An Optimization for Reasoning with Forest Logic
Programs™*

CRISTINA FEIER, STIJN HEYMANS

Knowledge-Based Systems Group, Institute of Informatigst&nms
Vienna University of Technology
Favoritenstrasse 9-11, A-1040 Vienna, Austria
{f ei er, heymans}@r. tuw en. ac. at

Abstract. Open Answer Set Programming (OASP) is an attractive framewo
for integrating ontologies and rules. In general OASP isegidhble. In pre-
vious work we provided a tableau-based algorithm for satidiity checking
w.r.t. forest logic programs, a decidable fragment of OA&fich has the forest
model property. In this paper we introduce an optimizediversf that algorithm
achieved by means of a knowledge compilation techniquecaied unit com-
pletion structures, which are possible building blocks dbr@st model, in the
form of trees of depth 1, are computed in an initial step ofdlgorithm. Re-
peated computations are avoided by using these structueepattern-matching
style when constructing a model. Furthermore we identify discard redundant
unit completion structures: a structure is redundant ifehie another structure
which can always replace the original structure in a forestah

1 Introduction

Integrating Description Logics (DLs) with rules for the Samtic Web has received
considerable attention with approaches sucbascription Logic Program¢6], DL-
safe ruleq11], DL+log [12], dl-programg[1], Description Logic RuleflL0], and Open
Answer Set Programming (OASP) [9]. OASP is a formalism witiclmbines attractive
features from the Logic Programming (LP) and the DL worlde Blgntax and semantics
of OASP build upon the syntax and semantics of Answer SetrBnogning (ASP) [5]:
there is a rule-based syntax witagation as failureperator which is interpreted via
a stable model semantics, but unlike the LP setting, an operath semantics, like it
is common in the DL world, is employed. This allows for stgtigeneric knowledge,
without the need to mention actual constants.

Several decidable fragments of OASP were identified by syictdly restricting
the shape of logic programs, while carefully safe-guard@ingugh expressiveness for
integrating rule- and ontology-based knowledge. A notditslgment is that oforest
Logic Programs (FoLPs]8] that are able to simulate reasoning in the BHOQ.
FoLPs allow for the presence of only unary and binary pradian rules which have a

* This work is partially supported by the Austrian Science dF{FWF) under the projects
P20305 and P20840, and by the European Commission undenjketgOntoRule (IST-2009-
231875).

tree-like structure. A sound and complete algorithm fois§ability checking of unary
predicates w.r.t. FOLPs has been presented in [3]. The itigpexploits the forest
model property of the fragment: if a unary predicate is atie, than it is satisfied by
a forest-shaped model, with the predicate checked to bsfiahte being in the label
of the root of one of the trees composing the forest. It is &l a tableau-based
procedure which builds such a forest model in a top-downidesh

In this paper we describe an optimization for reasoning Wwith.Ps in the form
of a knowledge compilation technique. The technique ctssis pre-computing all
possible building blocks of the tableau, in the form of treedepth 1, blocks which we
call unit completion structuresThe original algorithm is used for computing the unit
completion structures. The revised algorithm matches ppdrads such building blocks
until a termination condition is met, like blocking or re@ufp a certain depth in the
tableau expansion. In general, not all unit completioncstmes have to be considered:
inherent redundancy in a FoLP, like rules which are less gétigan others gives rise
to redundancy among completion structures. A unit comgesiructure is redundant
iff there is another simpler (less constrained) unit cortipestructure. The latter can
replace the former in any forest model. We formalize thisamgtmaking it possible to
identify such redundant structures and discard them.

The paper is structured as follows: Section 2 containsmpieéries, like the OASP
semantics and some notation, and Section 3 introduces thiefFagment. An overview
of the original algorithm for reasoning with FOLPs is givenSection 4. The main re-
sults of the paper concerning the computation of non-redonahnit completion struc-
tures, and the revised algorithm, are presented in Sectiginally, Section 6 draws
some conclusions and discusses future work.

2 Preliminaries

We recall the open answer set semantics{@nstants:, b, ¢, .. ., variablesX, Y .. .,
termss, t, ..., andatomsp(¢4, ..., t,) are as usual. Aiteral is an atomL or a negated
atomnot L. We allow forinequality literalsof the forms # ¢, wheres andt are terms.
A literal that is not an inequality literal will be calledragular literal. For a setS of
literals or (possibly negated) predicatss, = {l | I € S} andS~ = {l | not | € S}.
For a setS of atoms,not S = {not a | a € S}. For a set of (possibly negated)
predicatesS, S(X) = {a(X) | a € S} andS(X,Y) = {a(X,Y) | a € S}. Fora
predicatep, +p denotep or not p, whereby multiple occurrences afp in the same
context will refer to the same symbol (eitheor not p).

