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Abstract. We present a general method to formalize action domains with numeric-
valued fluents whose values are incremented or decremented by executions of
actions, and show how it can be applied to the action description languageC+
and to the concurrent situation calculus. This method can handle nonserializable
concurrent actions, as well as ramifications on numeric-valued fluents, which are
described in terms of some new causal structures, called contribution rules.

1 Introduction

Numeric-valued fluents are used for describing measurable quantities, such as weight,
money, memory. In many cases, the values of such fluents are incremented/decremented
by the execution of actions, such as adding/removing some weight, depositing/with-
drawing some money, or allocating/deallocating memory. How to compute the value of
a numeric-valued fluent after a concurrent execution of several such actions, possibly
with indirect effects, is the question we study in this paper. We consider true concur-
rency: actions occur at the same time and may not be serializable (i.e., their effect may
not be equivalent to the effect of executing the same actionsconsecutively in any order).
For instance, consider two boats towing a barge upriver by applying forces via cables
tied to the barge, where the force applied by either boat is not enough to move the barge
against the current of the river; here the concurrent actionof two boats applying forces
can not be serialized. True concurrency makes the problem more challenging, because
actions that are individually executable may not be executable concurrently, e.g., due to
conflicting effects, and actions that are individually nonexecutable may be executable
concurrently, e.g., due to synergistic effects, like in theexample above.

This question is important for real-world applications that involve reasoning tasks,
like planning or prediction, related to resource allocation. For instance, allocation of
memory storage for use by computer programs is one such application. It is also im-
portant for applications that involve modeling the behavior of physical systems. For in-
stance, how water pressure changes at a piston when some water is pumped from above
and some force is applied from the bottom is important for modeling the behavior of a
hydraulic elevator.

⋆ We thank Selim T. Erdŏgan, Joohyung Lee, and Vladimir Lifschitz for helpful comments on
an earlier version of the paper. Esra Erdem was supported in part by the Austrian Science Fund
(FWF) under project P16536-N04.
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There are several planning systems designed to work in concurrent domains with
resources, like [1–3]. However, they consider a simpler concurrency: they either re-
quire the serializability of actions, or that no concurrentaction contain two actions, one
producing and the other consuming the same resource.

Lee and Lifschitz [4] show, in the action languageC+ [5], how to formalize action
domains involving additive fluents—numeric-valued fluents on which the effect of a
concurrent action is computed by adding the effects of its primitive actions. However,
since additive fluents range over finite sets, a concurrent action is executable only if its
effect on each additive fluent is in that fluent’s range, and itis not easy to handle indirect
effects of actions (ramifications) on additive fluents (e.g., an indirect effect of adding
too much water into a small container is an increase in the amount of water in a large
container, into which the excess water overflows from the small container). Similarly,
[6] defines the cumulative direct effects of concurrent actions on additive fluents, in an
extension of the action languageA [7]; however, it is not easy to handle ramifications
(not only the ones on numeric-valued fluents) in this formalism.

In [8], the authors show, in the concurrent situation calculus [9], how to formalize
action domains containing numeric-valued fluents, that do not require serializability of
actions, and that take into account ramifications caused by too much increase/decrease
of a numeric-valued fluent. However, with this formalization, it is not easy to capture
other forms of ramifications (e.g., whenever the amount of water increases in the large
container, the force towards the bottom of the container increases).

In this paper, we present a general method to formalize action domains with numeric-
valued fluents whose values are incremented/decremented byexecutions of actions.
This method is applicable to both the concurrent situation calculus and the action lan-
guageC+; and thus can be used with the reasoning systemsCCALC andGOLOG. The
idea is to compute the total effect of a concurrent action on anumeric-valued fluent, in
terms of the direct and indirect effects of its primitive actions on that fluent, while also
taking into account the range restrictions (e.g., the capacity of the small container).

To describe direct effects, like in [4, 8], we introduce new constructs and functions
in the original formalisms. To describe ramifications, likein [10–12], we introduce an
explicit notion of causality, specific for numeric-valued fluents. We characterize this
notion bycontribution rules, motivated by the equation-like causal structures of [13,
14, 8]. With contribution rules, both forms of ramificationsabove can be handled. The
idea of introducing these new constructs is to be able to represent effects of actions on
numeric-valued fluents concisely. Semantically these constructs are treated as “macros”
on top of the original formalisms; like the constructs introduced in [4] and in [8], they
are compiled into causal laws or formulas in the original formalisms.

