
An Optimization for Reasoning with Forest Logic
Programs ⋆

CRISTINA FEIER, STIJN HEYMANS

Knowledge-Based Systems Group, Institute of Information Systems
Vienna University of Technology

Favoritenstrasse 9-11, A-1040 Vienna, Austria
{feier,heymans}@kr.tuwien.ac.at

Abstract. Open Answer Set Programming (OASP) is an attractive framework
for integrating ontologies and rules. In general OASP is undecidable. In pre-
vious work we provided a tableau-based algorithm for satisfiability checking
w.r.t. forest logic programs, a decidable fragment of OASP,which has the forest
model property. In this paper we introduce an optimized version of that algorithm
achieved by means of a knowledge compilation technique. So-called unit com-
pletion structures, which are possible building blocks of aforest model, in the
form of trees of depth 1, are computed in an initial step of thealgorithm. Re-
peated computations are avoided by using these structures in a pattern-matching
style when constructing a model. Furthermore we identify and discard redundant
unit completion structures: a structure is redundant if there is another structure
which can always replace the original structure in a forest model.

1 Introduction

Integrating Description Logics (DLs) with rules for the Semantic Web has received
considerable attention with approaches such asDescription Logic Programs[6], DL-
safe rules[11],DL+log [12], dl-programs[1], Description Logic Rules[10], and Open
Answer Set Programming (OASP) [9]. OASP is a formalism whichcombines attractive
features from the Logic Programming (LP) and the DL world. The syntax and semantics
of OASP build upon the syntax and semantics of Answer Set Programming (ASP) [5]:
there is a rule-based syntax with anegation as failureoperator which is interpreted via
a stable model semantics, but unlike the LP setting, an open domain semantics, like it
is common in the DL world, is employed. This allows for stating generic knowledge,
without the need to mention actual constants.

Several decidable fragments of OASP were identified by syntactically restricting
the shape of logic programs, while carefully safe-guardingenough expressiveness for
integrating rule- and ontology-based knowledge. A notablefragment is that ofForest
Logic Programs (FoLPs)[8] that are able to simulate reasoning in the DLSHOQ.
FoLPs allow for the presence of only unary and binary predicates in rules which have a

⋆ This work is partially supported by the Austrian Science Fund (FWF) under the projects
P20305 and P20840, and by the European Commission under the project OntoRule (IST-2009-
231875).

tree-like structure. A sound and complete algorithm for satisfiability checking of unary
predicates w.r.t. FoLPs has been presented in [3]. The algorithm exploits the forest
model property of the fragment: if a unary predicate is satisfiable, than it is satisfied by
a forest-shaped model, with the predicate checked to be satisfiable being in the label
of the root of one of the trees composing the forest. It is essentially a tableau-based
procedure which builds such a forest model in a top-down fashion.

In this paper we describe an optimization for reasoning withFoLPs in the form
of a knowledge compilation technique. The technique consists in pre-computing all
possible building blocks of the tableau, in the form of treesof depth 1, blocks which we
call unit completion structures. The original algorithm is used for computing the unit
completion structures. The revised algorithm matches and appends such building blocks
until a termination condition is met, like blocking or reaching a certain depth in the
tableau expansion. In general, not all unit completion structures have to be considered:
inherent redundancy in a FoLP, like rules which are less general than others gives rise
to redundancy among completion structures. A unit completion structure is redundant
iff there is another simpler (less constrained) unit completion structure. The latter can
replace the former in any forest model. We formalize this notion, making it possible to
identify such redundant structures and discard them.

The paper is structured as follows: Section 2 contains preliminaries, like the OASP
semantics and some notation, and Section 3 introduces the FoLP fragment. An overview
of the original algorithm for reasoning with FoLPs is given in Section 4. The main re-
sults of the paper concerning the computation of non-redundant unit completion struc-
tures, and the revised algorithm, are presented in Section 5. Finally, Section 6 draws
some conclusions and discusses future work.

2 Preliminaries

We recall the open answer set semantics [9].Constantsa, b, c, . . ., variablesX,Y, . . .,
termss, t, . . ., andatomsp(t1, . . . , tn) are as usual. Aliteral is an atomL or a negated
atomnot L. We allow forinequality literalsof the forms 6= t, wheres andt are terms.
A literal that is not an inequality literal will be called aregular literal. For a setS of
literals or (possibly negated) predicates,S+ = {l | l ∈ S} andS− = {l | not l ∈ S}.
For a setS of atoms,not S = {not a | a ∈ S}. For a set of (possibly negated)
predicatesS, S(X) = {a(X) | a ∈ S} andS(X,Y) = {a(X,Y) | a ∈ S}. For a
predicatep, ±p denotesp or not p, whereby multiple occurrences of±p in the same
context will refer to the same symbol (eitherp or not p).