A programis a countable set of rules<— 3, wherex is afinite set of regular literals
andg is a finite set of literals. The setis theheadand represents a disjunction, while
B is thebodyand represents a conjunction.df= (}, the rule is called @onstraint
A special type of rules with empty bodies, are so-cafleé ruleswhich are rules of
the form:q(ty1,...,t,) V not q(t1, ..., t,) <, fortermsty, ..., t,; these kind of rules
enable a choice for the inclusion of atoms in the open ansstsr /e call a predicatge
freeif thereis ag(X1, ..., X,) V not ¢(X1,...,X,) +, with variablesXy, ..., X,,.
Atoms, literals, rules, and programs that do not contairaées areground For a rule
or a progranR, let cts(R) be the constants iR, vars(R) its variables, angreds(R)

its predicates withupreds(R) the unary andpreds(R) the binary predicates. For every
non-free predicate and a progran®, P, is the set of rules oP that have; as a head
predicate. Auniversel for P is a non-empty countable superset of the constants in
cts(P) C U. We call Py the ground program obtained frofm by substituting every
variable inP by every elementid/. Let Bp (Lp) be the set of regular atoms (literals)
that can be formed from a ground progrdm

An interpretation] of a groundP is a subset o5p. We write I = p(ti,...,tn)
if p(t1,...,t,) € I andI = not p(ty,...,t,) if I |~ p(t1,...,t,). Also, for ground
termss, ¢, we write] = s # tif s # ¢. For a set of ground literals, I = Lif I =1
for everyl € L. A ground ruler : a < § is satisfiedw.r.t. I, denoted |= r, if I =1
for somel € o whenever = 3. A ground constraink— 3 is satisfied w.r.t if T }= 3.

For a positive ground progra#, i.e., a program withoutot, an interpretatiod of
P is amodelof P if I satisfies every rule it?; it is ananswer sebf P if it is a subset
minimal model of P. For ground programg& containingnot, the GL-reduct[5] w.r.t.

I is defined as”!, whereP! containsa™ « g+ fora < gin P, I = not 3~ and
I = a~. I'is ananswer sebf a groundP if I is an answer set aP’.

A program is assumed to be a finite set of rules; infinite pnogranly appear as
byproducts of grounding with an infinite universe. 8pen interpretatiorof a program
P is a pair(U, M) whereU is a universe foi? and M is an interpretation oP;. An
open answer saif P is an open interpretatiofU, M) of P with M an answer set of
Py. An n-ary predicate in P is satisfiableif there is an open answer s@f, M) of P
s. t.p(x1,...,x,) € M, for somexy,...,x, € U.

We introduce notation for trees which extend those in [18}. lbe a concatenation
operator between sequences of constants or natural numbtees 7" with rootc (1),
wherecis a specially designated constant, has as nodes sequétteefoomc- s, where
s is a (possibly empty) sequence of positive integers forméh the concatenation
operator; forz - d € T, d € N*, we have that € T. The setd; = {(z,y) | z,y €
T,3n € N*: y =z -n}isthe set of arcs of atréB. Forx,y € T, we say that < y
iff = is a prefix ofy andx # .

A forestFis asetoftree$T. | c € C'}, whereC'is a set of distinguished constants.
We denote withVp = Ure T andAr = Ure p A the set of nodes and the set of arcs
of a forestF', respectively. Lek r be a strict partial order relationship on the set of
nodesNy of a forestF' wherex <p y iff <p y for some tredl” in F'. An extended
forestEF is a tuple(F, ES) whereF = {T, | c € C} isaforestandS C Ny x C.
We denote byWgr = N the nodes o F and byAgr = Ap U ES its arcs. So unlike
a normal forest, an extended forest can have arcs from artg nbies to any root of
some the tree in the forest.

Finally, for a directed graptr, pathsg is the set of pairs of nodes for which there
exists a path itz from the first node in the pair to the second one.

3 Forest Logic Programs

Forest Logic Programs (FoLPgB] are logic programs with tree-shaped rules which
allow for constants and for which satisfiability checkingden the open answer set
semantics is decidable.

Definition 1. A forest logic program (FoLPjs a program with only unary and bi-
nary predicates, and such that a rule is eitheffrae rule a(s) V not a(s) « or
f(s,t) vV not f(s,t) < , wheres andt are terms such that i and¢ are both vari-
ables, they are different, a unary rule

L a(s) <—ﬂ(S),('Ym(S,tm),(sm(tm))]gmgkﬂ/) (2)

wheres andt,,,, 1 < m < k, are terms (again, if both andt,, are variables, they are
different; similarly for¢; andt;), where

=Y CUicigjaniti Z iy and{#} Ny, =0 for 1 <m <k,
— Vt; € vars(r) : v~ # 0, i.e., for variableg; there is a positive atom that connects
s andt;,

or abinary rule
f(s,t) < B(s),7(s,1),0(t))

with {#£} N v = 0 and~y* # (if ¢ is a variable ¢ and ¢ are different if both are
variables), or a constraint— a(s) or « f(s, t) wheres andt¢ are different if both are
variables).

The following programP is a FOLP which says that an individual is a special mem-
ber of an organizatiorsthembeérif it has the support of another special memlyate
r1, or if it has the support of two regular members of the orgatinin tmembey: rule
r2. The binary predicatsupportwhich describes the ‘has support’ relationship is free.
Nobody can be at the same time both a special member or a regemaberconstraint
r4. Two particular regular members ar@ndb: factsrs andrg.