The paper consists of three parts. The first two parts describe how action domains
with numeric-valued fluents can be formalized in the action languageC+ and in the con-
current situation calculus, using the new constructs; the semantics of these constructs is
defined by showing how to treat them as abbreviations in the original formalims. The
third part includes a comparison of these two formalizations, and a discussion of re-
lated work. We refer the reader to [5] and [9] for descriptions of the action languageC+
and the concurrent situation calculus. For the proofs, and the CCALC andGOLOG files
describing our running example, seehttp://www.kr.tuwien.ac.at/staff/
esra/papers/cr.pdf.
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2 Describing Additive Fluents in the Action Language C+

To formalize action domains with additive fluents, we extendthe action description
languageC+, similar to [4].

Additive fluentsAccording to this extension, some numeric-valued fluent constants can
be designated asadditive. Each additive fluent constant has a finite set of numbers as its
domain. As in [4], we understand numbers as symbols for elements of any set with an
associative and commutative operation+ that has a neutral element0; in particular, we
consider the additive group of integers (since this case canbe implemented forCCALC).
We suppose that the domain of each additive fluent constantf is specified as a range
[Lf , Uf ], so that, at any state,Lf ≤ f ≤ Uf . We suppose that heads of causal laws do
not contain any additive fluent constants.

Direct effects of actionsDirect effects of a boolean action constanta on an additive
fluentf are expressed byincrement lawsof [4], expressions of the form

a increments f by n if ψ (1)

wheren is an integer andψ is a fluent formula. We drop the ‘if ψ’ part if ψ ≡ ⊤; we
call f the headof the causal law. Intuitively, an increment law of form (1) expresses
that, ifψ holds, the direct contribution of the actiona to the value of the additive fluent
f is n. The idea is then, to compute the cumulative direct contribution of concurrently
executed primitive actions to the value of an additive fluentf , denotedDContr(f), by
adding the direct contributions of those primitive actionsto f . Translation of these laws
into causal laws is different from that of [4] (see the definition of DContr in the next
section).

Preconditions of actionsWe describe preconditions of actions with thenonexecutable
construct of [5]. For instance, the expression

nonexecutable Move(A,B) if ¬Clear(B)

describes that moving BlockA onto BlockB is not possible ifB is not clear.

Ramifications on additive fluentsRamifications on an additive fluentf are described
by contribution rules, expressions of the form:

f
⊕
←− E(h) (2)

whereh is one of the additive fluents thatf depends on,E is a numeric-valued function,
and⊕ is an element of{+,−,++,+−,−+,−−}; we callf theheadof the rule. These
rules allow us to describe both kinds of ramifications mentioned in the introduction. The
first kind of ramifications is expressed with⊕ = + or⊕ = −.

The meaning of a rule of form (2) with⊕ = + (respectively, with⊕ = −) can
be described as follows: whenever the sum of the direct and indirect contributions
of a concurrent action toh, when added toh, exceeds the upper boundUh (respec-
tively, goes beyond its lower boundLh), that action indirectly contributes tof by the
amountE(DContr(h) + IContr(h) − TContr(h)), whereIContr(h) denotes the indi-
rect contribution of a concurrent action toh, andTContr(h) denotes the total contri-
bution of a concurrent action toh respecting the range restriction[Lh, Uh]. Intuitively,
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DContr(h) + IContr(h) − TContr(h) describes the excess amount being contributed
to h.

The other form of ramifications is expressed with⊕ ∈ {++,+−,−+,−−}. A rule
of form (2) with⊕ = ++ (respectively, with⊕ = +−) expresses that whenever there is
an increase (respectively, decrease)n in the value ofh, i.e.,TContr(h) = n, the value
of f increases (respectively, decreases) byE(n); the rules with⊕ ∈ {−+,−−} are
similar, but they specify a decrease in the value off . This form of ramification, unlike
the one above, is not due to the range restrictions imposed onthe values of fluents,
although these restrictions must be satisfied at all times.