A programis a countable set of rulesα← β, whereα is a finite set of regular literals
andβ is a finite set of literals. The setα is theheadand represents a disjunction, while
β is thebodyand represents a conjunction. Ifα = ∅, the rule is called aconstraint.
A special type of rules with empty bodies, are so-calledfree ruleswhich are rules of
the form:q(t1, . . . , tn) ∨ not q(t1, . . . , tn)←, for termst1, . . . , tn; these kind of rules
enable a choice for the inclusion of atoms in the open answer sets. We call a predicateq
free if there is aq(X1, . . . , Xn) ∨ not q(X1, . . . , Xn)←, with variablesX1, . . . , Xn.
Atoms, literals, rules, and programs that do not contain variables areground. For a rule
or a programR, let cts(R) be the constants inR, vars(R) its variables, andpreds(R)

its predicates withupreds(R) the unary andbpreds(R) the binary predicates. For every
non-free predicateq and a programP , Pq is the set of rules ofP that haveq as a head
predicate. AuniverseU for P is a non-empty countable superset of the constants inP :
cts(P) ⊆ U . We callPU the ground program obtained fromP by substituting every
variable inP by every element inU . LetBP (LP) be the set of regular atoms (literals)
that can be formed from a ground programP .

An interpretationI of a groundP is a subset ofBP . We writeI |= p(t1, . . . , tn)
if p(t1, . . . , tn) ∈ I andI |= not p(t1, . . . , tn) if I 6|= p(t1, . . . , tn). Also, for ground
termss, t, we writeI |= s 6= t if s 6= t. For a set of ground literalsL, I |= L if I |= l
for everyl ∈ L. A ground ruler : α ← β is satisfiedw.r.t. I, denotedI |= r, if I |= l
for somel ∈ αwheneverI |= β. A ground constraint← β is satisfied w.r.t.I if I 6|= β.

For a positive ground programP , i.e., a program withoutnot , an interpretationI of
P is amodelof P if I satisfies every rule inP ; it is ananswer setof P if it is a subset
minimal model ofP . For ground programsP containingnot , theGL-reduct[5] w.r.t.
I is defined asP I , whereP I containsα+ ← β+ for α ← β in P , I |= not β− and
I |= α−. I is ananswer setof a groundP if I is an answer set ofP I .

A program is assumed to be a finite set of rules; infinite programs only appear as
byproducts of grounding with an infinite universe. Anopen interpretationof a program
P is a pair(U,M) whereU is a universe forP andM is an interpretation ofPU . An
open answer setof P is an open interpretation(U,M) of P with M an answer set of
PU . An n-ary predicatep in P is satisfiableif there is an open answer set(U,M) of P
s. t.p(x1, . . . , xn) ∈M , for somex1, . . . , xn ∈ U .

We introduce notation for trees which extend those in [13]. Let · be a concatenation
operator between sequences of constants or natural numbers. A treeT with rootc (Tc),
wherec is a specially designated constant, has as nodes sequences of the formc·s, where
s is a (possibly empty) sequence of positive integers formed with the concatenation
operator; forx · d ∈ T , d ∈ N

∗, we have thatx ∈ T . The setAT = {(x, y) | x, y ∈
T, ∃n ∈ N

∗ : y = x · n} is the set of arcs of a treeT . Forx, y ∈ T , we say thatx <T y
iff x is a prefix ofy andx 6= y.

A forestF is a set of trees{Tc | c ∈ C}, whereC is a set of distinguished constants.
We denote withNF = ∪T∈FT andAF = ∪T∈FAT the set of nodes and the set of arcs
of a forestF , respectively. Let<F be a strict partial order relationship on the set of
nodesNF of a forestF wherex <F y iff x <T y for some treeT in F . An extended
forestEF is a tuple(F,ES) whereF = {Tc | c ∈ C} is a forest andES ⊆ NF × C.
We denote byNEF = NF the nodes ofEF and byAEF = AF ∪ES its arcs. So unlike
a normal forest, an extended forest can have arcs from any of its nodes to any root of
some the tree in the forest.

Finally, for a directed graphG, pathsG is the set of pairs of nodes for which there
exists a path inG from the first node in the pair to the second one.

3 Forest Logic Programs

Forest Logic Programs (FoLPs)[8] are logic programs with tree-shaped rules which
allow for constants and for which satisfiability checking under the open answer set
semantics is decidable.

Definition 1. A forest logic program (FoLP)is a program with only unary and bi-
nary predicates, and such that a rule is either afree rulea(s) ∨ not a(s) ← or
f (s , t) ∨ not f (s , t) ← , wheres and t are terms such that ifs and t are both vari-
ables, they are different, a unary rule

r : a(s)← β(s), (γm(s , tm), δm(tm))1≤m≤k , ψ (1)

wheres andtm, 1 ≤ m ≤ k, are terms (again, if boths andtm are variables, they are
different; similarly forti andtj), where

– ψ ⊆
⋃

1≤i6=j≤k{ti 6= tj} and{6=} ∩ γm = ∅ for 1 ≤ m ≤ k,

– ∀ti ∈ vars(r) : γ+i 6= ∅, i.e., for variablesti there is a positive atom that connects
s andti,

or a binary rule
f (s , t)← β(s), γ(s , t), δ(t) (2)

with {6=} ∩ γ = ∅ and γ+ 6= ∅ if t is a variable (s and t are different if both are
variables), or a constraint← a(s) or← f (s , t) wheres andt are different if both are
variables).

The following programP is a FoLP which says that an individual is a special mem-
ber of an organization (smember) if it has the support of another special member:rule
r1, or if it has the support of two regular members of the organization (rmember): rule
r2. The binary predicatesupportwhich describes the ‘has support’ relationship is free.
Nobody can be at the same time both a special member or a regular member:constraint
r4. Two particular regular members area andb: factsr5 andr6.