Example 1.
r1: smember(X) < support(X, Y), smember(Y)
ro smember(X) < support(X, Y), rmember(Y),

support(X, Z), rmember(Z),Y # Z
rs : support(X, Y) V not support(X,Y) «

Ty <« smember(X), rmember(X)
5 : rmember(a) <
T6 : rmember(b)

As their name suggests FoLPs havefibtrest model property

Definition 2. Let P be a program. A predicate € upreds(P) is forest satisfiablev.r.t.

P if there is an open answer s@l/, M) of P and there is an extended foreBf" =
{T.} U{T, | a € cts(P)}, ES), wheree is a constant, possibly one of the constants
appearing inP , and a labeling functiorC : {T.} U {1 | a € cts(P)} U Agr —
2preds(P) s. t.

— U = Ngp, and

- p€L(e),

—z-i€T € EF,i >0, Iffthereis some(z,z-i) € M,z €T, and
— fory € T € EF, q € upreds(P), f € bpreds(P), we have that

e q(y) e Miffqge L(y), and
o fly,u) e Miff u=y-iVuéects(P))Af e L(y,u).

We call such gU, M) aforest modebnd a programP has theforest model prop-
erty if the following property holds: ip € upreds(P) is satisfiable w.r.t.P thenp is
forest satisfiable w.r.tP.

Consider the FOLFP introduced in Example 1. The unary predicataember
is forest satisfiable w.r.tP: ({a,b, x}, {rmember(a), rmember(b), support(x,a),
support(x,b), smember(z)}) is a forest model in whickmember appears in the la-
bel of the (anonymous) root of one of the trees in the fores# (Sgure 1). Note that
in the ordinary LP setting, where one restricts the univéosthe Herbrand universe,
smember is not satisfiable.

{smember}

rmember} a x b{rmember
{ ; {support} {support} { ;

Fig. 1. A Forest Model forP
4 An Algorithm for Forest Logic Programs

In this section, we give an overview of the tableau algoriforrsatisfiability checking
for FoLPs introduced in [3]. For technical details we refee reader to the original
paper. We use as a running example the FOLP from Example Ist@ants are not
treated explicitly in the algorithm as they can be simulatsithg unary rules. As such,
the constraint;: < smember(X), rmember(X) in Example 1 is replaced with' ;:
co(X ¥— not co(X), smember(X), rmember(X), with co a new predicate.

The basic data structure used by the algorithm to descriloeestfmodel in con-
struction is a so-calledompletion structurdts main components are an extended forest
EF, whose set of nodes constitutes the universe of the modek é&beling function
¢t (contenj, which assigns to every node, resp. ardf, a set of possibly negated
unary, resp. binary predicates. The presence of a predigatbolp/not p in the con-
tent of some node or arcindicates the presence/absence of the giam in the open
answer set.

The presence (absence) of an atom in the open answer seifieguisy imposing
that the body of at least one ground rule which has the reispeatom in the head
is satisfied (no body of a rule which has the respective atoth@rhead is satisfied).
In order to keep track which (possibly negated) predicatal®js in the content of
some node or arc have already been expanded a so-callesifstadtion is introduced.
Furthermore, in order to ensure that no atom in the parta@dlystructed open answer
set is circularly motivated, i.e. the atoms are well-supgub[2], a graptG which keeps
track of dependencies between atoms in the (partial) medehintained.

Definition 3. An A;-completion structure for a FOLP! is a tuple(EF, cT, s, G)
where:

1 We use the prefixd; to denote completion structures computed using this aigitgorithm
as opposed to completion structures computed using thenisetl algorithm described in the
next section for which we will use the prefi..

— EF = (F, ES) is an extended forest,

— CT : Ngp U App — 2preds(P)unot (preds(P)) i the ‘content’ function,

— 8T : {(z,+q) | £q € cT(z),x € Ngr U Agr} — {exp, unezp} is the ‘status’
function,

— G = (V, A) is a directed graph which has as vertices atoms in the anseieins
construction:V C BPNEF.

Aninitial .A;-completion structuréor checking satisfiability of a unary predicate
p W.r.t. a FOLP P is a completion structuréEF, cT, sT, G) with EF = (F, (), F =
{T.} U{T, | a € cts(P)}, wheree is a constant, possibly ints(P), T,, = {z}, for
ze{e}Ucts(P),G=(V,0),V ={p(e)}, andcT(¢) = {p}, ST(e, p) = unezxp.

An extended forest is initialized with single-node treeshwbots constants from
P and, possibly, a new single-node tree with anonymous rda.férest model from
Figure 1 has been evolved from an initial completion strrectuhich has as, the root
element wheremember has to be satisfied, the anonymous individualThere are
two other single-node tree%,, andT,. The predicateamember in the content of: is
marked as unexpanded a@ids a graph with a single vertesmember(z).

{smember*}
! v b1}

V. smember(z)

A)

An initial A;-completion structure for checking the satisfiability ofreaty predi-
catep w.r.t. a FOLPP is evolved by means @xpansion ruleso a complete clash-free
structure that corresponds to a finite representation ofp@m @answer set in cageis
satisfiable w.r.tP. Applicability rulesgovern the application of the expansion rules.