The indirect contribution of an action to an additive fluentf is the sum of the in-
creases/decreases described by the contribution rules with the headf .

Once the direct and indirect contributions of a concurrent action to an additive fluent
f are computed, we can compute the total contribution of that action tof as follows. If
f appears on the right hand side of a contribution rule of form (2) with⊕ = +,−, then
we addDContr(f) andIContr(f), considering the range restriction[Lf , Uf ]:

TContr(f) =







Uf−f if DContr(f)+IContr(f) > Uf−f
Lf−f if DContr(f)+IContr(f) < Lf−f
DContr(f)+IContr(f) otherwise.

Otherwise, we do not need to consider the range restriction,andTContr(f) is defined
asDContr(f)+IContr(f).

We consider action domains only where the causal influence among fluents is acyclic.
Here is an example.

Example 1.Consider three containers, small, medium, and large, for storing water. The
small container is suspended over the medium, and the mediumcontainer is suspended
over the large so that, when the small (respectively, medium) container is full of water,
the water poured into the small (respectively, medium) container overflows into the
medium (respectively, large) container. Suppose that there are three taps: one directly
above the small container, by which some water can be added tothe containers from
an external source, one on the small container, by which somewater can be released
into the medium container, and a third tap on the large container to release water to the
exterior. Suppose also that one unit increase (respectively, decrease) of water in the large
container increases (respectively, decreases) the amountof force applied downwards to
the bottom of the large container by two units. Also assume that some force is exerted
upwards at the bottom of the large container, e.g., by a piston, to lift it up.

A formalization of this action domain in the extendedC+ is presented in Figure 1.
Here the additive fluent constantsSmall, Medium, andLarge describe the amount of
water in each container;Forcedescribes the force exerted upwards at the bottom of the
large container. The boolean action constantAddS(n) describes the action of adding
n units of water to the small container by opening the tap over it; ReleaseS(n) and
ReleaseL(n) describe the action of releasingn units of water from the small, respec-
tively large, container by opening its tap; andExert(n) represents the action of exerting
n amount of force upwards.

Suppose that the range restrictions are specified as follows: LSmall = LMedium =
LLarge = 0, LForce = −8, USmall = 2, UMedium = 3, ULarge = 4, UForce = 8. If initially
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Notation:n ranges over{Min, .., Max} anda ranges over action constants.

Action constants: Domains:
AddS(n), ReleaseS(n), ReleaseL(n), Exert(n) Boolean

Additive fluent constants: Domains:
Small {LSmall, .., USmall}
Medium {LMedium, .., UMedium}
Large {LLarge, .., ULarge}
Force {LForce, .., UForce}

Causal laws: AddS(n) increments Small by n

ReleaseS(n) increments Small by − n

ReleaseS(n) increments Medium by n

ReleaseL(n) increments Large by − n

Exert(n) increments Force by n

nonexecutable AddS(n) if AddS(n′) (n 6= n′)
nonexecutable ReleaseS(n) if ReleaseS(n′) (n 6= n′)
nonexecutable ReleaseL(n) if ReleaseL(n′) (n 6= n′)
nonexecutable Exert(n) if Exert(n′) (n 6= n′)

exogenous a

Contribution rules:
Medium

+
←− Small Large

+
←− Medium

Force
+−

←− 2× Large Force
−+
←− 2× Large

Fig. 1. Containers domain described in the extended C+.

Small = Medium = Large = 1, Force = −2, then, after executing the concurrent
action c = {AddS(8),ReleaseS(1),ReleaseL(2),Exert(8)}, the values of fluents are
computed byCCALC as follows:Small= 2,Medium= 3,Large= 4,Force= 0.

Indeed, the direct effect ofc on Small is the sum of the direct contributions of
its primitive actions (described by the increment laws withthe headSmall, in Fig-
ure 1): DContr(Small) = 8 − 1 = 7. Since there is no contribution rule with the
headSmall, in Figure 1, there is no ramification on it:IContr(Small) = 0. Since
Small+ DContr(Small) + IContr(Small) = 7 exceeds the capacity of the small con-
tainer, the total contribution ofc to Smallis just the amount that fills the small container:
TContr(Small) = USmall−Small= 2− 1 = 1. Then the value ofSmallafter the execu-
tion of c is 2.

