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Abstract. We introduce a framework, based on logic programming, for prefer-
ential reasoning with agents on the Semantic Web. Initially, we encode the knowl-
edge of an agent as a logic program equipped with call literals. Such call literals
enable the agent to pose yes/no queries to arbitrary knowledge sources on the
Semantic Web, without conditions on, e.g., the representation language of those
sources. As conflicts may arise from reasoning with different knowledge sources,
we use the extended answer set semantics, which can provide different strate-
gies for solving those conflicts. Allowing, in addition, foran agent to express its
preference for the satisfaction of certain rules over others, we can then induce a
preference order on those strategies. However, since it is natural for an agent to
believe its own knowledge (encoded in the program) but consider some sources
more reliable than others, it can alternatively express preferences on call literals.
Finally, we show how an agent can learn preferences on call literals if it is part of
a web of trusted agents.

1 Introduction

The current WWW is a gigantic pool of data, where one can easily imagine two web
sites saying the opposite. Human users are capable of deciding which sources they find
trustworthy or not (irrespective of the fact whether they actually are or not). Semantic
Web software agents [18] on the other hand would have an equally vast amount of data
at their disposition, but a far more difficult time differentiating between good and bad
information.

In this paper, we will gradually build a (abstract) softwareagent, i.e. an entity on
a web of trust that can reason with a diverse pool of (possiblymutually inconsistent)
knowledge sources. The basic underlying reasoning framework we use for such an agent
is answer set programming (ASP)[13, 3], a logic programming paradigm with a stable
model semantics for negation as failure. Alogic programcorresponds to knowledge one
wishes to represent, or, more specifically, to an encoding ofa particular problem, e.g.
a planning problem [24, 9]; theanswer setsof the program then provide its intentional
knowledge, or the solutions of the encoded problem, e.g. a plan for a planning problem.
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A traditional logic program has a limited view on the world; it restricts itself to its
own knowledge and does not allow calls to external sources. In a first phase, to construct
suitable Semantic Web agents, we thus introducecall literals in rules, e.g., a ruletr1 :
¬train ← geo1 .300km(brussels ,madrid), wheregeo1 .300km(brussels ,madrid) is
a call literal and¬train a normal literal. The rule reads “if according to thegeo1 on-
tology Brussels is more than 300 km away from Madrid, one should not go by train”.
The word “ontology” is slightly misleading, sincegeo1 can be anything: an OWL DL
[4] knowledge base, an SQL database, RDF data, another agent, anything. In order to
establish a suitable semantics for such call literals, we associate with each call literal in
a program an instance of a decision problem, e.g., satisfiability checking in OWL DL,
checking whether a tuple is in the database, . . . An evaluation function then assignstrue
or false to the call literal, depending on the corresponding instance. Technically, pro-
grams with calls are a subclass of logic programs with generalized quantifiersQC [10],
where a generalized quantifierQC checks whether a relation defined by the program
is in a class of structuresC. In the proposed setting, every call literal corresponds toa
class of structuresC that is a singleton set containing some literal if the instance of the
decision problem associated with that call literal returnstrue.

In contrast with approaches as in [5, 17, 25, 23, 19] where oneattempts to reduce
reasoning in description logics (DLs) [2] to logic programming or approaches biased
more towards the integration of description logics and logic programming reasoning
[8, 29, 11], the proposed framework does not restrict itselfto DLs, knowledge can be
represented in any language with associated reasoning procedures; agents that want to
use the knowledge only have to know how to call those procedures.

Besides making calls to sources, agents have to be able to cope with conflicts, e.g.,
add to the above train rule that if Brussels and Madrid are notdivided by water, one
should take the train:tr2 : train ← not geo2 .dividedwater(brussels ,madrid). If the
call togeo1 returnstrue, claiming that Brussels is indeed more than 300 km away from
Madrid, and that the call togeo2 returnsfalse(and is thus faulty), this leads to a conflict
sincetr1 deduces¬train andtr2 deducestrain. The normal answer set semantics has
no answer sets for this program, which is not feasible on the Semantic Web – we do not
want an agent to stay indecisive on different contradictingsources. The extended answer
set semantics and its notion ofdefeatloosens up the normal answer set semantics by
allowing rules to remain unsatisfied provided there is a competing rule (i.e. a rule with
opposite head) that is applied (both the head and body are true). The above program
results then in the twoextended answer sets{train} and{¬train}, representing the
possible alternatives for the conflict, wheretr1 , respectivelytr2 , is defeated.

The agent can then choose among those possible solutions based on a preference
on the satisfaction of rules, e.g.,tr1 < tr2 , indicates that the agent prefers to sat-
isfy tr1 over tr2 . This preference naturally induces an order on its extendedanswer
sets:{¬train} v {train}. A wide variety of applications of agents with preferences are
imaginable, e.g. to guide service discovery on mobile devices [31].

In the context of the Semantic Web, a preference on call literals seems more natural
than an order on the agent’s own rules: an agent generally assumes its own rules are
correct, whereas the uncertain part, and hence the part thatmay introduce conflicts, are
the external calls. Based on criteria such as authority or reliability the agent can then
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express its preference for certain calls. Furthermore, we show a translation of an order
on call literals to an order on the rules of the agents.