4.1 Expansion Rules

In the following, for a completion structukF’, st, cT, G), letx € Ngr and(z,y) €
Agr be the node, resp. arc, under consideration.

(i) Expand unary positive. For a unary positive (non-freg)e cT(x) s.t.sT(z,p) =
unexp, choose a unary rule € P, for which s, the head term, unifies with; ground
this rule by substituting with x, and the successor termgs-s with successors af in
EF s. t. the inequalities i are satisfied (if needed one can introduce new successors
of x in E'F, either as successors ofin T', wherex € T, or in the form of constants
from P). We motivate the presencegfz) in the open answer set by enforcing its body
to be satisfied by inserting appropriate (possibly negatestjicate symbols in the con-
tents of nodes/arcs of the structure. The newly insertedigae symbols are marked
as unexpanded artel is updated, by adding arcs frop(z) to every body atom.

In our examplegsmember is unexpanded in the initial completion structure. Ruyle
is chosen to motivate the presencewfember(z) in the open answer set. Itis grounded
by substitutingX with =, andY; andY> with a andb, respectivelysmember(z) +
support(x, a) ,rmember(x,a), support(z,b), rmember(xz,b). We enforce the body

of this ground rule to be true and obtain the following contiple structure (note also
thatG has been updated):

{smember<}
{rmember*}a x b{rmember"}
BF: {support™} {support™}

V. smember(z), support(z,a), support(z,b), rmember(z,a), rmember(z,b)
A: smember(xz) — support(z,a), smember(x) — support(z,b),
smember(z) — rmember(x,a), smember(x) — rmember(z,b)

All currently unexpanded predicates, i.eupport in the content of arcér, a) and
(z,b), andrmember in the content of nodes andb, can be trivially expanded as
support is a free predicate ang andrg are facts. However one still has to ensure that
the structure constructed so far can be extended to an agaalanswer set, i.e., it is
consistent with the rest of the program. Next expansiontakes care of this.

(ii) Choose a unary predicate. If all predicates incT(z) and in the contents of x’s
outgoing edges are expanded and there are still unary pitedicwhich do not appear
in cT(x), pick such a and inject eithep or not p in cT(z). The intuition is that one
has explore all unary/binary predicates at every nodefsome predicate which is not
reachable by dependency-directed expansion can rendesgifybe the extension of the
partially constructed model to a full model. Consider thape case where there is a
predicatep defined only by the rulep <+ not p and+p does not appear in the body
of any other rule. The program is obviously inconsistent,this cannot be detected
without trying to prove thap is or is not in the open answer set.

In our example, one does not know whetlzeror not co belongs toct(z). We
choose to injectiot co in cT(z) and mark it as unexpanded.

(iii) Expand unary negative. Justifying a negative unary predicatet p € cT(z)
means refuting the body of every ground rule which defip@s, or in other words
refuting at least a literal from the body of every ground rwleich defineg(x). For
more technical details concerning this rule we refer theeeéo [3].

In our example, the unexpanded predicateririx), not co, is defined by one rule,
r’4, whose only possible groundingds(z) + not co(z), smember(z), rmember(z).
Refuting the body of this rule amounts to insertingt rmember in cT(z) (smember
andnot co are already part of the content of that node). At its turn,ghesence of
not rmember in cT(x) has to be motivated by using the expand unary negative rule,
and the process goes on. Finally, we obtain a completioatsiielin which no expan-
sion rule is further applicable and which represents ex#od forest model from Figure
1 (smember andrmember are abbreviated witkm andrm, respectively):

{sm, not rm, not co}

b

x
EF {rm, not sm, not co} {support} {support} {rm, not sm, not co}

V. sm(z), support(z,a), support(z,b),rm(z,a), rm(z,b)
A: sm(z) — support(x,a),sm(x) — support(z,b), sm(x) = rm(z,a), sm(z) = rm(z,b)

Similarly to rules (i), (ii), and (iii) we define the expansioules for binary predi-
cates: (iv)Expand binary positivgv) Expand binary negatiyend (vi)Choose binary

4.2 Applicability Rules

The applicability rules restrict the use of the expansidesu
(vii) Saturation. A nodex € Ny is saturatedf for all p € upreds(P), p € cT(x)
or not p € ct(z), and notq € ct(z) can be expanded with rules (i-iii), and for
all (z,y) € Agr andp € bpreds(P), p € CcT(x,y) Or not p € CT(x,y), and no
+f € cr(z,y) can be expanded with (iv-vi). No expansions should be peréoron a
node fromNgr which does not belong tets(P) until its predecessor is saturated.
(viii) Blocking. A nodex € Ngr is blockedif there is an ancestay of = in F,
y <p x,y & cts(P), s. t.cr(z) C c1(y) and the sepathsa(y,z) = {(p,q) |
(p(y),q(x)) € pathsg A qis notfred is empty. We call(y, z) a blocking pair No
expansions can be performed on a blocked node. One can ti@icibset blocking is
not enough for pruning the tableau expansion. Every atomempen answer set has to
be finitely motivated [7, Theorem 2]: in order to ensure tbag has to check that there
is no dependency ir between an atom formed with the blocking node and an atom
formed with the blocked node. The extra condition makes theking rule insufficient
to ensure the termination of the algorithm. Next appliggbilile ensures termination.