On the other hand, since the functionE in Medium
+
←− Smallis the identity func-

tion, the indirect contribution ofc to Mediumis the amount of the excess water over-
flown into the medium container:DContr(Small) + IContr(Small)− TContr(Small) =
7+0−1 = 6. Since the direct contribution ofc to Mediumis 1, the total contribution of
c to Mediumis just the amount that fills the medium container:TContr(Medium) = 2.
Then, after the execution ofc, Medium= 3.

Similarly, the direct and indirect contributions ofc to Large can be computed as
follows: DContr(Large) = −2, IContr(Large) = 5. SinceLargedoes not appear on the
right hand side of a contribution rule of form (2) with⊕ = +,−, the total contribution
of c to Large is simply the addition of these two:TContr(Large) = 3. Then the value
of Largeafter the execution ofc is 4.
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Since the total contribution ofc to Largeis 3, and since the functionE in Force
−+
←−

2 × Large is (λx.2 × x), the indirect contribution ofc to Force is −(2 × 3) = −6.
Since the direct contribution ofc to Force is +8, the total contribution ofc to Force is 2.
Therefore, the value ofForceafter the execution ofc is 0.

3 Obtaining an Action Description

To obtain an action description inC+ from a formalization of an action domain like in
Figure 1, we translate increment laws, and contribution rules into causal laws as follows.

1. To describe the direct effects of primitive actions, firstwe introduce new action
constants,Contr(a, f), of sort integer, wherea is an action constant andf is an
additive fluent constant; an atom of the formContr(a, f) = v expresses that the
actiona contributes tof by the amountv. We defineContr(a, f) to be 0 by default:

default Contr(a, f) = 0.

Then we replace every increment law (1) with

caused Contr(a, f) = n if a ∧ ψ.

2. To describe the cumulative effects of concurrent actions, we introduce new action
constants,DContr(f), IContr(f), TContr(f), of sort integer, wheref is an addi-
tive fluent constant. Intuitively, an atom of the formDContr(f) = v (respectively,
IContr(f) = v) expresses that the direct (respectively, indirect) contribution of a
concurrent action tof is v. An atom of the formTContr(f) = v expresses that the
total contribution of a concurrent action tof is v.

We defineDContr(f) as follows:

caused DContr(f) =
∑

a va if
∧

a Contr(a, f) = va

whereMin ≤
∑

a va ≤ Max.

Let us denote byC the set of all contribution rules. We defineIContr(f) to be 0 by
default:

default IContr(f) = 0.

Then we translate contribution rules inC into the causal laws:

caused IContr(f) = v if v =
∑

f
+
←−E(h)∈C

E(IContr(h)+DContr(h)−TContr(h))

−
∑

f
−

←−E(h)∈C
E(IContr(h)+DContr(h)−TContr(h))

+
∑

f
++
←−E(h)∈C,TContr(h)>0

E(TContr(h))

+
∑

f
+−

←−E(h)∈C,TContr(h)<0
E(TContr(h))

−
∑

f
−+
←−E(h)∈C,TContr(h)>0

E(TContr(h))

−
∑

f
−−

←−E(h)∈C,TContr(h)<0
E(TContr(h)) (Min ≤ v ≤ Max).

For instance, with the contribution rules in Figure 1, forMedium, we add



7

caused IContr(Medium) = v if
IContr(Small)+DContr(Small)−TContr(Small) = v (Min ≤ v ≤ Max).

If f appears on the right hand side of a contribution rule of form (2), then we define
TContr(f) by adding the direct and indirect contributions of actions,respecting the
range restriction[Lf , Uf ]:

caused TContr(f)=v+v′ if DContr(f)=v ∧ IContr(f)=v′

(Lf ≤ v+v
′+f ≤ Uf )

caused TContr(f)=Uf−f if DContr(f)=v ∧ IContr(f)=v′ (v+v′+f > Uf )
caused TContr(f)=Lf−f if DContr(f)=v ∧ IContr(f)=v′ (v+v′+f < Lf )

such that the values assigned toTContr(f) are in the range[Min,Max]. Otherwise,
we defineTContr(f) simply by adding the direct and indirect contributions of ac-
tions, i.e., by the first set of causal laws above.