What if the agent does not know which calls are more reliable than others; can it
still make an educated guess regarding its preferences? Theweb of trust[14, 16, 15, 28,
7] provides an architecture on which preferential reasoning for agents without (or with
incomplete) preferences can be realized.

In [28], a web of trust is essentially a graph of agents where edges have a weight in
[0, 1], indicating the amount of trust an agent has in its direct neighbors. Moreover, every
user can have a belief, a number in[0, 1], in logical statements. Themerged beliefin a
logical statement, i.e. taking into account the beliefs in that statement of trusted agents,
can be computed in a large number of ways, e.g., one can demandthat the amount of
trust between users is at most the minimal trust weight on a path between them or that
the further away an agent is, the lower the trust in that agentshould be [16]. In the
TRELLIS system [14] users rate information sources and, assuming different users rate
common sources, TRELLIS rates sources averaging over the ratings of different users.

Relating this to our approach, the beliefs in statements correspond to preferences
on call literals. Furthermore, in order to construct agentson top of any web of trust, we
do not presuppose any conditions on the trust metric, i.e. the method to calculate the
merged trust given a web of trust, but one: it must be possibleto associate with every
agent a sequence of trusted agents ordered according to trustworthiness. Given, for
each agent, such an ordered sequence, we then complete the preferences of an agent by
considering its own preferences and adding further preferences according to its trusted
agents.

The remainder of the paper is organized as follows. In Section 2, we define the
preferred answer set semantics. Section 3 extends the preferred answer set semantics
with the possibility to define call literals and their accompanying calls. In Section 4, we
define a preference order on literals and a method for constructing this order based on a
web of trust. Finally, Section 5 contains conclusions and directions for further research.
Due to space restrictions, proofs have been omitted but can be found in [20].

2 Preliminaries: Preferred Answer Set Programming

We introduce the extended answer set semantics as in [30]. Aliteral is an atoma or a
classically negated atom¬a; anextended literalis a literall or a literal preceded with
thenegation as failuresymbolnot: not l. A programis a finite set of rulesα← β where
α, thehead, is a set of literals with|α| ≤ 1, i.e.α is empty or a singleton, andβ, the
body, is a finite set of extended literals. We usually denote a ruleasa ← β or ← β, and
we call the latter aconstraint. The positive part of the body isβ+ = {l | l ∈ β, l literal},
the negative part isβ− = {l | not l ∈ β}, e.g. forβ = {a, not ¬b, not c}, we have that
β+ = {a} andβ− = {¬b, c}. For a set of literalsα, not α = {not a | a ∈ α}, and
α∗ = α ∪ not α.

TheHerbrand BaseBP of a programP is the set of all atoms that can be formed
using the language ofP . Let LP be the set of literals that can be formed withP , i.e.
LP = BP ∪ ¬BP . For a setX of literals, we take¬X = {¬l | l ∈ X} where¬¬a is
a; X is consistentif X ∩ ¬X = ∅. An interpretationI of P is any consistent subset of
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LP . For a literall, we writeI |= l, if l ∈ I, which extends for extended literalsnot l

to I |= not l if I 6|= l. In general, for a set of extended literalsX , I |= X if I |= x for
every extended literalx ∈ X . A rule r : a ← β is satisfiedw.r.t. I, denotedI |= r, if
I |= a wheneverI |= β, i.e.r is appliedwhenever it isapplicable. A constraint← β

is satisfied w.r.t.I if I 6|= β. The set of satisfied rules inP w.r.t. I is thereductPI .
For a programP without negation as failure, an interpretationI is amodelof P if

I satisfies every rule inP , i.e.PI = P ; it is ananswer setof P if it is a minimal model
of P , i.e. there is no modelJ of P such thatJ ⊂ I. For programsP containingnot,
theGL-reductw.r.t. an interpretationI is P I , whereP I containsα ← β+ for α ← β

in P andβ− ∩ I = ∅. I is ananswer setof P if I is an answer set ofP I . A rule
a ← β is defeatedw.r.t. I if there is acompetingrule¬a ← γ that is applied w.r.t.I,
i.e. {¬a} ∪ γ ⊆ I. An extended answer setI of a programP is an answer set ofPI

such that all rules inP \PI aredefeated.
Consider a programP indicating that one wants to take the train (t1), that if the

distance to the destination is more than 300 km, one does not want to take the train (t2),
and that the distance is actually more than 300 km (t3).

t1 : train ← t2 : ¬train ← 300km

t3 : 300km ←

This program no answer sets and two extended answer setsM1 = {300km, train} and
M2 = {300km,¬train}: there is no competing rule fort3 such that it must be satisfied
and every extended answer set must contain300km . The rulet2 is not satisfied inM1

(the body is true while the head is not), but it is defeated since the competing rulet1 is
applied inM1. In M2, t1 is defeated by the appliedt2.