Example 2.Consider a restricted version &f from Example 1 which contains only
rulesr;, andrs. By checking satisfiability ofmember w.r.t. the new program one ob-
tains the following completion structure:

EF: V : {smember(x),smember(y)} A :{smember(xz) — smember(y)}
x{smember}

{support}

y{smember}

While the contents of hodesandy are identical, they do not form a blocking pair as
there is an arc irG betweensmember(x) and smember(y): unfolding the structure
(justifying y similarly asz) would lead to an infinite chaizmember(z), smember(y),
smember(z), ..., in the atom dependency graph of the grounded program.

(ix) Redundancy. A nodex € Ngr is redundantf it is saturated, it is not blocked,
and there aré ancestors of: in F, (y;)1<i<k, With k = 21’(21’2 — 1)+ 3,andp =
|upreds(P)|, s. t.ct(z) = cT(y;). In other words, a node is redundant if it is not
blocked and it hag ancestors with content equal to its content. Any forest rhotle
a FoLP P which satisfiep can be reduced to another forest model which satigfies
and has at most + 1 nodes with equal content on any branch of a tree from theffores
model, and furthermore th& + 1) st node, in case it exists, is blocked [3]. One can thus
search for forest models only of the latter type. As such #tection of a redundant
node constitutes a clash and stops the expansion process.

4.3 Termination, Soundness, Completeness, Complexity Rés

An A;-completion structure isontradictoryif for somex € Ngp/Agr andp €
upreds(P)/ bpreds(P), {p, not p} C cT(z). An A;-completion structure for a FoLP

P and ap € upreds(P) is completdf it is a result of applying the expansion rules to
the initial completion structure fgr and P, taking into account the applicability rules,
s. t. no expansion rules can be further applied.

Also, a completed, -completion structur€S = (EF, cT, ST, G) is A; -clash-free
if: (1) CS is not contradictory (2)FF does not contain redundant nodes (3)Jdoes
not contain cycles (4) there is noe upreds(P)/bpreds(P) andz € Ngp/Agr, x
unblocked, s.tp € ¢T(x), andsTt(z,p) = unezp.

It has been shown that an initidh -completion structure for a unary predicatend
a FoLPP can always be expanded to a compldtecompletion structureérminatior),
that, if p is satisfiable w.r.tP, there is a complete clash-frel -completion structure
(soundnegsand, finally, that, if there is a complete clash-fyégcompletion structure,
p is satisfiable w.r.tP (completenegs

In the worst case the algorithm runs in nondeterministichd@exponential time,
and a complete completion structure has a double expohantigber of nodes in the
size of the program. The high complexity is mostly due to i that blocking is not
enough to ensure termination, and that, in particular, &ye/blocking cannot be used
as a termination technique. As already explained this eyl appears as a result of
adopting a minimal model semantics.

5 Optimized Reasoning with FOLPs

This section presents a knowledge compilation techniqueeftsoning with FoLPs to-
gether with an algorithm which makes use of this pre-condgiieowledge. The main
idea is to capture all possible local computations, whiehtgpically performed over
and over again in the process of saturating the content ofde,nwy pre-computing
all possible completion structures of depth 1 using theioaigalgorithm described in
the previous section. In the new algorithm, saturating th@ent of a node reduces to
picking up one of the pre-computed structures which sasigfie existing constraints
regarding the content of that node and appending the staeucithe completion in con-
struction: such constraints are sets of unexpanded (ppssljated) predicates which
are needed to motivate the presence/absence in the opesraeswf atoms constructed
with the current node and the node above them.

Picking up a certain unit completion structure to saturatede can impose strictly
more constraints on the resulted structure than pickinghemainit completion structure
with the same root content. Such constraints refer to: @ xtintents of the successor
(non-blocked) nodes in a unit completion structure; (2)ghths from an atom formed
with the root node of a unit completion to an atom formed witbuacessor node of
such a completion — the more paths there are the harder htpbkicomes. We discard
such structures which are strictly more constraining ththers, as they can be seen as
redundant building blocks for a model.

The rest of the section formalizes and exemplifies thesensti

5.1 Unit Completion Structures

As mentioned in the introduction of this section, the inikemis to obtain all completion
structures of depth 1 which can be used as building blocksiiratgorithm. We call

such structuresinit completion structuresThe skeleton of such a structure, is a so-
calledinitial unit completion structurelf they are to be used as building blocks in
the algorithms, unit completion structures have to havesakliiones trees of depth 1,
and not forests. Hence, an initial unit completion struetisrdefined as a tree (unlike
its counterpart notion from the previous section, initiairpletion structure, which is
defined as a forest) with a single node, the root, which iseiim anonymous constant
or one of the constants already present in the program. Titeicoof the root is empty.

Definition 4. Aninitial unit completion structuréor a FOLP P is a completion struc-
ture (EF, cT, sT, G) with EF = (F, ES), F = {T.}, wheree is a constant, possibly
incts(P), T. ={e}, ES=0,G =(V,A),V =0, A =0, andcT(e) = 0.