Example 1.

r1 : smember(X) ← support(X ,Y), smember(Y)
r2 : smember(X) ← support(X ,Y), rmember(Y),

support(X,Z), rmember(Z), Y 6= Z

r3 : support(X ,Y) ∨ not support(X ,Y) ←
r4 : ← smember(X), rmember(X)
r5 : rmember(a) ←
r6 : rmember(b) ←

As their name suggests FoLPs have theforest model property:

Definition 2. LetP be a program. A predicatep ∈ upreds(P) is forest satisfiablew.r.t.
P if there is an open answer set(U,M) of P and there is an extended forestEF ≡
({Tε} ∪ {Ta | a ∈ cts(P)},ES), whereε is a constant, possibly one of the constants
appearing inP , and a labeling functionL : {Tε} ∪ {Ta | a ∈ cts(P)} ∪ AEF →
2preds(P) s. t.

– U = NEF , and
– p ∈ L(ε),
– z · i ∈ T ∈ EF , i > 0, iff there is somef(z, z · i) ∈M , z ∈ T , and
– for y ∈ T ∈ EF , q ∈ upreds(P), f ∈ bpreds(P), we have that

• q(y) ∈M iff q ∈ L(y), and
• f(y, u) ∈M iff (u = y · i ∨ u ∈ cts(P)) ∧ f ∈ L(y, u).

We call such a(U,M) a forest modeland a programP has theforest model prop-
erty if the following property holds: ifp ∈ upreds(P) is satisfiable w.r.t.P thenp is
forest satisfiable w.r.t.P .

Consider the FoLPP introduced in Example 1. The unary predicatesmember
is forest satisfiable w.r.t.P : ({a, b, x}, {rmember(a), rmember(b), support(x, a),
support(x, b), smember(x)}) is a forest model in whichsmember appears in the la-
bel of the (anonymous) root of one of the trees in the forest (see Figure 1). Note that
in the ordinary LP setting, where one restricts the universeto the Herbrand universe,
smember is not satisfiable.

xa
{support}

b
{support}

{smember}
{rmember} {rmember}

Fig. 1. A Forest Model forP

4 An Algorithm for Forest Logic Programs

In this section, we give an overview of the tableau algorithmfor satisfiability checking
for FoLPs introduced in [3]. For technical details we refer the reader to the original
paper. We use as a running example the FOLP from Example 1. Constraints are not
treated explicitly in the algorithm as they can be simulatedusing unary rules. As such,
the constraintr4:← smember(X), rmember(X) in Example 1 is replaced withr ′4:
co(X)← not co(X), smember(X), rmember(X), with co a new predicate.

The basic data structure used by the algorithm to describe a forest model in con-
struction is a so-calledcompletion structure. Its main components are an extended forest
EF , whose set of nodes constitutes the universe of the model, and a labeling function
ct (content), which assigns to every node, resp. arc ofEF , a set of possibly negated
unary, resp. binary predicates. The presence of a predicatesymbolp/not p in the con-
tent of some node or arcx indicates the presence/absence of the atomp(x) in the open
answer set.

The presence (absence) of an atom in the open answer set is justified by imposing
that the body of at least one ground rule which has the respective atom in the head
is satisfied (no body of a rule which has the respective atom inthe head is satisfied).
In order to keep track which (possibly negated) predicate symbols in the content of
some node or arc have already been expanded a so-called status function is introduced.
Furthermore, in order to ensure that no atom in the partiallyconstructed open answer
set is circularly motivated, i.e. the atoms are well-supported [2], a graphG which keeps
track of dependencies between atoms in the (partial) model is maintained.

Definition 3. AnA1-completion structure for a FoLPP 1 is a tuple〈EF , ct, st, G〉
where:

1 We use the prefixA1 to denote completion structures computed using this original algorithm
as opposed to completion structures computed using the optimised algorithm described in the
next section for which we will use the prefixA2.

– EF = 〈F,ES 〉 is an extended forest,
– ct : NEF ∪AEF → 2preds(P)∪not (preds(P)) is the ‘content’ function,
– st : {(x,±q) | ±q ∈ ct(x), x ∈ NEF ∪ AEF } → {exp, unexp} is the ‘status’

function,
– G = 〈V,A〉 is a directed graph which has as vertices atoms in the answer set in

construction:V ⊆ BPNEF
.

An initial A1-completion structurefor checking satisfiability of a unary predicate
p w.r.t. a FoLPP is a completion structure〈EF , ct, st, G〉 with EF = (F, ∅), F =
{Tε} ∪ {Ta | a ∈ cts(P)}, whereε is a constant, possibly incts(P), Tx = {x}, for
x ∈ {ε} ∪ cts(P),G = 〈V, ∅〉, V = {p(ε)}, andct(ε) = {p}, st(ε, p) = unexp.

An extended forest is initialized with single-node trees with roots constants from
P and, possibly, a new single-node tree with anonymous root. The forest model from
Figure 1 has been evolved from an initial completion structure which has asε, the root
element wheresmember has to be satisfied, the anonymous individual,x. There are
two other single-node trees:Ta andTb. The predicatesmember in the content ofx is
marked as unexpanded andG is a graph with a single vertexsmember(x).