3. To determine the value of an additive fluent constantf after an execution of a
concurrent action, we add

caused f = v + v′ if ⊤ after f = v ∧ TContr(f) = v′ (Min ≤ v+v′ ≤ Max).

With the translation above, the meaning of an action descriptionD in the extended
C+ can be represented by the transition diagram described by the action descriptionD′

obtained fromD as described above (see [7] for a definition of a transition diagram).
Then a queryQ (in a query language, likeR [7]), which describes a planning problem,
a prediction problem, etc., is entailed byD if Q is entailed byD′. This allowed us to
compute the values of additive fluents in Example 1 usingCCALC.

4 Describing Additive Fluents in the Concurrent Situation
Calculus

To formalize action domains with additive fluents, we extendthe concurrent situation
calculus, as in [8].
Additive fluentsAccording to this extension, some functional fluents that range over
numbers (not necessarily integers) can be designated asadditive. For each additive flu-
ent f , we understand a given range[Lf , Uf ] as follows: in every situations, Lf ≤
f(s) ≤ Uf .
Direct effects of actionsFor describing direct effects of actions on additive fluents, we
introduce a functioncontrf (x, a, s) for each additive fluentf . Intuitively,contrf (x, a, s)
is the amount that the actiona contributes tof when executed in situations. In the
following, free variables are implicitly universally quantified. We describe the direct
effects of primitive actions on additive fluents by axioms ofthe form:

κf (x, v, a, s) ⊃ contrf (x, a, s) = v (3)

whereκf (x, v, a, s) is a first-order formula whose only free variables arex, v, a, s,
doesn’t mention functioncontrg for any g, ands is its only term of sort situation. If
there is no axiom (3) describing the effect of an actiona on an additive fluentf , we
assume that the direct contribution ofa to f is zero. This assumption allows us to
derive, for each functioncontrf , a definitional axiom:

contrf (x, a, s) = v ≡ κf (x, v, a, s) ∨ v = 0 ∧ ¬(∃v′)κf (x, v
′, a, s).
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Notation: n, n′, v are object (number) variables,s is a situation variable,a, a′ are action
variables, andc is a concurrent variable.

Action functions:addS(n), releaseS(n), releaseL(n), exert(n).

Additive fluent functions: Ranges:
small [Lsmall, Usmall]
medium [Lmedium, Umedium]
large [Llarge, Ularge]
force [Lforce, Uforce]

Direct effect axioms:
(∃n)[a = addS(n) ∧ v = n] ⊃ contrsmall(a, s) = v

(∃n)[a = releaseS(n) ∧ v = −n] ⊃ contrsmall(a, s) = v

(∃n)[a = releaseS(n) ∧ v = n] ⊃ contrmedium(a, s) = v

(∃n)[a = releaseL(n) ∧ v = −n] ⊃ contrlarge(a, s) = v

(∃n)[a = exert(n) ∧ v = n] ⊃ contrforce(a, s) = v

Preconditions of actions:
Poss(a, s)
conflict(c, s) = (∃n, n′).[addS(n) ∈ c ∧ addS(n′) ∈ c ∧ n 6= n′]∨

[releaseS(n) ∈ c ∧ releaseS(n′) ∈ c ∧ n 6= n′]∨
[releaseL(n) ∈ c ∧ releaseL(n′) ∈ c ∧ n 6= n′]∨
[exert(n) ∈ c ∧ exert(n′) ∈ c ∧ n 6= n′]

Contribution rules:
medium

+
←− small large

+
←− medium

force
+−

←− 2× large force
−+
←− 2× large

Fig. 2. Containers domain described in the extended concurrent situation calculus.

Preconditions of actionsWe describe preconditions of primitive actions as in [9]. For
preconditions of a concurrent actionc, we describe by a formulaconflict(c, s) the con-
ditions under which the primitive actions inc conflict with each other. This is required
to handle cases where a set of primitive actions each of whichis individually possible
may be impossible when executed concurrently.

Ramifications on additive fluentsAs in the languageC+, we consider two kinds of
ramifications on numeric-valued fluents, and we express themby acyclic contribution
rules (2), wheref andh do not contain a situation term.