Resolving conflicts by defeating rules thus leads to different alternative extended
answer sets. Usually however, a user may have some particular preferences on the satis-
faction of the rules. As in [30], we impose a strict partial order1 < on the rules inP , indi-
cating these preferences, which results in anordered logic program (OLP)〈P, <〉.This
preferential ordering will induce an orderingv among the possible alternative extended
answer sets as follows: for interpretationsM andN of P , M is “more preferred” than
N , denotedM v N , if ∀r2 ∈ PN \PM · ∃r1 ∈ PM \PN · r1 < r2. Intuitively, for every
rule that is satisfied byN and not byM , and which thus appears to be a counterexample
for M being better thanN , there is a better rule that is satisfied byM and not byN ,
i.e. M can counter the counterexample ofN . We have thatM is “strictly better” than
N , M @ N , if M v N and notN vM . An extended answer set is apreferred answer
setof 〈P, <〉 if it is minimal w.r.t. @ among the extended answer sets.

Considering the extended answer sets for the train example,we have thatPM1
=

{t1, t3} andPM2
= {t2, t3}. If we prefer going by train over not going by train, i.e.

t1 < t2, we have thatM1 v M2 since for every rule inPM2
\PM1

= {t2}, there is a
better one inPM2

\PM1
= {t1}. SinceM2 6vM1, we have thatM1 @ M2, makingM1

the only preferred answer set of the program.
For reference later on in the paper, we briefly restate the complexity results from

[30] for the preferred answer set semantics. Checking whether a program has an ex-
tended answer set containing a particular literal isNP-complete, while checking whether

1 A strict partial order onX is an anti-reflexive and transitive relation onX.
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an ordered program has a preferred answer set containing a particular literal isΣP
2 -

complete. Recall thatNP represents the problems that are nondeterministically decid-
able in polynomial time, whileΣP

2 is NPNP, i.e. the problems that are nondeterministi-
cally decidable in polynomial time using anNP oracle, where anNP oracle is a subrou-
tine capable of solvingNP problems in unit time. For an arbitrary complexity classC,
the classPC represents those problems that are deterministically decidable in polyno-
mial time with an oracle for problems inC. Finally, we mention the complexity class
EXPTIME (NEXPTIME) of problems deterministically (nondeterministically) decidable
in exponential time. A languageL is called complete for a complexity classC if both
L is in C andL is hard forC. Showing thatL is hard is normally done by reducing a
known complete decision problem to a decision problem inL. More on complexity in
general can be found in, e.g., [27].

3 Preferred Answer Set Programming with Calls

We extend preferred answer set programming with call literals. Take, for example, a
program with facts declaringkine to be a movie theater,pizzi andilpast restaurants,
and times 8 P.M. and 10 P.M.

movies(kine) ← time(8pm) ←
rest(pizzi)← time(10pm) ←
rest(ilpast)←

We have a rulep that produces a plan for a night out to a restaurantRest and a movie
theaterMovies at respective timesTime1 andTime2 .

p : plan(Rest : rest, T ime1 : time, Movies : movies, T ime2 : time)←

Rest.res(T ime1), geo.near(Rest, Movies), T ime1 6= T ime2,

not otherpl(Rest, T ime1, Movies, T ime2)

The call literal Rest .res(Time1 ) represents a query to a restaurant’s knowledge to
check whether one can reserve at a time. The call literal,geo.near(Rest ,Movies),
queries some knowledge sourcegeo in order to ensure that the restaurant and the movie
theater are located in each other’s vicinity. The inequality T ime1 6= T ime2 expresses
that dinner time must be different from the movie’s time. We used syntactic sugar for
typing arguments, e.g.Rest : rest indicates that the variableRest is of typerest . For-
mally, we define a rule with typingp(T : t , x) ← β as the rulep(T , x) ← t(T ), β.
The extended literalnot otherpl(Rest ,Time1 ,Movies ,Time2 ) ensures that there is
only one plan in each result:o1 : otherpl(Resta, T ime1a, Moviesa, T ime2a)←
plan(Restb, T ime1b, Moviesb, T ime2b), Resta 6= Restb, and similaro2, o3, ando4,
with inequalities on theTime andMovies variables.

Furthermore, we want a classification of theaters that screen romantic movies. We
query two repositories that are able to verify whether a movie theater has romantic
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movies programmed:moviedb1 .roman(Movies) andmoviedb2 .roman(Movies).

r1 : roman(Movies : movies)← moviedb1 .roman(Movies)
r2 : ¬roman(Movies : movies)← not moviedb1 .roman(Movies)
r3 : roman(Movies : movies)← moviedb2 .roman(Movies)
r4 : ¬roman(Movies : movies)← not moviedb2 .roman(Movies)

Finally, the night out might be a date or not (ruled, where a rule of the forma ∨ ¬a ←
is shorthand for the rulesa ← not ¬a and¬a ← not a), and we have a constraint
indicating that a plan for a date should involve a movie theater where romantic movies
are screened:

d : date ∨ ¬date ←
c : ← plan(Rest ,Time1 ,Movies ,Time2 ), date,¬roman(Movies)

In the following, we assume, as is usual in logic programming, that programs are
grounded: each variable is replaced by all possible constants. In thepresence of call
literals, we further generalize this such that every word starting with a capital letter is
replaced by all possible constants. The rulep thus yields, among others,

plan(pizzi, 8pm, kine, 10pm)←

pizzi.res(8pm), geo.near(pizzi, kine), not otherpl(pizzi, 8pm, kine, 10pm)

We grounded the wordsRest andTime1 in Rest .res(Time1 ) by pizzi and8pm re-
spectively. Additionally, grounding takes into account inequalities and subsequently
removes them from the rules:Time1 andTime2 are grounded by different constants.
Grounding does not care for semantics, e.g., the literal8pm.res(kine) is a valid, albeit
nonsensical, grounding forRest .res(Time1 ).