EF :
xa b

{smemberu}
{} {}

V : smember(x)
A: ∅

An initial A1-completion structure for checking the satisfiability of a unary predi-
catep w.r.t. a FoLPP is evolved by means ofexpansion rulesto a complete clash-free
structure that corresponds to a finite representation of an open answer set in casep is
satisfiable w.r.t.P . Applicability rulesgovern the application of the expansion rules.

4.1 Expansion Rules

In the following, for a completion structure〈EF , st, ct, G〉, letx ∈ NEF and(x, y) ∈
AEF be the node, resp. arc, under consideration.

(i) Expand unary positive. For a unary positive (non-free)p ∈ ct(x) s. t.st(x, p) =
unexp, choose a unary ruler ∈ Pp for which s, the head term, unifies withx; ground
this rule by substitutings with x, and the successor termstm-s with successors ofx in
EF s. t. the inequalities inψ are satisfied (if needed one can introduce new successors
of x in EF , either as successors ofx in T , wherex ∈ T , or in the form of constants
fromP). We motivate the presence ofp(x) in the open answer set by enforcing its body
to be satisfied by inserting appropriate (possibly negated)predicate symbols in the con-
tents of nodes/arcs of the structure. The newly inserted predicate symbols are marked
as unexpanded andG is updated, by adding arcs fromp(x) to every body atom.

In our example,smember is unexpanded in the initial completion structure. Ruler2
is chosen to motivate the presence ofsmember(x) in the open answer set. It is grounded
by substitutingX with x, andY1 andY2 with a andb, respectively:smember(x) ←
support(x , a) , rmember(x, a), support(x, b), rmember(x, b). We enforce the body

of this ground rule to be true and obtain the following completion structure (note also
thatG has been updated):

EF :

xa
{supportu}

b
{supportu}

{smembere}
{rmemberu} {rmemberu}

V : smember(x), support(x,a), support(x, b), rmember(x,a), rmember(x, b)
A : smember(x)→ support(x,a), smember(x)→ support(x, b),

smember(x)→ rmember(x,a), smember(x)→ rmember(x, b)

All currently unexpanded predicates, i.e.,support in the content of arcs(x, a) and
(x, b), andrmember in the content of nodesa and b, can be trivially expanded as
support is a free predicate andr5 andr6 are facts. However one still has to ensure that
the structure constructed so far can be extended to an actualopen answer set, i.e., it is
consistent with the rest of the program. Next expansion ruletakes care of this.

(ii) Choose a unary predicate. If all predicates inct(x) and in the contents of x’s
outgoing edges are expanded and there are still unary predicatesp which do not appear
in ct(x), pick such ap and inject eitherp or not p in ct(x). The intuition is that one
has explore all unary/binary predicates at every node/arc as some predicate which is not
reachable by dependency-directed expansion can render impossible the extension of the
partially constructed model to a full model. Consider the simple case where there is a
predicatep defined only by the rule:p ← not p and±p does not appear in the body
of any other rule. The program is obviously inconsistent, but this cannot be detected
without trying to prove thatp is or is not in the open answer set.

In our example, one does not know whetherco or not co belongs toct(x). We
choose to injectnot co in ct(x) and mark it as unexpanded.

(iii) Expand unary negative. Justifying a negative unary predicatenot p ∈ ct(x)
means refuting the body of every ground rule which definesp(x), or in other words
refuting at least a literal from the body of every ground rulewhich definesp(x). For
more technical details concerning this rule we refer the reader to [3].

In our example, the unexpanded predicate inct(x), not co, is defined by one rule,
r′4, whose only possible grounding isco(x)← not co(x), smember(x), rmember(x).
Refuting the body of this rule amounts to insertingnot rmember in ct(x) (smember
andnot co are already part of the content of that node). At its turn, thepresence of
not rmember in ct(x) has to be motivated by using the expand unary negative rule,
and the process goes on. Finally, we obtain a completion structure in which no expan-
sion rule is further applicable and which represents exactly the forest model from Figure
1 (smember andrmember are abbreviated withsm andrm, respectively):

EF :

xa
{support}

b
{support}

{sm,not rm,not co}

{rm,not sm,not co} {rm,not sm,not co}

V : sm(x), support(x,a), support(x, b), rm(x, a), rm(x, b)
A : sm(x)→ support(x, a), sm(x)→ support(x, b), sm(x)→ rm(x, a), sm(x)→ rm(x, b)

Similarly to rules (i), (ii), and (iii) we define the expansion rules for binary predi-
cates: (iv)Expand binary positive, (v) Expand binary negative, and (vi)Choose binary.

4.2 Applicability Rules

The applicability rules restrict the use of the expansion rules.
(vii) Saturation. A nodex ∈ NEF is saturatedif for all p ∈ upreds(P), p ∈ ct(x)

or not p ∈ ct(x), and no±q ∈ ct(x) can be expanded with rules (i-iii), and for
all (x, y) ∈ AEF and p ∈ bpreds(P), p ∈ ct(x, y) or not p ∈ ct(x, y), and no
±f ∈ ct(x, y) can be expanded with (iv-vi). No expansions should be performed on a
node fromNEF which does not belong tocts(P) until its predecessor is saturated.

