
idpDraw

Johan Wittocx

November 17, 2009

Abstract

This is the user manual of idpDraw, a visualization tool for finite
structures.

1 Introduction

idpDraw is a program that can visualize finite structures. It was designed to be
used in combination with an MX or ASP solver as front-end. The solver com-
putes from a given finite structure a new finite structure in a fixed vocabulary,
interpretable by idpDraw. idpDraw then visualizes this finite structure.

2 Usage

The basic usage of idpDraw is very simple: start idpDraw and open an idpDraw
input file by clicking on “File” menu and then on “Open”. idpDraw will then
make the corresponding drawing. If the visualized structure contains multiple
timepoints, the buttons Play, Stop, Pause, Next and Previous at the bottom of
the screen can be used to show the structure on the different timepoints. The
size of text in a drawing can be adapted using the “Options” menu.

The syntax of idpDraw input files is described in the next section. To create
such a file, an ASP or MX solver can be used. I used the following instructions
to create the examples in this manual:

$ gringo <my input structure> <my logic program> | clasp >
<my tmp file>

$ cat <my tmp file> | grep idpd | sed ’s/)/)./g’ > <my idpd input>

The second line formats the output of clasp to the input required by idpDraw.
Examples of logic programs are shown in the last section of this manual.

3 Syntax

Now we describe the syntax for idpDraw input files. An idpDraw input file is
similar to the format for input files of the ASP competition. It is a sequence
of atoms. Each atom is followed by ‘.’, a number of spaces and possibly a line
break. Each atom is of the form

1

Figure 1: No input file loaded

2

pred(arg 1,...,arg n)

where pred, arg 1, . . . ,arg n are strings over ,–,a-z,A-Z,0-9. E.g., the following
is a valid idpDraw input file:

move(8,8,7,6). at pos(0,1,1). idpd ellipse(horse,4,4).
idpd depth(horse,49). idpd color(horse,0,0,255).
idpd depth(52). idpd xpos(0). idpd ypos(0).
idpd text(Questions). idpd pencolor(255,255,255).

Except for the following 16 types of atoms, idpDraw ignores all atoms in the
input. We explain how these 16 atoms are interpreted.

• idpd polygon(n, Name1, . . . , Namem, x1, y1, x2, y2, . . . , xn, yn):
Creates an object with name [Name1, . . . , Namem] which is a polygon.
Argument n specifies its number of vertices. Hence, this argument has
to be a strictly positive integer. Dots and lines can be created by taking
n = 1, respectively n = 2. The arguments xi, yi specify the relative
position of the ith vertex. I.e., if the first vertex (with relative position
(x1, y1)) will be drawn on the absolute position (px, py), then the ith vertex
will be drawn on absolute position (x2 − x1 + px, y2 − y1 + py).

• idpd ellipse(Name1, . . . , Namem, w, h):
Creates an object with name [Name1, . . . , Namem] which is an ellipse
with width h and height h.

• idpd xpos(Name1, . . . , Namem, x):
Set the absolute horizontal position of the object with name [Name1, . . . , Namem]
to x. If this object is a polygon, this means the first vertex gets absolute
horizontal coordinate x. For an ellipse, it is the horizontal coordinate
of the upper left corner of the enclosing rectangle of that ellipse. If for
a certain object, no idpd xpos atom occurs in the input, the absolute
horizontal position is set to 0.

• idpd ypos(Name1, . . . , Namem, y):
Similar to idpd xpos, but sets the vertical position.

• idpd color(Name1, . . . , Namem, b, g, r):
Sets the background color of [Name1, . . . , Namem] to the color with BGR
value (b, g, r).

• idpd pencolor(Name1, . . . , Namem, b, g, r):
Sets the foreground color of [Name1, . . . , Namem] to the color with BGR
value (b, g, r).

• idpd depth(Name1, . . . , Namem, d):
Sets the depth of [Name1, . . . , Namem] to d. If two objects overlap, the
one with lesser depth will be drawn on top of the other.

• idpd text(Name1, . . . , Namem, t):
Writes the text t on top of the object with name [Name1, . . . , Namem].

For each of these predicates, there exists a corresponding one with a time argu-
ment. The name of the predicate with time argument is formed by adding t

3

to the name of the corresponding predicate without time argument. The time
argument is always the first argument in the atom. It should be an integer
number. The first time-point is 0. E.g.,

idpd xpos t(2,horse,5)

specifies that at the third timepoint, the object horse has absolute horizontal
position 5.

idpd color t(48,1,5,0,0,0).

specifies that on timepont 49, object [1, 5] is black.

4 Examples

In this section, we give two examples of ASP files to create input files for
idpDraw.

4.1 Maze generation

Visualization for the maze generation problem of the second ASP competition.
The predicates ‘row’, ‘col’ and ‘wall’ are in the input structure.

1. Create a square of size 1 for each square on the grid:
idpd polygon(4,R,C,0,0,1,0,1,1,0,1) :- row(R), col(C).

2. Place each square on its row and column
idpd xpos(R,C,R) :- row(R), col(C).
idpd ypos(R,C,C) :- row(R), col(C).

3. If a square is a wall, make its background colour black:
idpd color(R,C,0,0,0) :- wall(R,C).

A possible output is shown in figure 2.

4.2 15 puzzle

Visualization of the 15Puzzle problem of the second ASP competition.

1. All entries, except 0 are a block
block(N) :- entry(N), N != 0.

2. Create a square of size 1 for every block. Write n on the n’th block, set
the foreground color to white and the background color to black.
idpd polygon(4,N,0,0,1,0,1,1,0,1) :- block(N).
idpd text(N,N) :- block(N).
idpd color(N,0,0,0) :- block(N).
idpd pencolor(N,255,255,255) :- block(N).

3. At each timepoint, set the position of the blocks:
idpd xpos t(T,N,Y) :- at(T,X,Y,N), block(N).
idpd ypos t(T,N,X) :- at(T,X,Y,N), block(N).

The output is shown in figure 3

4

Figure 2: Maze generation

5

Figure 3: Maze generation

6