Syntactically, a ground program with calls does not differ from a ground program
without calls: a literal is only a call literal if it is explicitly associated with a particular
instance of a decision problem.

Definition 1. A call semanticsfor a programR is a mappingσ : CR ⊆ LR → Inst

from a designated set ofcall literalsCR in R to instancesInst of decision problemsD.

We relate every instance inInst to its decision problem by a mappingd : Inst → D

such thatd(Inst) = D. A call semantics iswell-definedif every decision problem
d ∈ D is decidable and has an associated complexitycomp(d). The call complexity
comp(σ) of a well-definedσ is the complexity class

⋃
{comp(d) | d ∈ D}. For the

groundingR of the above program, we define the call literalsCR = {pizzi .res(8pm),
pizzi .res(10pm), ilpast .res(8pm), ilpast .res(10pm), geo.near(pizzi , kine),
geo.near(ilpast , kine),moviedb1 .roman(kine),moviedb2 .roman(kine)}, with σ as
in Table 1. Thus, e.g.,σ(pizzi .res(8pm)) is an instance ofinstance checkingfor OWL
DL ontologies,σ(moviedb1 .roman(kine)) is an instance of the problem that involves
checking whether there is an answer set of a program containing a certain literal, and,
σ(geo.near(pizzi , kine)) is some other unspecified instance of a decidable problem.
Assuming the complexity of the latter is polynomial, we have, with the NEXPTIME

complexity for instance checking in OWL DL [22] andNP complexity for the answer
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Table 1.Call Semanticsσ

σ(pizzi .res(8pm)) = ‘is res(8pm) in model of OWL DL ontologypizzi ’
σ(pizzi .res(10pm)) = ‘is res(10pm) in model of OWL DL ontologypizzi ’
σ(ilpast .res(8pm)) = ‘is res(8pm) in model of OWL DL ontologyilpast ’

σ(ilpast .res(10pm)) = ‘is res(10pm) in model of OWL DL ontologyilpast ’
σ(geo.near(pizzi , kine))= ‘is pizzi nearkine according togeo DB’

σ(geo.near(ilpast , kine))= ‘is ilpast nearkine according togeo DB’
σ(moviedb1 .roman(kine)) = ‘exists answer set ofmoviedb1 containingroman(kine)’
σ(moviedb2 .roman(kine)) = ‘exists answer set ofmoviedb2 containingroman(kine)’

set programming problem [6], thatcomp(σ) = NEXPTIME∪NP∪ P = NEXPTIME. The
particular dot notation (Rest .res(Time)) has thus no particular meaning in itself, apart
from hinting that it might be a call ofres to the objectRest. The identification of call
literals and their semantics is the responsibility of the call semantics only.

In the following, we assume all call semantics are well-defined, and thus have an as-
sociated call complexity. Evaluating call literals amounts to evaluating the correspond-
ing instance of the decision problem.

Definition 2. Let σ be a call semantics for a programR. Theevaluationof σ is a
mappingevalσ : CR ∪ not CR → {true, false} such that, for a call literall, evalσ(l) =
true if σ(l) evaluates to true andevalσ(l) = false if σ(l) evaluates to false. For a
not l ∈ not CR, we defineevalσ(not l) = ¬evalσ(l). For a set of extended call literals
X , evalσ(X) = {evalσ(l) | l ∈ X}.

Definition 3. A program with calls (LPC)is a pairP = 〈R, σ〉 whereR is a program
andσ is a call semantics forR.

The semantics of LPCs is defined by a reduction to the extendedanswer set semantics
for programs without calls. For a LPC〈R, σ〉, we evaluate all call literals inR by means
of σ. Since all call literals are interpreted as instances of decidable decision problems,
such an evaluation returns either true or false for each callliteral. Similar to the GL-
reduct, thecall-free reductis then the original programR with call literals removed
according to their evaluation: a call literal in the body that evaluates to false amounts
to the removal of the rule since the rule can never contributeto an answer set; if a
call literal in the body evaluates to true, one just removes it from the body. The same
reasoning applies to call literals in the head. If such a callliteral is true, the rule is
automatically satisfied and one can omit it, otherwise, the call literal is removed from
the head.