(viii) Blocking. A nodex ∈ NEF is blockedif there is an ancestory of x in F ,
y <F x, y 6∈ cts(P), s. t. ct(x) ⊆ ct(y) and the setpathsG(y, x) = {(p, q) |
(p(y), q(x)) ∈ pathsG ∧ q is not free} is empty. We call(y, x) a blocking pair. No
expansions can be performed on a blocked node. One can noticethat subset blocking is
not enough for pruning the tableau expansion. Every atom in the open answer set has to
be finitely motivated [7, Theorem 2]: in order to ensure that,one has to check that there
is no dependency inG between an atom formed with the blocking node and an atom
formed with the blocked node. The extra condition makes the blocking rule insufficient
to ensure the termination of the algorithm. Next applicability rule ensures termination.

Example 2.Consider a restricted version ofP from Example 1 which contains only
rulesr1, andr3. By checking satisfiability ofsmember w.r.t. the new program one ob-
tains the following completion structure:

EF : V : {smember(x), smember(y)} A : {smember(x)→ smember(y)}

x

y

{support}

{smember}

{smember}

While the contents of nodesx andy are identical, they do not form a blocking pair as
there is an arc inG betweensmember(x) andsmember(y): unfolding the structure
(justifyingy similarly asx) would lead to an infinite chain:smember(x), smember(y),
smember(z), . . . , in the atom dependency graph of the grounded program.

(ix) Redundancy. A nodex ∈ NEF is redundantif it is saturated, it is not blocked,
and there arek ancestors ofx in F , (yi)1≤i≤k, with k = 2p(2p

2

− 1) + 3, andp =
|upreds(P)|, s. t. ct(x) = ct(yi). In other words, a node is redundant if it is not
blocked and it hask ancestors with content equal to its content. Any forest model of
a FoLPP which satisfiesp can be reduced to another forest model which satisfiesp
and has at mostk + 1 nodes with equal content on any branch of a tree from the forest
model, and furthermore the(k+1)st node, in case it exists, is blocked [3]. One can thus
search for forest models only of the latter type. As such the detection of a redundant
node constitutes a clash and stops the expansion process.

4.3 Termination, Soundness, Completeness, Complexity Results

An A1-completion structure iscontradictory if for somex ∈ NEF/AEF and p ∈
upreds(P)/ bpreds(P), {p, not p} ⊆ ct(x). An A1-completion structure for a FoLP

P and ap ∈ upreds(P) is completeif it is a result of applying the expansion rules to
the initial completion structure forp andP , taking into account the applicability rules,
s. t. no expansion rules can be further applied.

Also, a completeA1-completion structureCS = 〈EF , ct, st, G〉 isA1-clash-free
if: (1) CS is not contradictory (2)EF does not contain redundant nodes (3)G does
not contain cycles (4) there is nop ∈ upreds(P)/bpreds(P) andx ∈ NEF/AEF , x
unblocked, s.t.p ∈ ct(x), andst(x, p) = unexp.

It has been shown that an initialA1-completion structure for a unary predicatep and
a FoLPP can always be expanded to a completeA1-completion structure (termination),
that, if p is satisfiable w.r.t.P , there is a complete clash-freeA1-completion structure
(soundness), and, finally, that, if there is a complete clash-freeA1-completion structure,
p is satisfiable w.r.t.P (completeness).

In the worst case the algorithm runs in nondeterministic double exponential time,
and a complete completion structure has a double exponential number of nodes in the
size of the program. The high complexity is mostly due to the fact that blocking is not
enough to ensure termination, and that, in particular, anywhere blocking cannot be used
as a termination technique. As already explained this peculiarity appears as a result of
adopting a minimal model semantics.

5 Optimized Reasoning with FoLPs

This section presents a knowledge compilation technique for reasoning with FoLPs to-
gether with an algorithm which makes use of this pre-compiled knowledge. The main
idea is to capture all possible local computations, which are typically performed over
and over again in the process of saturating the content of a node, by pre-computing
all possible completion structures of depth 1 using the original algorithm described in
the previous section. In the new algorithm, saturating the content of a node reduces to
picking up one of the pre-computed structures which satisfies the existing constraints
regarding the content of that node and appending the structure to the completion in con-
struction: such constraints are sets of unexpanded (possibly negated) predicates which
are needed to motivate the presence/absence in the open answer set of atoms constructed
with the current node and the node above them.

Picking up a certain unit completion structure to saturate anode can impose strictly
more constraints on the resulted structure than picking another unit completion structure
with the same root content. Such constraints refer to: (1) the contents of the successor
(non-blocked) nodes in a unit completion structure; (2) thepaths from an atom formed
with the root node of a unit completion to an atom formed with asuccessor node of
such a completion – the more paths there are the harder blocking becomes. We discard
such structures which are strictly more constraining than others, as they can be seen as
redundant building blocks for a model.

The rest of the section formalizes and exemplifies these notions.

5.1 Unit Completion Structures

As mentioned in the introduction of this section, the intention is to obtain all completion
structures of depth 1 which can be used as building blocks in our algorithm. We call

such structuresunit completion structures. The skeleton of such a structure, is a so-
called initial unit completion structure. If they are to be used as building blocks in
the algorithms, unit completion structures have to have as backbones trees of depth 1,
and not forests. Hence, an initial unit completion structure is defined as a tree (unlike
its counterpart notion from the previous section, initial completion structure, which is
defined as a forest) with a single node, the root, which is either an anonymous constant
or one of the constants already present in the program. The content of the root is empty.

