368 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

Preferential Reasoning on a Web of Trust

Stijn Heymans, Davy Van Nieuwenborgtand Dirk Vermeit*

Dept. of Computer Science
Vrije Universiteit Brussel, VUB
Pleinlaan 2, B1050 Brussels, Belgium
{sheynmans, dvni euwe, dver nei r }@ub. ac. be

Abstract. We introduce a framework, based on logic programming, fefgyr
ential reasoning with agents on the Semantic Web. Initialeyencode the knowl-
edge of an agent as a logic program equipped with call lge&ch call literals
enable the agent to pose yes/no queries to arbitrary kngeledurces on the
Semantic Web, without conditions on, e.g., the represiemtéanguage of those
sources. As conflicts may arise from reasoning with diffekeowledge sources,
we use the extended answer set semantics, which can pratfieleit strate-
gies for solving those conflicts. Allowing, in addition, fan agent to express its
preference for the satisfaction of certain rules over athee can then induce a
preference order on those strategies. However, since #tigal for an agent to
believe its own knowledge (encoded in the program) but clemsome sources
more reliable than others, it can alternatively exprestepeaces on call literals.
Finally, we show how an agent can learn preferences on tails if it is part of
a web of trusted agents.

1 Introduction

The current WWW is a gigantic pool of data, where one can easiagine two web
sites saying the opposite. Human users are capable of dgaidiich sources they find
trustworthy or not (irrespective of the fact whether thetually are or not). Semantic
Web software agents [18] on the other hand would have an lgquzet amount of data
at their disposition, but a far more difficult time differ@ttng between good and bad
information.

In this paper, we will gradually build a (abstract) softwagent, i.e. an entity on
a web of trust that can reason with a diverse pool of (possihlyually inconsistent)
knowledge sources. The basic underlying reasoning framem®use for such an agent
is answer set programming (ASH)3, 3], a logic programming paradigm with a stable
model semantics for negation as failurdofyic programcorresponds to knowledge one
wishes to represent, or, more specifically, to an encodireypdrticular problem, e.g.
a planning problem [24, 9]; thenswer set®f the program then provide its intentional
knowledge, or the solutions of the encoded problem, e.camafoir a planning problem.

* Supported by the FWO.
** This work was partially funded by the Information Societychipologies programme of the
European Commission, Future and Emerging Technologiesruhd IST-2001-37004 WASP
project.

Y. Gil et al. (Eds.): ISWC 2005, LNCS 3729, pp. 368-382, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Preferential Reasoning on a Web of Trust 369

A traditional logic program has a limited view on the worldréstricts itself to its
own knowledge and does not allow calls to external souroesfitst phase, to construct
suitable Semantic Web agents, we thus introcradkliterals in rules, e.g., a rulér; :
—train «— geol.300km(brussels, madrid), wheregeol.300km (brussels, madrid) is
a call literal and-train a normal literal. The rule reads “if according to the! on-
tology Brussels is more than 300 km away from Madrid, one khoat go by train”.
The word “ontology” is slightly misleading, singgo! can be anything: an OWL DL
[4] knowledge base, an SQL database, RDF data, another, agetiting. In order to
establish a suitable semantics for such call literals, 8ed@ate with each call literal in
a program an instance of a decision problem, e.g., satilifjatihecking in OWL DL,
checking whether a tuple is in the database, ... An evaluétiaction then assigrisue
or falseto the call literal, depending on the corresponding ingtafiechnically, pro-
grams with calls are a subclass of logic programs with gdizechquantifiers) [10],
where a generalized quantifi€¥c checks whether a relation defined by the program
is in a class of structureS. In the proposed setting, every call literal corresponds to
class of structure§’ that is a singleton set containing some literal if the instaof the
decision problem associated with that call literal returne.

In contrast with approaches as in [5,17, 25,23, 19] whereatteapts to reduce
reasoning in description logics (DLs) [2] to logic programmor approaches biased
more towards the integration of description logics anddggiogramming reasoning
[8,29,11], the proposed framework does not restrict itseDLs, knowledge can be
represented in any language with associated reasoningques; agents that want to
use the knowledge only have to know how to call those proeedur

Besides making calls to sources, agents have to be able éovgtpconflicts, e.g.,
add to the above train rule that if Brussels and Madrid aredinatled by water, one
should take the trainirg : train «— not geo2.diwidedwater(brussels, madrid). If the
call to geo! returnstrue, claiming that Brussels is indeed more than 300 km away from
Madrid, and that the call tgeo2 returnsfalse(and is thus faulty), this leads to a conflict
sincetr; deduces-train andtr, deducesrain. The normal answer set semantics has
no answer sets for this program, which is not feasible on #resghtic Web — we do not
want an agent to stay indecisive on different contradictimgrces. The extended answer
set semantics and its notion défeatloosens up the normal answer set semantics by
allowing rules to remain unsatisfied provided there is a agting rule (i.e. a rule with
opposite head) that is applied (both the head and body a® ffhie above program
results then in the twextended answer sefsrain} and {—train}, representing the
possible alternatives for the conflict, where, respectivelytr,, is defeated.

