s vio-
lating Defn 3.3) in NPSpace, where we guess the sequence s̄ = s0, s1, . . . , sl in
s̄ ∈ Unfoldk(s,AΣ , P) stepwise. As NPSpace = PSpace, this yields the upper bound.
On the other hand, the problem is PSpace-hard already in plain settings, with deter-
ministic actions and simple policies, due to the PSpace-completeness of succinct graph
reachability [1]. The complexity is lowered, if we assume that for s ∈ ClP,Σe

(S0, AΣ)?

an oracle in some class of the Polynomial Hierarchy is available and that k is polynomi-
ally bounded; in particular, for a Σp

i oracle, we obtain then membership in Πp
j .

In contrast, the complexity of synthesizing a k-maintaining policy P is much harder,
even if we require that P returns only p-jump plans.

Theorem 6.2 (k-Maintaining Synthesis). Deciding if a system AΣ = 〈S,S0, Σ, ΦΣ〉
is k-maintained, k≥ 0, by any (p-jump) policy P w.r.t. a goal µ is NExpTime-complete.

The membership part follows as we can guess in exponential time a (polynomial-jump)
policy P and check in polynomial space whether P is indeed k-maintaining. The
NExpTime-hardness is shown by encoding a polynomial-space branching Turing Ma-
chine (BTM) [8] into 1-maintainability of a systemAΣ ; a BTM is like an alternating TM,
but in a special state it moves according to a branching instruction that depends on the
whole configuration, not only on the current scanned symbol. The acceptance problem of
such BTMs is NExpTime-complete. Informally, the policy (resp. environment) mimics
the existential and branching (resp. universal moves).

Equalization. We assume that given s and ŝ (resp. θ̂), deciding s∈h−1(ŝ) (s∈h−1r (θ̂)) is
inΣp

` , for some `≥ 0, where |Θ| is polynomial in the number |S| of states. In this setting,
the transition function Ψ̂P,Σ̂e

(ŝθ̂, ā, ŝ′θ̂′) is decidable in Σp
j′ , where j′ = max(j, `) + 1;

thus, k-maintaining policy checking and policy synthesis have the same complexity as
in the unequalized case in general, i.e., in Theorems 6.1 and 6.2.

The worst-case complexity drops if the equalization does an exponential compression,
i.e., |Ω|=O(log |S|) and |Θ|=O(log |S|). Such a compression can, for instance, result
by projecting away auxiliary fluents from the models of a logic program or SAT formula
that serve to encode state constraints, if the number of admissible states is polynomially
bounded. Each such state induces two clusters with all auxiliary fluent interpretations
that admit resp. do not admit this state; all other interpretations form a further cluster.

Under exponential compression, Ah,hr

P has a polynomial-size state set Ŝ , and along
the discussion above the complexity of policy checking drops to Πp

j′ ; thus policy synthe-
sis is in Σp

j′+1. However, the problems share a smaller upper bound that is tight.

Theorem 6.3 (Compression). For Ah,hr

P = 〈Ŝ, Ŝ0, Σ′a, Σ̂e, Ψ̂P,Σe〉 with exponential
compression, both deciding if (i) Ah,hr

P is k-maintainable w.r.t. µ and (ii) some (p-jump)
policy P ′ exists s.t. Ah,hr

P ′ is k-maintainable w.r.t. µ is Θpj′ -complete where k ≥ 0.

Here Θpj′ =∆p
j′ [log n] =P

Σp

j′−1

‖[c] are the problems decidable in polynomial time with
logarithmically many Σp

j′−1 oracle calls, or equivalently, a fixed number c of rounds of
parallelΣp

j′−1 oracle calls [7, 14]. Not that for i= `= 0, we obtainΘp2 , as j= max(1, i).
Informally, by one such round we can construct the 1-step transition graph with

nodes Ŝ and edges ŝθ̂ → ŝ′θ̂′ with label (a, e) if some s ∈ h−1r (θ̂) and s′ ∈ Φc(s, (a, e))
exist with h(s′) = ŝ′ and hr(s′) = θ̂. The k-maintainability of policy P in (i) can then
be checked, using a labeling technique on the graph and reachability tests, in polynomial
time modulo goal tests ŝθ̂ |= µ; the latter can be computed separately before with parallel
Σp
j′−1 oracle queries, and likewise the plans in P (s).

The existence of some P ′ in (ii) is decided similarly, where the graph and the goal
test results are passed to an NP oracle that guesses and checks P ′; this establishes Θpj′-

membership. Matching hardness is shown by a reduction from a suitable problem on
QBFs: given QBF∃,j′−1 instances Φ1, . . . , Φm, is the number of satisfiable ones even?

Remark No bound on k is imposed in this result; this is because polynomially many steps
in the size of Ŝ will be sufficient to construct a counterexample for k-maintainability.

7 Discussion and Conclusion

In this paper, we have extended and combined the notions of equalization [13] and
maintenance [3] to represent and verify the behavior of an agent following a policy in a
dynamic environment. Equalization was extended to also consider inferred states accord-
ing to projected movements of the environment, which helps in establishing maintenance.
A more sophisticated behavior of the environment than executing any sequence of actions
can easily be embedded in the current representation of the system. Maintenance in [3]
was generalized to have concurrent actions and policies with sequences of actions that
are executed under richer behavior patterns.

The policies described in [13] determine targets with some target function and call a
planner for a conformant plan that guarantees reaching the target. In this paper, plans
need not be conformant, as no targets are considered and all states reached by trying to
execute the plan occur in the closure, and thus matter for defining the maintenance.