A unit completion structure captures a possible local caapan: that is, it is ob-
tained as an expansion of an initial unit completion striestto a tree of depth 1.

Definition 5. A unit completion structuréEF', cT, sT, G) for a FOLP P, with EF =
({T.}, ES), is an A;-completion structure derived from an initial unit comjpdet
structure by application of the expansion rules (i)-(visdebed in Section 4.1, ac-
cording to the applicability rules introduced in Sectior2 Awhich has been expanded
such that is saturated and for alk such that: - s € T, and for all+p € cT(e - 5),
ST(+p, e - 5) = unexp.?

Example 3.Consider the prograrf?r:

Ty p(X) « not p(X)

T2 : p(X) <_f(X7 Y)vnOt q(Y)

rs p(X) « (X, Y),p(Y)

Ty p(X) < f(X,Y),not q(Y),p(Y)
r5 ¢(X) « f(X,Y),not p(Y)

ré: f(X,Y)Vnot f(X,Y) +

Figure 2 depicts three unit completion structuresifer They all have the same content
for the root node{p, not ¢}. The presence qf in the content of the root node has been
motivated in the first structure by means of rulein the second structure by means of
rulers, and in the third structure by means of rule The different ways to motivate
lead to different sets of arcs in the dependency graphs delgro each structure. On
the other hand, to motivate thabt ¢ is in the content of the root node, in each case
it was shown that the body of grounded such that is instantiated as the root node
andY as the successor node is not satisfied, or more concretgbygbence of in the
content of the successor node was enforced in each easef (could not be used to
invalidate the triggering of the rule gswas already present in the content of the arc
from the root node to the successor node in each case).

One can notice that while the content of the successor naddigled in the content
of the root node in each of the cases, only#ar's, the two nodes form a blocking pair
aspathsg,(c,cl) = 0.

2 The status function is relevant only in the definition/comstion of a unit completion structure,
but not in the context of using such structures. As such, Ml@emote a unit complete structure
in the following as a tripl€ EF', cT, G).

UCl : UCQ : UCg :

a{p,not q} b{p, not q} c{p, not q}
{f} k{f} {f}

al{p,not ¢} b1{p} cl{p, not ¢}

Gl = (Vl,Al) G2 = (%,Az) G:s = (Vg,Ag)

Vi :pla),p(al), f(a,al)l Vo :p(b),p(bl), f(d,d1)| Vs : p(c),p(cl), (e, el)

As 1 p(c) = f(c,cl)

Fig. 2. Three unit completion structures fétr: UC,, UC2, andUCs.

Definition 6. A unit completion structure i§nal iff all its successor nodes are blocked,
or they have empty contents.

Proposition 1. A final unit completion structure is a complete clash-flgecompletion
structure.

In our exampld/Cj is a final unit completion structure, and thus also a complete
clash-freed,-completion structure.

Proposition 2. There is a deterministic procedure which computes all umihpletion
structures for a FOLPP in the worst-case scenario in exponential time in the siz@.of

Proof Sketch.We consider the transformation of the non-deterministoeathm
described in Definition 5 into a deterministic procedureefehare at most? different
values for the content of a saturated node, in this casedardhtent of the root of a unit
completion structure, whene = |upreds(P)|. Justifying the presence of a predicate
symbolp in the content of a node takes in the worst case polynomia {choosing a
possible grounding with successor nodes for someruer,), but there is an expo-
nential number of choices to do this (an exponential numbpossible groundings for
every rule). Justifying the presence of a negated predgyatdolnot p in the content
of a node takes in the worst case exponential time (all pesgitbundings of every
ruler € P, have to be considered), while at every step of the computéiere is a
polynomial number of choices (for the ground rule in consatien, choosing a literal
in its body to be refuted). Overall, such a deterministicgedure runs in exponential
time in the worst case scenario. a

5.2 Redundant Unit Completion Structures

As seen in Example 3, there are unit completion structurés mots with equal con-
tent, but possibly different topologies, contents of thecessor nodes and/or possibly

different dependency graphs. As discussed in the intraatutd this section it is worth-
while to identify structures which are strictly more comgting than others, in the sense
that they impose more constraints on the content of the ssoceodes of the struc-
ture and introduce more paths in the dependency graph as#inelye discarded. The
following definition singles out such redundant structures

Definition 7. A unit completion structuré/Cy = (EF;, cT1, G1), with EF; =
({T.,}, ES1), is said to beredundaniff there is another unit completion structure
UCy, = <EF2, CTa, G2>, with EF, = ({T52}, ESQ) S. t.:

— if 9 € CtS(P), then52 =e£1;
T

- CT(El) = (52);
— if e - s1,...,e9 - 5 are the non-blocked successorsegf there exist distinct
successors; - ty,...,e1 - t; of e1 such that:

e CT(e3-8;) CcT(ey - t;), foreveryl <i <, and
o pathsg,(e2,€2 - s;) C pathsa, (e1,¢1 - t;), foreveryl < i </,
with at least one inclusion being strict.