For instance, Figure 2 shows a formalization of the containers example in this ex-
tended version of the concurrent situation calculus. With such a formalization, we can
compute the values of fluents, as in Example 1, usingGOLOG.

5 Obtaining a Basic Action Theory

From a formalization of an action domain, like in Figure 2, wecan obtain a basic action
theory in the concurrent situation calculus as follows. In the following, as in [9], instead
of axiomatizing sets, numbers, and arithmetic operations,we use them assuming their
standard interpretation.
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1. We consider the foundational axioms of [9].
2. From the preconditions of primitive actions, conflicts between actions, and range

restrictions on additive fluents, we can formalize preconditions of a concurrent ac-
tion c as in [8], by an axiom of the form

Poss(c, s) ≡
(∃a)(a ∈ c) ∧ (∀a ∈ c)Poss(a, s) ∧ ¬conflict(c, s) ∧R1[RC(do(c, s))].

Denoted byR1[W ] is a formula equivalent to the result of applying one step of
Reiter’s regression procedure [9] onW . We useRC(s) to denote the conjunction
of the range constraints on each additive fluentf (i.e.,

∧

f Lf ≤ f(s) ≤ Uf ) con-
joined with additional qualification constraints if given.By this way, a concurrent
action is possible if it results in a situation that satisfiesthe range constraints on
additive fluents. For Example 1,

RC(s) = Lsmall≤ small(s) ≤ Usmall∧ Lmedium≤ medium(s) ≤ Umedium∧
Llarge ≤ large(s) ≤ Ularge∧ Lforce≤ force(s) ≤ Uforce.

3. From the direct effect axioms and contribution rules in such a formalization, we
can derive successor state axioms for additive fluents by thesame kind of transfor-
mation in [9], which is based on an explanation closure assumption.
First, we express the cumulative effects of actions onf , by adding the direct and
indirect contributions of actions onf , respecting the given range[Lf , Uf ]. For each
additive fluentf , we introduce three new functions:dContrf , iContrf , andtContrf .
Intuitively, dContrf (x, c, s) describes the cumulative direct contributions of prim-
itive actions inc at a situations:

dContrf (x, c, s) =
∑

a∈c

contrf (x, a, s).

The indirect contribution of a concurrent actionc on f at a situations is described
by iContrf (x, c, s), relative to a setC of contribution rules:

iContrf (x, c, s) =
∑

f
+
←−E(h)∈C

E(iContrh(y, c, s) + dContrh(y, c, s)− tContrh(y, c, s))

−
∑

f
−

←−E(h)∈C
E(iContrh(y, c, s) + dContrh(y, c, s)− tContrh(y, c, s))

+
∑

f
++
←−E(h)∈C,tContrh(y,c,s)>0

E(tContrh(y, c, s))

+
∑

f
+−

←−E(h)∈C,tContrh(y,c,s)<0
E(tContrh(y, c, s))

−
∑

f
−+
←−E(h)∈C,tContrh(y,c,s)>0

E(tContrh(y, c, s))

−
∑

f
−−

←−E(h)∈C,tContrh(y,c,s)<0
E(tContrh(y, c, s)).

For instance, relative to the contribution rules in Figure 2:

iContrmedium(c, s) = iContrsmall(c, s) + dContrsmall(c, s)− tContrsmall(c, s).

After defining direct and indirect contributions of actionson an additive fluentf ,
we can define the total contribution of actions as follows. Iff appears on the right
hand side of a contribution rule of form (2), then we add the direct and indirect
contributions of actions respecting the range restriction[Lf , Uf ]:
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tContrf (x, c, s) =







Uf−f(x, s) if sumf > Uf−f(x, s)
Lf−f(x, s) if sumf < Lf−f(x, s)
sumf otherwise

wheresumf stands fordContrf (x, c, s) + iContrf (x, c, s). Otherwise, the total
contribution of actions is simply the sum of the direct and indirect contributions of
actions, i.e.,sumf .
Finally, we define the successor state axiom for an additive fluentf :

f(x,do(c, s)) = f(x, s) + tContrf (x, c, s).