Definition 4. The call-free reductσP of a LPC P = 〈R, σ : CR → Inst〉 are the
rules (α\C∗R) ← (β\C∗R) whereα ← β ∈ R and

∧
evalσ(β ∩ C∗R) = true and∨

evalσ(α ∩ C∗R) = false.2

For the call semantics from Table 1, assume the evaluation ofσ is as in Table 2. One

2 If a setX is empty, we assume
V

X = true and
W

X = false.
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Table 2.Evaluation ofσ

evalσ(pizzi .res(8pm)) = true evalσ(geo.near(pizzi , kine)) = true
evalσ(pizzi .res(10pm)) = true evalσ(geo.near(ilpast , kine)) = false
evalσ(ilpast .res(8pm)) = true evalσ(moviedb1 .roman(kine)) = true

evalσ(ilpast .res(10pm)) = false evalσ(moviedb2 .roman(kine)) = false

can thus reserve at both 8 P.M. and 10 P.M. inpizzi, while only at 8 P.M. inilpast.
Furthermore,pizzi is near the movie theater, andilpast is not. According tomoviedb1 ,
kine features romantic movies, contradictingmoviedb2 . The call-free reduct of the
example contains, among others, rules

plan(pizzi , 8pm, kine, 10pm) ← not otherpl(pizzi , 8pm, kine, 10pm)
plan(pizzi , 10pm, kine, 8pm) ← not otherpl(pizzi , 10pm, kine, 8pm)

originating from rulep, and rulesroman(kine) ← and¬roman(kine) ← , originat-
ing from, respectively,r1 andr4.

Definition 5. An interpretationof a LPCP = 〈R, σ〉 is an interpretation ofσP . An
interpretationM of P is anextended answer setof P if M is an extended answer set
of σP .

We have 6 different extended answer sets of the example LPC:

M1 ={plan(pizzi , 8pm, kine, 10pm), date, roman(kine)}

M2 ={plan(pizzi , 8pm, kine, 10pm),¬date, roman(kine)}

M3 ={plan(pizzi , 8pm, kine, 10pm),¬date,¬roman(kine)}

M4 ={plan(pizzi , 10pm, kine, 8pm), date, roman(kine)}

M5 ={plan(pizzi , 10pm, kine, 8pm),¬date, roman(kine)}

M6 ={plan(pizzi , 10pm, kine, 8pm),¬date,¬roman(kine)}

For the two possible plans – pizza at 8, movie at 10, or vice versa – the night out may
be a date or not. If it is a date, one defeats¬date ← by the applied ruledate ← .
Furthermore, by constraintc, we need to haveroman(kine) if date is in the answer
set, which requires defeating¬roman(kine) ← by roman(kine) ← . Consequently,
although two different sources (moviedb1 andmoviedb2 ) yield contradictory informa-
tion regarding the romantic nature of movies at a movie theater, a situation bound to
occur frequently on the Semantic Web, the extended answer set semantics solves this
by allowing for both solutions to coexist. The particular defeat mechanism makes sure
this happens in a sensible way: a rule can be left unsatisfied if there is a competing
applied rule.

Adding calls to programs, or, from a different perspective,wrapping different rea-
soners together using a logic program, amounts to reasoningthat is not much worse
than its worst call to a reasoner. It can be done inPcomp(σ) ∪ NP: either in polynomial
time with an oracle of complexity the call complexity of the call semantics or inNP.
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Theorem 1. Let P = 〈R, σ〉 be a LPC andl a literal in R that is not a call literal.
Checking whether there is an extended answer set ofP containingl is in Pcomp(σ) ∪ NP.

Given theNEXPTIME call complexity for the night out example, checking whetherthere
is an extended answer set containing a literal is inPNEXPTIME ∪ NP = PNEXPTIME , i.e. it
can be done in polynomial time with an oracle inNEXPTIME (corresponding to the
complexity of OWL DL instance checking).

Theorem 2. Let P = 〈R, σ〉 be a LPC andl a literal in R that is not a call literal.
Checking whether there is an extended answer set ofP containingl is (comp(σ)∪NP)-
hard.

Approaches where input from the program can be send to the external source are not
expressible in this framework, e.g. in [11] atoms calculated in the program can influence
reasoning in a DL knowledge base (semantically, by adding them to the DL knowledge
base). Our approach does allow for parametrized calls to sources, but the parameters
must be known at compile-time before starting the computation of the answer set.

The extended answer set semantics enables resolution of conflicts. However, usu-
ally, some resolutions are more preferred than others. E.g., a particular user preference
is that one rather has a quiet night out instead of a stressfuldate:¬date ← < date ← .
Moreover, not being on a date, there is no need to endure Hollywood’s romantic ideals3:

roman(kine)← moviedb1 .roman(kine)
roman(kine)← moviedb2 .roman(kine)
¬roman(kine)← not moviedb1 .roman(kine)
¬roman(kine)← not moviedb2 .roman(kine)

The preference between rules in the LPC, induces a natural preference relation on the
rules in the call-free reduct:¬roman(kine) ← < roman(kine) ← . Formally, for
an order< on the rules in a LPCP = 〈R, σ : CR → Inst〉, we define, for rules
r1 : (α1 \C∗R)← (β1 \C∗R) ∈ σP andr2 : (α2 \C∗R)← (β2 \C∗R) ∈ σP ,

r1
σ<r2 iff α1 ← β1 < α2 ← β2 .

Definition 6. An ordered program with calls (OLPC)is a pair P = 〈R, <〉 whereR

is a LPC and< is a strict partial order on the rules inR. An extended answer setof
P is an extended answer set ofR. An extended answer set ofP is preferredif it is a
preferred answer set of the OLP〈σR, σ<〉.