The agent can then choose among those possible solutioed basa preference
on the satisfaction of rules, e.gs; < tre, indicates that the agent prefers to sat-
isfy tr; overtry. This preference naturally induces an order on its exterasesgver
sets{—train} C {train}. A wide variety of applications of agents with preferences a
imaginable, e.g. to guide service discovery on mobile des/j81].

In the context of the Semantic Web, a preference on calblteseems more natural
than an order on the agent’s own rules: an agent generallyressits own rules are
correct, whereas the uncertain part, and hence the parntnaintroduce conflicts, are
the external calls. Based on criteria such as authority l@hiéty the agent can then

370 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

express its preference for certain calls. Furthermore hegvsa translation of an order
on call literals to an order on the rules of the agents.

What if the agent does not know which calls are more reliade tothers; can it
still make an educated guess regarding its preferences®dtnef trusf14, 16, 15, 28,
7] provides an architecture on which preferential reaspfiin agents without (or with
incomplete) preferences can be realized.

In [28], a web of trust is essentially a graph of agents whdgee have a weight in
[0, 1], indicating the amount of trust an agent has in its direajinedrs. Moreover, every
user can have a belief, a numbeifin1], in logical statements. Thaerged beliein a
logical statement, i.e. taking into account the belief$at statement of trusted agents,
can be computed in a large number of ways, e.g., one can detinainithe amount of
trust between users is at most the minimal trust weight ortla lpetween them or that
the further away an agent is, the lower the trust in that agkatild be [16]. In the
TRELLIS system [14] users rate information sources andjragsy different users rate
common sources, TRELLIS rates sources averaging over tingsaf different users.

Relating this to our approach, the beliefs in statementsespond to preferences
on call literals. Furthermore, in order to construct agemtsop of any web of trust, we
do not presuppose any conditions on the trust metric, ieenththod to calculate the
merged trust given a web of trust, but one: it must be possibéssociate with every
agent a sequence of trusted agents ordered according tedrtliness. Given, for
each agent, such an ordered sequence, we then completetbespces of an agent by
considering its own preferences and adding further prates®according to its trusted
agents.

The remainder of the paper is organized as follows. In Seiowe define the
preferred answer set semantics. Section 3 extends thenge@nswer set semantics
with the possibility to define call literals and their accamnping calls. In Section 4, we
define a preference order on literals and a method for castBigthis order based on a
web of trust. Finally, Section 5 contains conclusions ameddions for further research.
Due to space restrictions, proofs have been omitted but edound in [20].

2 Preliminaries: Preferred Answer Set Programming

We introduce the extended answer set semantics as in [3@gral is an atoms or a
classically negated atoma; anextended literals a literall or a literal preceded with
thenegation as failuresymbolnot not I. A programis a finite set of rules: < 3 where
a, thehead is a set of literals wita| < 1, i.e. « is empty or a singleton, and, the
body; is a finite set of extended literals. We usually denote aasle< 5 or «— 3, and
we call the latter @onstraint The positive part of the body i&" = {i | I € 3,1 literal},
the negative partis— = {l | not | € 8}, e.qg. forg = {a, not —b, not ¢}, we have that
BT = {a} and3~ = {-b,c}. For a set of literalgy, not & = {not a | a € a}, and
a* = aUnot a.

TheHerbrand Base3p of a programP is the set of all atoms that can be formed
using the language aP. Let Lp be the set of literals that can be formed withi.e.
Lp = Bp U-Bp. For a setX of literals, we take-X = {-l | [€ X} where——a is
a; X is consistentf X N —X = 0. An interpretation/ of P is any consistent subset of

Preferential Reasoning on a Web of Trust 371

Lp. For aliterall, we write I |= [, if I € I, which extends for extended literaist !
tol = not lif I = 1.In general, for a set of extended literdls I = X if I |= z for
every extended literat € X. Aruler : a — (is satisfiedw.r.t. I, denotedl = r, if
I = awheneved | 3, i.e.r is appliedwhenever it isapplicable A constraint «— (3
is satisfied w.r.tI if I |~ 3. The set of satisfied rules iR w.r.t. I is thereductP;.

For a programP without negation as failure, an interpretatibiis amodelof P if
1 satisfies every rule i, i.e. P; = P; itis ananswer sebf P if it is a minimal model
of P, i.e. there is no model of P such that/ C I. For programsP containingnot,
the GL-reductw.r.t. an interpretatiod is P!, whereP! containsay < g+ for o «— g8
in Pandp~ N1 = 0. I is ananswer sebf P if I is an answer set oP’. A rule
a «— (is defeatedw.r.t. I if there is acompetingule —a «— ~ that is applied w.r.t/,
i.e.{—a} U~y C I. An extended answer sétof a programP is an answer set aP;
such that all rules itP\ P; aredefeated

Consider a progran® indicating that one wants to take the traiq)(that if the
distance to the destination is more than 300 km, one doesartttey take the traint§),
and that the distance is actually more than 300 & (

t; o train «— te : —train «— 300km

ts : 300km «—

This program no answer sets and two extended answek&ets { 300km, train} and
My = {300km, —train}: there is no competing rule feg such that it must be satisfied
and every extended answer set must congéifkm. The rulets is not satisfied in\/;
(the body is true while the head is not), but it is defeatedesthe competing rulg is
applied inM;. In M,, t; is defeated by the applied.