Considering the previous example, one can seelildat, andU C, are redundant
structures, whild/C5 is not, asU (1 is more constraining thabiCs, andUC;, at its
turn is more constraining thainCs.

Proposition 3. Computing the set of non-redundant unit completion stmastdor a
FoLP P can be performed in the worst case in exponential time in itteeaf P.

Proof Sketch.The result follows from the fact that there is an exponemiahber
of unit completion structures for a FOLPin the worst case scenario. a

5.3 Reasoning with FoLPs Using Unit Completion Structures

We define a new algorithm which uses the set of pre-computaer@dundant com-
pletion structures. We call this algorithiy,. As in the case of the previous algorithm,
A, starts with an initial4;-completion structure for checking satisfiability of a upar
predicatep w.r.t. a FOLPP and expands this to a so-callgd-completion structure.

An A,-completion structuréEF, cT, sT, G) is defined similarly as as; -completion
structure, but thetatusfunction has a different domain, the set of nodes of the fores
ST : Ngp — {exp, unexp}.

An initial A;-completion structure for a unary predicapeand FOLP P is defined
similarly as an initial4;-completion structure fop and P, the only difference being
that every node in the extended forest is marked as unexgase:) = unezp, for
everyxr € Ngp.

The difference in the definition of ad;-completion structure compared to its
homonym is due to the fact that in this scenario nodes arenelguhby matching their
content with existent unit completion structures, and rmedjrates in the content of
nodes, like in the case of;. We make explicit the notion of matching the content of a
node with a unit completion structure by introducing a notdlocal satisfiability

Definition 8. A unit completion structur&C for a FOLP P, (EF, cT, G), with EF =
({T.}, ES), locally satisfies (possibly negated) unary predicatéf p € cT(e). Simi-
larly, UC locally satisfies a sef of (possibly) negated unary predicatesSfiC c(e).

All three unit completions in Figure 2 locally satisfy the 4e, not b}. It is easy
to observe that if a unary predicateis not locally satisfied by any unit completion
structureUC for a FOLP P (or equivalentlynot p is locally satisfied by every unit
completion structure); is unsatisfiable w.r.tP. However, local satisfiability of a unary
predicatep in every unit completion structure for a FollPdoes not guarantee 'global’
satisfiability ofp w.r.t. P (as in the case of the program in Example 2 whose only unit
completion structure was the one depicted in that example).

In the process of building amls-completion structur€’'S = (EF, cT, sT, G),
with G = (V, A), for a FOLPP by using unit completion structures as building blocks
an operation commonly appears: the expansion of a node Ngr by addition of
a unit completion structur&’C = (EF , cr’, G'), with EF = ({T.},ES’) and
G = (V', A", which locally satisfies:T(z), at, given that its root matches with
3. We call this operation witaxpandcs(z, UC). Formally, its application updatéss
as follows:

— sT(X)=exp,

— Ngp =NgpU{z-s|e-seT.},

— Apr = Agr U{(z,z-5)| (c,e-5) € Agp },

— ¢r(z) = ctr(e). Foralls suchthat - s € T,, cT(z - s) = cT(e - 9),

- V=Vu{p)|pect(e)}Uipl-s)|pect(es)}

- A=AU{(p(2).4(®)) | (p(2),q(y)) € A}, wherezg =z, ande~s =z - s.

The algorithm has a new rule compared with the original aflyor which we call
Match This rule is meant to replace the expansion rules (i)-(ng the applicability
rule (vii) from the original algorithm.

Match. For a nodexr € Ngp: if sT(x) = unerp non-deterministically choose
a non-redundant unit completion structdr€’ with root matchingz which satisfies
ct(z) and performezpandcs(z, UC).

In this variant of the algorithm we still employ rulégii) Blockingand(ix) Redun-
dancydescribed in Section 4.

Definition 9. A completeds-completion structuréor a FOLP P and ap € upreds(P),

is an.4,-completion structure that results from applying the rilatchto an initial As-
completion structure fop and P, taking into account the applicability rules (viii) and
(ix), s. t. no other rules can be further applied.

The local clash conditions regarding contradictory stricest or structures which
have cycles in the dependency graplare no longer relevant:

8 An anonymous individual behaves like a variable: it matahih any term, while a constant
matches only with itself; thus, unit completion structuneth roots constants can only be used
as initial building blocks for the trees with non-anonymaasts in the structure.

Definition 10. A completed,-completion structure”’S = (EF, cT, ST, G) is clash-
freeif (1) EF does not contain redundant nodes (2) there is no nede Ngp,
unblocked, s.tst(z) = unezp.

The termination of the algorithm follows immediately frohetusage of the block-
ing and of the redundancy rule:

Proposition 4. An initial A;-completion structure for a unary predicgteand a FOLP
P can always be expanded to a compldte completion structure.

The algorithm is sound and complete:

Proposition 5. A unary predicate is satisfiable w.r.t. a FOLFP iff there is a complete
clash-freed,-completion structure.

Proof Sketch.The soundness ofl, follows from the soundness of;: any com-
pletion structure computed usindp could have actually been computed usjdg by
replacing every usage of thdatch rule with the corresponding rule application se-
quence used byl; to derive the unit completion structure which is currenthpanded
to the structure.