Note that〈σR, σ<〉 is indeed an OLP, more specifically,σ< is a strict partial order on
the rules inσR. The OLPC〈R, <〉 defining the night out example, yields the preferred
answer setsM3 andM6, corresponding to the preference for nights out devoid of date
and romantic movie. The complexity of reasoning with OLPCs again mostly depends
on the call complexity.

Theorem 3. LetP = 〈R, <〉 be an OLPC andl a literal in R that is not a call literal.
Checking whether there is a preferred answer set ofP containingl is in Pcomp(σ) ∪ΣP

2 .

3 The notation in modules indicates that all rules in one module, divided by a horizontal line,
are more preferred than all the rules in the module above.
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Theorem 4. LetP = 〈R, <〉 be an OLPC andl a literal in R that is not a call literal.
Checking whether there is a preferred answer set ofP containingl is (comp(σ)∪ΣP

2 )-
hard.

Even though the night out example did not feature it, the heads of rules may contain
calls as well. This allows a form of ontology alignment in thesense that one can en-
force that ontologies should agree on some facts. E.g.,moviedb2 .roman(kine) ←
moviedb1 .roman(kine) enforces that ifkine is a theater screening romantic movies
according tomoviedb1 thenmoviedb2 should agree. Calls in the heads of rules can,
however, always be replaced by their negation in the body.

Theorem 5. Let 〈R, σ〉 be a LPC witha ← β ∈ R and a call literal a . Then,M
is an extended answer set of〈R, σ〉 iff M is an extended answer set of〈R′, σ〉 where
R′ = (R\{a ← β}) ∪ { ← not a, β}.

A similar theorem does not hold for heads that are not call literals:a ← has the
extended answer set{a}while its shifted version← not a has no extended answer sets
(one cannot motivatea since there no rules witha in the head, although the constraint
demands the presence ofa).

4 Preferential Reasoning on a Web of Trust

Often, the user has its particular knowledge, in the form of aprogram, and a sense
of which calls he believes more than other calls, e.g. because (part of) one source of
information is more reliable than (part of) another one. Take the LPC〈S, σ〉 with S the
program4

stock(lmby)← buy(S )← ft .buy(S ),nyt .buy(S )
stock(wtww)← ¬buy(S )← not pdh.buy(S )

with a call semanticsσ(ft .buy(lmby)) = ‘buy stock lmby according to Financial
Times’ and similarly for the grounded call literals involving nyt (New York Times)
andpdh (analyst Paul D’Hoore) with the stockwtww . Assume the evaluation ofσ is as
follows

evalσ(ft .buy(lmby)) = false evalσ(nyt .buy(wtww)) = true
evalσ(ft .buy(wtww)) = true evalσ(pdh.buy(lmby)) = false

evalσ(nyt .buy(lmby)) = true evalσ(pdh.buy(wtww)) = false

such that both the Financial Times and Paul D’Hoore discourage buyinglmby , the
Financial Times suggests buyingwtww , while Paul would not buywtww , and the New
York Times suggests buying both stocks. The call-free reduct of this LPC is then

s1 : stock(lmby)← bf : buy(wtww)←
s2 : stock(wtww)← bp1

: ¬buy(lmby) ←
bp2

: ¬buy(wtww)←

4 As usual, we identify the program with its grounding.
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such that we have two extended answer sets

N1 ={stock(lmby), stock(wtww),¬buy(lmby), buy(wtww)}

N2 ={stock(lmby), stock(wtww),¬buy(lmby),¬buy(wtww)}

wherebf defeatsbp2
, andbp2

defeatsbf respectively, corresponding to the two strategies
of resolving the conflicts caused bybf andbp2

. In order to deduce the most preferred
answer, we allow the user to express its belief in certain calls:

{not pdh.buy(lmby),not pdh.buy(wtww)} <

{ft .buy(lmby), ft .buy(wtww),nyt .buy(lmby),nyt .buy(wtww)} ,

which signifies that every extended call literal in the set onthe left-hand side of<
is more believed than any extended call literal in the set on the right-hand side, i.e.
the opinion of Paul D’Hoore is valued more than the opinion ofthe Financial Times
or the New York Times. Intuitively, this order on calls induces an order on rules.
E.g. take the ground rulesb1 : buy(wtww) ← ft .buy(wtww),nyt .buy(wtww) and
b2 : ¬buy(wtww) ← not pdh.buy(wtww). We can order those rules based on the or-
der on the call literals: we considerb2 more preferred thanb1 since for every extended
call literal in the body ofb1 that is not in the body ofb2 we have a more believed ex-
tended call literal in the body ofb2 that is not in the body ofb1. Put otherwise, for
every call thatb1 needs to make in order to deducebuy(wtww) and thatb2 does not
make to deduce¬buy(wtww), b2 makes a more credible call thatb1 does not make.
The order on extended call literals thus induces the orderb2 < b1, and a similar order-
ing for the grounding withlmby , which in turn leads to the order¬buy(wtww) ← <

buy(wtww) ← in the call-free reduct. Consequently, the example LPOC hasthe pre-
ferred answer setN2. Things get more complicated, however, if we replace, e.g.,b1 by
b1
1 : buy(wtww) ← tmp andb2

1 : tmp ← ft .buy(wtww),nyt .buy(wtww). Obviously,
one still prefersb2 overb1

1, but, now, a direct comparison based on the order on the call
literals in their respective bodies does not makes sense. Instead, we look at thetraceof
both bodies, i.e. those extended call literals that must be evaluated as true in order to
make the extended literals in the body true. The trace of a setof extended literals thus
identifies those calls that are responsible for the truth of those literals in an extended
answer set, and on which we can base the induced order on rules.