Definition 4. An initial unit completion structurefor a FoLPP is a completion struc-
ture 〈EF , ct, st, G〉 with EF = (F,ES), F = {Tε}, whereε is a constant, possibly
in cts(P), Tε = {ε}, ES = ∅,G = 〈V,A〉, V = ∅,A = ∅, andct(ε) = ∅.

A unit completion structure captures a possible local computation: that is, it is ob-
tained as an expansion of an initial unit completion structure, to a tree of depth 1.

Definition 5. A unit completion structure〈EF , ct, st, G〉 for a FoLPP , with EF =
({Tε},ES), is anA1-completion structure derived from an initial unit completion
structure by application of the expansion rules (i)-(vi) described in Section 4.1, ac-
cording to the applicability rules introduced in Section 4.2, which has been expanded
such thatε is saturated and for alls such thatε · s ∈ Tε, and for all±p ∈ ct(ε · s),
st(±p, ε · s) = unexp.2

Example 3.Consider the programPr:

r1 : p(X)← not p(X)
r2 : p(X)← f (X ,Y), not q(Y)
r3 : p(X)← f (X ,Y), p(Y)
r4 : p(X)← f (X ,Y), not q(Y), p(Y)
r5 : q(X)← f (X ,Y), not p(Y)
r6 : f (X ,Y) ∨ not f (X ,Y)←

Figure 2 depicts three unit completion structures forPr. They all have the same content
for the root node:{p, not q}. The presence ofp in the content of the root node has been
motivated in the first structure by means of ruler4, in the second structure by means of
ruler3, and in the third structure by means of ruler2. The different ways to motivatep
lead to different sets of arcs in the dependency graphs belonging to each structure. On
the other hand, to motivate thatnot q is in the content of the root node, in each case
it was shown that the body ofr5 grounded such thatX is instantiated as the root node
andY as the successor node is not satisfied, or more concretely thepresence ofp in the
content of the successor node was enforced in each case (not f could not be used to
invalidate the triggering of the rule asf was already present in the content of the arc
from the root node to the successor node in each case).

One can notice that while the content of the successor node isincluded in the content
of the root node in each of the cases, only forUC3, the two nodes form a blocking pair
aspathsG3

(c, c1) = ∅.

2 The status function is relevant only in the definition/construction of a unit completion structure,
but not in the context of using such structures. As such, we will denote a unit complete structure
in the following as a triple〈EF , ct, G〉.

UC1 : UC2 : UC3 :

a

a1

{f}

{p,not q}

{p,not q}

b

b1

{f}

{p,not q}

{p}

c

c1

{f}

{p,not q}

{p,not q}

G1 = (V1, A1) G2 = (V2, A2) G3 = (V3, A3)

V1 : p(a), p(a1), f(a, a1) V2 : p(b), p(b1), f(d, d1) V3 : p(c), p(c1), f(c, c1)

A1 :
p(a)→ f(a, a1),

A2 :
p(b)→ f(b, b1),

A3 : p(c)→ f(c, c1)
p(a)→ p(a1) p(b)→ p(b1)

Fig. 2. Three unit completion structures forPr: UC1, UC2, andUC3.

Definition 6. A unit completion structure isfinal iff all its successor nodes are blocked,
or they have empty contents.

Proposition 1. A final unit completion structure is a complete clash-freeA1-completion
structure.

In our exampleUC3 is a final unit completion structure, and thus also a complete
clash-freeA1-completion structure.

Proposition 2. There is a deterministic procedure which computes all unit completion
structures for a FoLPP in the worst-case scenario in exponential time in the size ofP .

Proof Sketch.We consider the transformation of the non-deterministic algorithm
described in Definition 5 into a deterministic procedure. There are at most2p different
values for the content of a saturated node, in this case for the content of the root of a unit
completion structure, wherep = |upreds(P)|. Justifying the presence of a predicate
symbolp in the content of a node takes in the worst case polynomial time (choosing a
possible grounding with successor nodes for some ruler ∈ Pp), but there is an expo-
nential number of choices to do this (an exponential number of possible groundings for
every rule). Justifying the presence of a negated predicatesymbolnot p in the content
of a node takes in the worst case exponential time (all possible groundings of every
rule r ∈ Pp have to be considered), while at every step of the computation there is a
polynomial number of choices (for the ground rule in consideration, choosing a literal
in its body to be refuted). Overall, such a deterministic procedure runs in exponential
time in the worst case scenario. ⊓⊔

5.2 Redundant Unit Completion Structures

As seen in Example 3, there are unit completion structures with roots with equal con-
tent, but possibly different topologies, contents of the successor nodes and/or possibly

different dependency graphs. As discussed in the introduction to this section it is worth-
while to identify structures which are strictly more constraining than others, in the sense
that they impose more constraints on the content of the successor nodes of the struc-
ture and introduce more paths in the dependency graph as theycan be discarded. The
following definition singles out such redundant structures.