Our emphasis is mainly on the verification aspect, i.e., verifying if a given policy
achieves desired properties. Such a policy testing and, in case it fails, refining with
typically small changes would be preferred over a radical change. It also fits in the
policy engineering life cycle. Eventually, we aim to bring in parameterization and verify
policies in all possible sizes (up to some limit) of the environment, e.g., varying number
of aisles in the supermarket. Our representation can easily be adjusted to such extensions.

Related Work Constructing agent control functions with various tasks such as “achieve-
ment” and “maintenance” is analyzed by [15], and [10] present a method to synthesize
reactive plans based on linear temporal logic. In our work, we explicitly distinguish
agent and environment actions to define maintenance, and the window of opportunity
for the agent. We also focus on the verification aspect, and consider policies in the style
of [13]. For further discussion on related work concerning maintenance, we refer to [3].

Plan verification [4] is on checking executability and goal achievement of a given
plan. We focus on a more reactive case where, depending on the current situation, rather
short sequences of actions are provided by the policy, and the aim is to eventually reach
the goal while the agent traverses the environment with such guidance. Such an approach
comes in handy especially if there is partial observability and a dynamic environment.

Abstraction can be useful to reason over the agent’s behavior [2] or to do planning [9].
Over-approximation could achieve a significant reduction of the state space. However,
trajectories found in the abstract system may be spurious, which would require further
abstraction refinement. In this paper, we have focused on state clustering that is a faithful
form of abstraction and gets rid of irrelevant information. This allows to focus on how
the policy behaves in the system, and especially if the policy is not working properly, to
detect this without having to consider all possible irrelevant states. Dealing with proper
(non-faithful) abstractions remains as our future work.

The notion of irrelevant information and its effects were analyzed for planning in
[12], in which different heuristics were introduced to omit such information. In our case,
the irrelevancy is inferred from the given policy (e.g., target determination formulas in
[13]) and which information it is making use of in determining the plans.

Verification of agent behavior represented using situation calculus action theory
and of multi-agent systems has been studied e.g. in [6, 16] and [11], respectively. We
focus on a single agent that follows the guidance of a given policy, and also consider the
decision making of the policy or distinguish possible environment actions. Goal-driven
agents acting in dynamic environments has been modeled with considering activities (i.e.,
sequences of actions meant to achieve a goal) [5], while the issue of having irrelevant
information in the states was not the focus.

References

1. Balcázar, J.L.: The complexity of searching implicit graphs. AIJ 86(1), 171–188 (1996)
2. Banihashemi, B., De Giacomo, G., Lespérance, Y.: Abstraction in situation calculus action

theories. In: Proc. of AAAI. pp. 1048–1055 (2017)
3. Baral, C., Eiter, T., Bjäreland, M., Nakamura, M.: Maintenance goals of agents in a dynamic

environment: Formulation and policy construction. AIJ 172(12), 1429–1469 (2008)
4. Behnke, G., Höller, D., Biundo, S.: On the complexity of HTN plan verification and its

implications for plan recognition. In: Proc. of ICAPS. pp. 25–33 (2015)
5. Blount, J., Gelfond, M., Balduccini, M.: A theory of intentions for intelligent agents. In:

Calimeri, F., Ianni, G., Truszczynski, M. (eds.) Proc. of LPNMR. pp. 134–142 (2015)
6. De Giacomo, G., Lespérance, Y., Patrizi, F., Vassos, S.: LTL verification of online executions

with sensing in bounded situation calculus. In: Proc. of ECAI. pp. 369–374. IOS Press (2014)
7. Eiter, T., Gottlob, G.: The Complexity Class Θp

2 : Recent Results and Applications in AI and
Modal Logic. In: Proc. of FCT. pp. 1–18. No. 1279 in LNCS, Springer (1997)

8. Eiter, T., Lukasiewicz, T., Predoiu, L.: Generalized consistent query answering under existen-
tial rules. In: Baral, C., Delgrande, J., Wolter, F. (eds.) Proc. of KR. pp. 359–368 (2016)

9. Hoffmann, J., Sabharwal, A., Domshlak, C.: Friends or Foes? an AI planning perspective on
abstraction and search. In: ICAPS. pp. 294–303 (2006)

10. Kabanza, F., Barbeau, M., St-Denis, R.: Planning control rules for reactive agents. AIJ 95(1),
67–113 (1997)

11. Lomuscio, A., Michliszyn, J.: Verification of multi-agent systems via predicate abstraction
against ATLK specifications. In: Proc. of AAMAS. pp. 662–670 (2016)

12. Nebel, B., Dimopoulos, Y., Koehler, J.: Ignoring irrelevant facts and operators in plan genera-
tion. In: European Conference on Planning. pp. 338–350. Springer (1997)

13. Saribatur, Z.G., Eiter, T.: Reactive policies with planning for action languages. In: Michael,
L., Kakas, A. (eds.) Proc. of JELIA, LNCS, vol. 10021, pp. 463–480. Springer (2016)

14. Wagner, K.: Bounded Query Classes. SIAM Journal on Computing 19(5), 833–846 (1990)
15. Wooldridge, M., Dunne, P.E.: Optimistic and disjunctive agent design problems. In: Interna-

tional Workshop on Agent Theories, Architectures, and Languages. pp. 1–14 (2000)
16. Zarrieß, B., Claßen, J.: Decidable verification of Golog programs over non-local effect actions.

In: Proc. of AAAI. pp. 1109–1115 (2016)