Definition 7. Let 〈R, σ〉 be a LPC with call literalsCR, c ∈ C∗R, andl ∈ L∗R\C
∗
R. Then

c ∈ tr(l) iff for every evaluationevalσ of σ: if M is an extended answer set of〈R, σ〉
(w.r.t. evalσ) such thatM |= l, thenevalσ(c) = true.

Furthermore,tr(c) = {c} andtr(β) =
⋃
{tr(b) | b ∈ β}.

The trace oftmp is thentr(tmp) = {ft.buy(wtww), nyt.buy(wtww)}, i.e. in order
maketmp true one needs the truth of the call literals intr(tmp). The trace of the body
of b2 is {not pdh.buy(wtww)}. Such that, based on those traces and the order on the
call literals, we can deduce thatb2 is more preferred thanb1

1.

Definition 8. A program with ordered calls (LPOC)is a pair P = 〈R,≺〉 whereR

is a LPC with call literalsCR and≺ is a strict partial order on the (extended) call
literals in C∗R. Anextended answer setof P is an extended answer set ofR. An extended
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answer set ofP is preferredif it is a preferred answer set of the OLPC〈R, <〉, where,
for conflicting rulesr1 : a ← β1 andr2 : ¬a ← β2 in R, r1 ≤ r2 iff tr(β2)\tr(β1) 6=
∅∧∀c ∈ tr(β2)\tr(β1)·∃c

′ ∈ tr(β1)\tr(β2)·c
′ ≺ c, and, for arbitrary rulesr, s ∈ R,

r < s iff r ≤∗ s ∧ s 6≤∗ r where≤∗ is the transitive closure of≤.

The preference order< is a strict partial order such that〈R, <〉 is indeed a LPOC.
Note that one can immediately reduce an order on knowledge sources – knowledge

sourceΣ1 has more authority thanΣ2 – to an order on extended call literals by group-
ing call literals concerning the same sources together, as we did in the stock example.
An order on extended call literals instead of on sources allows for a finer granularity as
it makes it possible to prefer sources for certain types of knowledge while preferring
others for other types of knowledge: calls to the sports paper L’Equipe regarding ten-
nis could be considered more reliable than tennis-related calls toLe Monde, while the
opposite may be true for political subjects.

A Semantic Web agent may not always have preferences on the sources it is rea-
soning with, but if there is a network of agents it trusts available, it can easily learn
preferences from those trusted agents. We model the Semantic Web as a pair〈K,A〉
whereK is a set of knowledge sourcesK andA = (V, E) is a directed graph with
agentsV and edgesE between them. Each agent inV is defined as a LPOC, i.e. an
agent has reasoning capabilities through a logic program with calls and can express
preferences on its calls. Denote withR(A) the sequence of agents that are reachable
from A via a path inE, and assumeR(A) is ordered according to the trustA has in
them. ThusR(A) is a sequence of agentsA1, A2, . . ., such that eachAi is trusted more
by A thanAi+1 is. We thus assume that the agent resides on a web of trust, with a
suitable trust metric that allows for the construction ofR(A) for every agentA.

For our convenience, we identify the set of sourcesK with the set of all instances
of decidable decision problemsd that have an associated complexitycomp(d). E.g., the
identification of a particular description logic knowledgebaseΣ ∈ K includes the set
of all satisfiability checking problems w.r.t.Σ.

Take an agentA = 〈P,≺〉 with P a simplified version of the stock example,
b1 : buy ← ft .buy,nyt .buy, andb2 : ¬buy ← not pdh.buy , with call literalsft .buy,
nyt .buy, andpdh.buy , evaluated astrue, true, andfalserespectively. We assume that
the agent has no preference on the two extended answer sets{buy} and{¬buy} of this
program, i.e.≺ is empty, such that both extended answer sets are preferred.Due to the
empty preference, the agent has to choose between2 equally preferred, but contradict-
ing, strategies. Assuming the agent is part of network of agents it trusts, it can try to find
out what the trusted agents think of its call literals. E.g.,assume that agentA is con-
nected to agentsA1 = 〈P1,≺1〉, A2 = 〈P2,≺2〉, andA3 = 〈P3,≺3〉 with preferences
defined as follows:

not pdh.buy ≺1 ft .buy not pdh.buy ≺3 nyt .buy

lat .buy ≺1 ft .buy ft .buy ≺3 lat .buy

ft .buy ≺2 not pdh.buy

Thus, agentA1 prefers Paul D’Hoore’s advice as well as the Los Angeles Times’s ad-
vice over that of the Financial Times, agentA2 holds an opposite view and prefers the
Financial Times over Paul D’Hoore, and agentA3 prefers Paul’s advice over the New
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York Times’s and has more believe in the Financial Times thanin the Los Angeles
Times. We do not specify the programs of those agents since weare only interested to
learn preferences for agentA from the preferences its trusted agents have – forA it
does not matter how the trusted agents deploy those preferences.