The completeness o, derives from the completeness.df: any clash-free com-
pleteA; -completion structure can actually be seen as a complete-ftaed,-completion
structure. It is essential here that the discarded unit ¢etiop structures were strictly
more constraining than some other (preserved) unit coioplstructures. Whenever
the expansion of a node in the complete clash-flgecompletion structure has been
performed by a sequence of rules captured by a redundantemipletion structure,
it is possible to construct a complete clash-frégcompletion structure by using the
simpler non-redundant unit completion structure instead. a

As we still employ the redundancy rule in this version of tltgoathm, a complete
As-completion structure has in the worst case a double expgiahaomber of nodes in
the size of the program. As such:

Proposition 6. 45 runs in the worst-case in nondeterministic double expdaktine.

6 Discussion and Outlook

Our optimized algorithm runs in the worst case in non-deteistic double exponential
time: this is not a surprise as the scope of the techniquedntred here is saving time
by avoiding redundant local computations. The worst-cas@ing complexity of the
algorithm depends on the depth of the trees which have tofiderexd in order to ensure
completeness of the algorithm and on the fact that anywHherking is not feasible.
Even with classical subset blocking one has to explore anrextial number of nodes
across a branch in order for the algorithm to terminate. Tthes only factor which
would improve the worst-case performance is finding a teatidm condition which
considers nodes in different branches. At the moment tieisiséhighly unattainable.
The next step of our work is the evaluation of the new algarithVe expect it
will perform considerably better than the original algbnit in returning positive an-
swers to satisfiability checking queries, while it mighll $tike considerable time in the

cases where a predicate is not satisfiable. Especially grdiic are cases like the one
described in Example 2 where there exists a unit completiarttsire which locally
satisfies the predicate checked to be satisfiable, but titkcpte is actually unsatisfi-
able. An obvious strategy for implementation is to estédidimit on the depth of the
explored structures: in practice it is highly improbablattt there exists a solution, it
can be found only in an open answer set of a considerablesgitgally, it is quite hard
to come up with examples of such situations.

A knowledge compilation technique for reasoning with thes@#otion LogicALC
is described in [4]: there, TBoxes are pre-compiled in areesjve initial computation
which then allows polynomial time satisfiability checkiMge note that this initial step
goes beyond compiling 'local’ knowledge, as it follows rodstrictions up to any depth.
If we would want to pre-compute also non-local computatioms would basically
generate all completion structures for a certain prograhflaen satisfiability checking
becomes trivial.

References

1. T. Eiter, G. lanni, T. Lukasiewicz, R. Schindlauer, andTBmpits. Combining Answer Set
Programming with Description Logics for the Semantic Waiiificial Intelligence 172(12-
13):1495-1539, 2008.

2. F. Fages. A new fix point semantics for generalized logamgmms compared with the
wellfounded and the stable model semantew Generation Computing(4), 1991.

3. C. Feier and S. Heymans. Hybrid Reasoning with Forestd_.Bgbgrams. IrProc. of 6th
European Semantic Web Confereneglume 5554, pages 338—352. Springer, 2009.

4. U. Furbach, H. Gunther, and C. Obermaier. A Knowledge fitation Technique for ALC
TBoxes. InProc. of the Twenty-Second International Florida Artifidiatelligence Research
Society Conference, May 19-21, 2009, Sanibel Island, &#oiUSA 2009.

5. M. Gelfond and V. Lifschitz. The Stable Model Semantiaslfogic Programming. IfProc.
of ICLP’88, pages 1070-1080, 1988.

6. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. DesaoiptLogic Programs: Combin-
ing Logic Programs with Description Logic. IRroc. of the World Wide Web Conference
(WWW) pages 48-57. ACM, 2003.

7. S.Heymans, D. Van Nieuwenborgh, and D. Vermeir. Conefogic ProgramsAnnals of
Mathematics and Artificial Intelligence (Special Issue arswer Set Programming$7(1—
2):103-137, 2006.

8. S.Heymans, D. Van Nieuwenborgh, and D. Vermeir. Open A&nSet Programming for the
Semantic WebJ. of Applied Logi¢5(1):144-169, 2007.

9. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Open anset programming with
guarded programslransactions on Computational Logi@(4):1-53, August 2008.

10. M. Krdtzsch, S. Rudolph, and P. Hitzler. DescriptiorglcoRules. InProc. 18th European
Conf. on Atrtificial Intelligence(ECAI-08pages 80-84. 10S Press, 2008.

11. B. Motik, U. Sattler, and R. Studer. Query Answering faWODL with Rules. Journal of
Web Semanti¢c$(1):41-60, 2005.

12. R. Rosati. DL+log: Tight Integration of Description Lliog and Disjunctive Datalog. In
Proc. of the Int. Conf. on Principles of Knowledge Represgomn and Reasoning (KR)
pages 68-78, 2006.

13. M. Y. Vardi. Reasoning about the Past with Two-way Auttandn Proc. 25th Int. Collo-
quium on Automata, Languages and Programmpages 628—641. Springer, 1998.