Definition 7. A unit completion structureUC1 = 〈EF 1, ct1, G1〉, with EF 1 =
({Tε1}, ES1), is said to beredundantiff there is another unit completion structure
UC2 = 〈EF 2, ct2, G2〉, withEF 2 = ({Tε2}, ES2) s. t.:

– if ε2 ∈ cts(P), thenε2 = ε1;
– ct(ε1) = ct(ε2);
– if ε2 · s1, . . . , ε2 · sl are the non-blocked successors ofε2, there existl distinct

successorsε1 · t1, . . . , ε1 · tl of ε1 such that:
• ct(ε2 · si) ⊆ ct(ε1 · ti), for every1 ≤ i ≤ l, and
• pathsG2

(ε2, ε2 · si) ⊆ pathsG1
(ε1, ε1 · ti), for every1 ≤ i ≤ l,

with at least one inclusion being strict.

Considering the previous example, one can see thatUC1, andUC2 are redundant
structures, whileUC3 is not, asUC1 is more constraining thanUC2, andUC2 at its
turn is more constraining thanUC3.

Proposition 3. Computing the set of non-redundant unit completion structures for a
FoLPP can be performed in the worst case in exponential time in the size ofP .

Proof Sketch.The result follows from the fact that there is an exponentialnumber
of unit completion structures for a FoLPP in the worst case scenario. ⊓⊔

5.3 Reasoning with FoLPs Using Unit Completion Structures

We define a new algorithm which uses the set of pre-computed non-redundant com-
pletion structures. We call this algorithmA2. As in the case of the previous algorithm,
A2 starts with an initialA2-completion structure for checking satisfiability of a unary
predicatep w.r.t. a FoLPP and expands this to a so-calledA2-completion structure.

AnA2-completion structure〈EF , ct, st, G〉 is defined similarly as anA1-completion
structure, but thestatusfunction has a different domain, the set of nodes of the forest:
st : NEF → {exp, unexp}.

An initial A2-completion structure for a unary predicatep and FoLPP is defined
similarly as an initialA1-completion structure forp andP , the only difference being
that every node in the extended forest is marked as unexpanded: st(x) = unexp, for
everyx ∈ NEF .

The difference in the definition of anA2-completion structure compared to itsA2

homonym is due to the fact that in this scenario nodes are expanded by matching their
content with existent unit completion structures, and not predicates in the content of
nodes, like in the case ofA1. We make explicit the notion of matching the content of a
node with a unit completion structure by introducing a notion of local satisfiability:

Definition 8. A unit completion structureUC for a FoLPP , 〈EF , ct, G〉, withEF =
({Tε},ES), locally satisfiesa (possibly negated) unary predicatep iff p ∈ ct(ε). Simi-
larly, UC locally satisfies a setS of (possibly) negated unary predicates iffS ⊆ ct(ε).

All three unit completions in Figure 2 locally satisfy the set {a, not b}. It is easy
to observe that if a unary predicatep is not locally satisfied by any unit completion
structureUC for a FoLPP (or equivalentlynot p is locally satisfied by every unit
completion structure),p is unsatisfiable w.r.t.P . However, local satisfiability of a unary
predicatep in every unit completion structure for a FoLPP does not guarantee ’global’
satisfiability ofp w.r.t.P (as in the case of the program in Example 2 whose only unit
completion structure was the one depicted in that example).

In the process of building anA2-completion structureCS = 〈EF , ct, st, G〉,
with G = (V,A), for a FoLPP by using unit completion structures as building blocks
an operation commonly appears: the expansion of a nodex ∈ NEF by addition of
a unit completion structureUC = 〈EF

′

, ct
′

, G′〉, with EF
′

= ({Tε}, ES
′

) and
G

′

= (V
′

, A
′

), which locally satisfiesct(x), atx, given that its root matches withx
3. We call this operation withexpandCS(x, UC). Formally, its application updatesCS
as follows:

– st(x)=exp,
– NEF = NEF ∪ {x · s | ε · s ∈ Tε},
– AEF = AEF ∪ {(x, x · s) | (ε, ε · s) ∈ AEF

′ },
– ct(x) = ct(ε). For alls such thatε · s ∈ Tε, ct(x · s) = ct(ε · s),
– V = V ∪ {p(x) | p ∈ ct(ε)} ∪ {p(x · s) | p ∈ ct(ε · s)},
– A = A ∪ {(p(z), q(y)) | (p(z), q(y)) ∈ A

′

}, whereε = x, andε · s = x · s.

The algorithm has a new rule compared with the original algorithm which we call
Match. This rule is meant to replace the expansion rules (i)-(vi) and the applicability
rule (vii) from the original algorithm.

Match. For a nodex ∈ NEF : if st(x) = unexp non-deterministically choose
a non-redundant unit completion structureUC with root matchingx which satisfies
ct(x) and performexpandCS(x, UC).

In this variant of the algorithm we still employ rules(viii) Blockingand(ix) Redun-
dancydescribed in Section 4.

Definition 9. A completeA2-completion structurefor a FoLPP and ap ∈ upreds(P),
is anA2-completion structure that results from applying the ruleMatchto an initialA2-
completion structure forp andP , taking into account the applicability rules (viii) and
(ix), s. t. no other rules can be further applied.

The local clash conditions regarding contradictory structures or structures which
have cycles in the dependency graphG are no longer relevant:

3 An anonymous individual behaves like a variable: it matcheswith any term, while a constant
matches only with itself; thus, unit completion structureswith roots constants can only be used
as initial building blocks for the trees with non-anonymousroots in the structure.

Definition 10. A completeA2-completion structureCS = 〈EF , ct, st, G〉 is clash-
free if (1) EF does not contain redundant nodes (2) there is no nodex ∈ NEF , x
unblocked, s.t.st(x) = unexp.