In order to let agentA construct its preferences based on this web of agents, we as-
sume its reachable agents are ranked according to trustworthiness:R(A) = A1, A2, A3,
such thatA1 is the agent thatA trusts the most andA3 the agent that it trusts the least.
Considering the preference ofA1, A only retainsnot pdh.buy ≺1 ft .buy: combining
this preference withA’s own preference, a strict partial order on the call literals of P
can be constructed. The other preference ofA1 involveslat .buy which is of no concern
to agentA since it is not a call literal inP .

Moving to agentA2, second in the line of trust,A ignores≺2: it contradicts the
order already constructed inA with the more trusted agentA1. Finally, A ignores the
preference in≺3 involving lat .buy , but it updates its preference withnot pdh.buy ≺3

nyt .buy. This results in an updated agentA′ = 〈P,≺′〉 with not pdh.buy ≺′ ft .buy,
andnot pdh.buy ≺′ nyt .buy. This order on call literals induces then the orderb2 < b1

such that{¬buy} is the preferred answer set of the updated agentA′.

Definition 9. For an agentA = 〈P,≺〉 in A, let R(A) = 〈P1,≺1〉, 〈P2,≺2〉, . . . The
updated agentof A is A′ = 〈P,≺′〉 where≺′= (≺ ∪

⋃
i=1 Bi)

∗ with

1. Bi ⊆≺i,
2. ∀c1 ≺i c2 ∈ Bi · c1, c2 ∈ C

∗
P ,

3. (≺ ∪
⋃i

j=1 Bj)
∗ is a strict partial order,

4. Bi is a maximal set satisfying1., 2., and3.

Intuitively, the agent updates its own preference≺ with maximal subsets of preferences
of trusted agents, and this according to the order of trust. Condition2. ensures that only
preferences on call literals of the agent’s own programP are considered, and condi-
tion 3. ensures that only those preferences of≺i are retained that, when added to the
accumulated preference and transitively closing the result, one still has a strict partial
order. The latter only amounts to checking irreflexivity since transitivity is entailed by
taking the transitive closure. Condition4. forces≺′ to consider as much preferences as
possible from each preference≺i.

The updated≺′ is a strict partial order on call literals such that the updated agent
A′ is a LPOC, and we can compute preferred answer sets of an agentby computing the
preferred answer set of its updated version that takes into account the web of trust.

Definition 10. Let A be an agent inA. The preferred answer set ofA is the preferred
answer set of the updatedA′.

In order to be able to compute the updated agent for an agentA, we assume thatR(A)
is finite. Since the Semantic Web with software agents is finite this sounds like a reason-
able restriction. However, due to the sheer amount of envisaged agents on the Semantic
Web, it is unlikely that feasible reasoning with all connected agents is possible. A pos-
sible strategy in overcoming this problem is to add a bound onthe number of trusted
agents in the sequenceR(A).
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In considering an agent as a logic program, we neglected a lotof the machinery
involved in agent definitions. E.g., in the IMPACT System [1]an agent consists of
two parts: software code and a semantic wrapper consisting of a message manager,
an action module, and a meta-knowledge module. In [12], the theory and implemen-
tation of the action module is described, with, among others, code call atoms that are
able to call software, and agent programs that express the choices for actions. E.g.,
O(send note(Person))← Do(run audit(Person)), indicates that if one is executing
the audit run, one is obliged to send a note. Conflict resolution in [12] amounts to allow-
ing defeat of the meta-rule “ifOα thenDoα”, which says that if actionα is obliged then
one should execute it. This type of behavior can be simulatedunder our extended answer
set semantics by introducing the ordered rulesDo(α) ← O(α) <¬Do(α) ← O(α),
thus minimizing defeat of the meta-rule. Moreover, our preference relation between
rules allows for more fine-grained types of conflict resolution as showed in this section.

5 Conclusions and Directions for Further Research

We devised and discussed a logic programming based framework for agents on the
Semantic Web, where agents are capable of expressing preferences on the rules or on
the call literals in their knowledge. Those preferences enabled the resolution of conflicts
with the most preferred solution. In case an agent has no preferences but is part of a web
of trusted agents, we showed how the agent can replenish its own preferences based on
the preferences of trusted agents.

The preferred answer set semantics from Section 2, i.e. without calls, was imple-
mented by theOLPS solver [26], available at http://tinf2.vub.ac.be/olp/. For a given
OLPC, i.e. a program with calls and an order on those rules, different plug-ins are en-
visaged to be written, depending on the type of desired calls. Such a plug-in’s main task
would be to execute the decision problem associated with a particular call, e.g. check
the satisfiability of a concept with the FACT [21] DL reasoner, and subsequently calcu-
late the call-free reduct and the reduced order on this reduct, which are then to be fed
to OLPS.
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