4. From the given action functions, we can obtain unique names axioms, likeaddS(n) 6=
releaseS(n′), etc.

5. We suppose that a description of the initial world is given.

6 Comparing the Two Formalizations

We have described how to formalize an action domain with additive fluents, in two
formalisms: the action languageC+ and the concurrent situation calculus. We can see
in Figures 1 and 2 that two such formalizations look similar.In fact, under some con-
ditions, a formalizationD of an action domain in the extended version ofC+ and a
descriptionI of the initial world can be translated into an action theorysit(D, I) in
the extended version of the concurrent situation calculus,such that, for every additive
fluentf and for every concurrent actionc, the value off after execution ofc is the same
according to each formalization.

Suppose thatD consists of the following:

– additive fluent constantsF1, . . . , Fm, eachFi with the domain{LFi
, ..., UFi

} (Min ≤
LFi

, UFi
≤ Max); and boolean action constantsA1, . . . , Am′ ;

– increment laws of form (1) wherea is a boolean action constant,f is an additive
fluent constant,n is an integer, andψ is true;

– preconditions of actions of the form

nonexecutable a if ψ (4)

whereψ is a conjunction of atoms that does not contain the action constanta.
– acyclic contribution rules of form (2).

Suppose thatI consists of the following:

0 : Fi = Ni (0 ≤ i ≤ m)

whereNi is an integer in the given range{LFi
, . . . , UFi

}, expressing that, at time stamp
0, the value ofFi isNi.

Then we can obtainsit(D, I) fromD andI as follows:

1. For each additive fluent constantFi ∈ D, declare a corresponding unary additive
fluent functionfi(s) with the range[Lfi , Ufi ]. such thatLFi

= Lfi andUFi
=

Ufi . For each boolean action constantAi ∈ D, declare a corresponding nullary
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action functionAi. For instance, for the fluent constantSmall with the domain
{LSmall, . . . , USmall} in Figure 1, we declare in Figure 2 the fluent functionsmall
with the range[Lsmall, Usmall].
Schemas are frequently used inC+ to represent a large number of constants or state-
ments. For example,AddS(n) in the declarations part denotes the action constants
AddS(Min), . . . ,AddS(Max). In a situation calculus representation, for such a set
of action constants, we can introduce a single action function (e.g.,addS(n)).

2. For each increment lawAi increments Fj by N in D, add the formula

[a = Ai ∧ v = N ] ⊃ contrfj (a, s) = v. (5)

With a functionAi(n), we can use a single formula to represent all of the formu-
las (5) forAi, as seen in Figure 2.

3. LetNEXF be the set of all causal laws (4) inD such thatψ is a fluent formula. Let
ψ(s) be the formula obtained from a fluent formulaψ by replacing every additive
fluent atomFi = N by fi(s) = N . For each action constantAi in D, add the
formula

Poss(Ai, s) ≡
∧

(nonexecutableAi ifψ)∈NEXF

¬ψ(s).

If for every action constantAi, the right hand side of the equivalence above is⊤
then we can simply replace all of the equivalences above by the single formula
Poss(a, s) as in Figure 2 (recalla is implicitly universally quantified.)

4. LetNEXA be the set of all causal laws (4) inD such thatψ is a formula that
contains an action constant. Letψ(c, s) be the formula obtained from a concurrent
actionc and a formulaψ by replacing every fluent atomFi = N with fi(s) = N ,
and every action atomAj (respectively,¬Ak) with Aj ∈ c (respectively,Ak 6∈ c).
Then add the following definition:

conflict(c, s) ≡
∨

(nonexecutableAi ifψ)∈NEXA

[Ai ∈ c ∧ ψ(c, s)].

5. For each contribution ruleF
⊕
←− E(H) inD, add the contribution rulef

⊕
←− E(h).

6. For each expression0 : Fi = Ni in I, add the factfi(S0) = Ni.

Suppose that the range[Min,Max] is wide enough that, when compilingD into an
action description as described in Section 3, the auxiliaryactionsDContrf , IContrf ,
andTContrf are never undefined due to range violation.

Proposition 1. LetC be a set of action constants inD andc be the set of corresponding
action functions in sit(D, I). Then the following hold:

(i) C is executable at time stamp 0 with respect toD andI iff Poss(c, S0) with respect
to sit(D, I);

(ii) for every fluent constantFi, if C is executable at time stamp 0 and1 : Fi = N ′i after
the execution ofC at time stamp 0, with respect toD andI, thenfi(do(c, S0)) = N ′i
with respect to sit(D, I).