The termination of the algorithm follows immediately from the usage of the block-
ing and of the redundancy rule:

Proposition 4. An initialA2-completion structure for a unary predicatep and a FoLP
P can always be expanded to a completeA2-completion structure.

The algorithm is sound and complete:

Proposition 5. A unary predicatep is satisfiable w.r.t. a FoLPP iff there is a complete
clash-freeA2-completion structure.

Proof Sketch.The soundness ofA2 follows from the soundness ofA1: any com-
pletion structure computed usingA2 could have actually been computed usingA1 by
replacing every usage of theMatch rule with the corresponding rule application se-
quence used byA1 to derive the unit completion structure which is currently appended
to the structure.

The completeness ofA2 derives from the completeness ofA1: any clash-free com-
pleteA1-completion structure can actually be seen as a complete clash-freeA2-completion
structure. It is essential here that the discarded unit completion structures were strictly
more constraining than some other (preserved) unit completion structures. Whenever
the expansion of a node in the complete clash-freeA1-completion structure has been
performed by a sequence of rules captured by a redundant unitcompletion structure,
it is possible to construct a complete clash-freeA2-completion structure by using the
simpler non-redundant unit completion structure instead. ⊓⊔

As we still employ the redundancy rule in this version of the algorithm, a complete
A2-completion structure has in the worst case a double exponential number of nodes in
the size of the program. As such:

Proposition 6. A2 runs in the worst-case in nondeterministic double exponential time.

6 Discussion and Outlook

Our optimized algorithm runs in the worst case in non-deterministic double exponential
time: this is not a surprise as the scope of the technique introduced here is saving time
by avoiding redundant local computations. The worst-case running complexity of the
algorithm depends on the depth of the trees which have to be explored in order to ensure
completeness of the algorithm and on the fact that anywhere blocking is not feasible.
Even with classical subset blocking one has to explore an exponential number of nodes
across a branch in order for the algorithm to terminate. Thus, the only factor which
would improve the worst-case performance is finding a termination condition which
considers nodes in different branches. At the moment this seems highly unattainable.

The next step of our work is the evaluation of the new algorithm. We expect it
will perform considerably better than the original algorithm in returning positive an-
swers to satisfiability checking queries, while it might still take considerable time in the

cases where a predicate is not satisfiable. Especially problematic are cases like the one
described in Example 2 where there exists a unit completion structure which locally
satisfies the predicate checked to be satisfiable, but the predicate is actually unsatisfi-
able. An obvious strategy for implementation is to establish a limit on the depth of the
explored structures: in practice it is highly improbable that if there exists a solution, it
can be found only in an open answer set of a considerable size:actually, it is quite hard
to come up with examples of such situations.

A knowledge compilation technique for reasoning with the Description LogicALC
is described in [4]: there, TBoxes are pre-compiled in an expensive initial computation
which then allows polynomial time satisfiability checking.We note that this initial step
goes beyond compiling ’local’ knowledge, as it follows rolerestrictions up to any depth.
If we would want to pre-compute also non-local computations, we would basically
generate all completion structures for a certain program, and then satisfiability checking
becomes trivial.

References

1. T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H.Tompits. Combining Answer Set
Programming with Description Logics for the Semantic Web.Artificial Intelligence, 172(12-
13):1495–1539, 2008.

2. F. Fages. A new fix point semantics for generalized logic programs compared with the
wellfounded and the stable model semantics.New Generation Computing, 9(4), 1991.

3. C. Feier and S. Heymans. Hybrid Reasoning with Forest Logic Programs. InProc. of 6th
European Semantic Web Conference, volume 5554, pages 338–352. Springer, 2009.

4. U. Furbach, H. Günther, and C. Obermaier. A Knowledge Compilation Technique for ALC
TBoxes. InProc. of the Twenty-Second International Florida Artificial Intelligence Research
Society Conference, May 19-21, 2009, Sanibel Island, Florida, USA, 2009.

5. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. InProc.
of ICLP’88, pages 1070–1080, 1988.

6. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Combin-
ing Logic Programs with Description Logic. InProc. of the World Wide Web Conference
(WWW), pages 48–57. ACM, 2003.

7. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Conceptual Logic Programs.Annals of
Mathematics and Artificial Intelligence (Special Issue on Answer Set Programming), 47(1–
2):103–137, 2006.

8. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Open Answer Set Programming for the
Semantic Web.J. of Applied Logic, 5(1):144–169, 2007.

9. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Open answer set programming with
guarded programs.Transactions on Computational Logic, 9(4):1–53, August 2008.

10. M. Krötzsch, S. Rudolph, and P. Hitzler. Description Logic Rules. InProc. 18th European
Conf. on Artificial Intelligence(ECAI-08), pages 80–84. IOS Press, 2008.

11. B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with Rules. Journal of
Web Semantics, 3(1):41–60, 2005.

12. R. Rosati. DL+log: Tight Integration of Description Logics and Disjunctive Datalog. In
Proc. of the Int. Conf. on Principles of Knowledge Representation and Reasoning (KR),
pages 68–78, 2006.

13. M. Y. Vardi. Reasoning about the Past with Two-way Automata. In Proc. 25th Int. Collo-
quium on Automata, Languages and Programming, pages 628–641. Springer, 1998.