(iii) for every fluent constantFi, if Poss(c, S0) and fi(do(c, S0)) = N ′i with respect to
sit(D, I), then1 : Fi = N ′i after the execution ofC at time stamp 0, with respect
toD andI.

The assumption above is required for the ‘if’ part of (i), andfor (iii).
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Although we have incorporated contribution rules into two formalisms in a similar
way, and we have shown that, under some conditions, a formalization of an action do-
main inC+ can be transformed into a formalization in the concurrent situation calculus,
these two formalisms are different in general:C+ action descriptions are nonmonotonic
and propositional, while the situation calculus action theories are monotonic and first-
order. This work can be viewed in part as an attempt to bridge the gap between these
two formalisms, in the spirit of [15].

7 Related Work

There are mainly two lines of work related to ours. The first one, [13] and [14], intro-
duces methods to obtain a causal ordering of variables (denoting numeric-valued flu-
ents) from a set of equation-like causal structures, confluence equations and structural
equations, each describing a mechanism in a device. Such a causal ordering describes
which fluents are directly causally dependent on which otherfluents. The goal is, by
this way, to understand the causal behavior of a device.

The other line of work, [16] and [8], explicitly represents causal relations among
variables by equation-like causal structures, structuralequations and contribution equa-
tions; so the goal is not to obtain a causal ordering on numeric-valued variables. They
use these equations for various problems of reasoning aboutactions and change. For
instance, [16] represents each mechanism with a structuralequation, and uses them for
modeling counterfactuals. On the other hand, [8] represents each mechanism with a
contribution equation, compiles them into an action theory, allowing one to solve prob-
lems of reasoning about effects of actions, like planning and prediction.

All [14, 16, 8] suppose that the causal influence among fluentsis acyclic. The method
of [13] can not in general determine the effects of disturbances by propagation when
the causal influences are cyclic. [14, 16] require each variable to be classified as either
exogenous or endogenous; the others and we do not.

In our approach, each mechanism is described by a set of contribution rules with
the same head. These rules explicitly represent the flow of causal influences among
variables; in this sense it can be considered along the second line of work above. Con-
tribution rules are assumed to be acyclic. As in [8], by compiling contribution rules
into an action theory, we can solve problems of reasoning about effects of actions. On
the other hand, unlike with contribution equations, there is no obvious correspondence
between contribution rules and algebraic equations. For instance, in the containers ex-
ample, with the contribution equationsinner(s)=medium(s)+small(s) andtotal(s)=
inner(s)+ large(s), one can verify thattotal(s) = small(s)+medium(s)+ large(s). In
our approach, we can verify this equation by introducing an auxiliary fluent total(s)
and contribution rules for it, but there is no direct correspondence between the equation
and the contribution rules. Another difference between contribution equations and con-
tribution rules, is that auxiliary fluents such astotal andinner are necessary to write
contribution equations, while they are not required in writing contribution rules. This is
due to the ability of contribution rules to express more directly the causal influence re-
lationships among fluents. Finally, although contributionequations can handle the first
kind of ramifications mentioned in the introduction, we cannot directly express the sec-
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ond kind of ramifications by them; there is no direct way to describe these ramifications
by the other causal structures mentioned above.

8 Conclusion

We have described how to formalize an action domain with additive fluents, in two for-
malisms: the action languageC+ and the concurrent situation calculus. In both cases,
first we have extended the formalisms, e.g., by introducing some new constructs or func-
tions and by modifying some axioms. Since some ramificationsare not easy to describe
in the original formalisms, or using the existing causal structures, we have introduced
contribution rules, which express causal influences between additive fluents. After that
we have formalized an action domain in the extended versionsin four parts: specifi-
cation of additive fluents with their domains/ranges and actions affecting them, direct
effects of actions on additive fluents, preconditions of actions, and ramifications on ad-
ditive fluents. The formalizations obtained this way can handle not only nonserializable
actions, but also ramifications on additive fluents. Investigating the application of our
method to other formalisms, such as TAL [17], is a possible future research direction.
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