Resolving conflicts by defeating rules thus leads to diffesdternative extended
answer sets. Usually however, a user may have some pariirefgrences on the satis-
faction of the rules. As in [30], we impose a strict partialef < on the rules inP, indi-
cating these preferences, which results iratered logic program (OLP}P, <).This
preferential ordering will induce an orderingamong the possible alternative extended
answer sets as follows: for interpretatialsand N of P, M is “more preferred” than
N,denotedV C N, if Vrry € Py \ Pys-3r1 € Py \ Py -1 < ro. Intuitively, for every
rule that is satisfied bv and not byA/, and which thus appears to be a counterexample
for M being better tharV, there is a better rule that is satisfied lf and not by,
i.e. M can counter the counterexample/éf We have thaf\/ is “strictly better” than
N,M C N,if M E N and notN C M. An extended answer set ipeeferred answer
setof (P, <) if it is minimal w.r.t. C among the extended answer sets.

Considering the extended answer sets for the train examwgldave thatP,, =
{t1,ts} and Py, = {to,t3}. If we prefer going by train over not going by train, i.e.
t1 < ta, we have thait\f; C M, since for every rule irPy, \ Py, = {t2}, thereis a
better one inPys, \ Py, = {t1}. SinceMs IZ M, we have thal/; C Ms, makingM;
the only preferred answer set of the program.

For reference later on in the paper, we briefly restate thepbmiity results from
[30] for the preferred answer set semantics. Checking venettprogram has an ex-
tended answer set containing a particular literalrscomplete, while checking whether

L A strict partial order onX is an anti-reflexive and transitive relation éh

372 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

an ordered program has a preferred answer set containingieupa literal is X7 -
complete. Recall thatp represents the problems that are nondeterministicalliddec
able in polynomial time, whileZ? is NP'?, i.e. the problems that are nondeterministi-
cally decidable in polynomial time using arp oracle, where anp oracle is a subrou-
tine capable of solvinglP problems in unit time. For an arbitrary complexity cl&ss
the class® represents those problems that are deterministicallyddbté in polyno-
mial time with an oracle for problems i@i. Finally, we mention the complexity class
EXPTIME (NEXPTIME) of problems deterministically (nondeterministicallygaidable
in exponential time. A languagg is called complete for a complexity clagsif both
Lisin C andL is hard forC. Showing thatZ is hard is normally done by reducing a
known complete decision problem to a decision problem.ilMore on complexity in
general can be found in, e.g., [27].

3 Preferred Answer Set Programming with Calls

We extend preferred answer set programming with call lserBake, for example, a
program with facts declaringine to be a movie theategizzi andilpast restaurants,
and times 8 P.M. and 10 P.M.

movies(kine) «— time(8pm) —
rest(pizzi) «— time(10pm) «—
rest(ilpast) «—

We have a rule that produces a plan for a night out to a restaufait and a movie
theaterMouies at respective time§ime! and Time2.

p : plan(Rest : rest, Timel : time, M ovies : movies, Time2 : time) «—
Rest.res(Timel), geo.near(Rest, Movies), Timel # Time2,
not otherpl(Rest, Timel, Movies, Time2)

The call literal Rest.res(Timel) represents a query to a restaurant’s knowledge to
check whether one can reserve at a time. The call litgwal,near(Rest, Movies),
queries some knowledge sourg® in order to ensure that the restaurant and the movie
theater are located in each other’s vicinity. The inequdlitmel # Time2 expresses
that dinner time must be different from the movie’s time. Véed syntactic sugar for
typing arguments, e.gRest : rest indicates that the variablBest is of typerest. For-
mally, we define a rule with typing(T : t,x) — [as the rulep(T,x) — ¢(T), .
The extended literakot otherpl(Rest, Timel, Movies, Time2) ensures that there is
only one plan in each resul; : otherpl(Resta, Timela, Moviesa, Time2a) «—
plan(Restb, Timelb, Moviesb, Time2b), Resta # Restb, and similaro,, o, andoy,
with inequalities on thélime and Movies variables.

Furthermore, we want a classification of theaters that sar@mantic movies. We
query two repositories that are able to verify whether a mdkieater has romantic

Preferential Reasoning on a Web of Trust 373

movies programmednoviedb1.roman(Movies) andmouviedb2.roman(Movies).

r; + roman(Movies : movies) «— moviedb! .roman(Movies)
re : ~roman(Movies : movies) «— not moviedb1.roman(Movies)
rs 1 roman(Movies : movies) «— moviedb2.roman(Movies)
r, : “roman(Movies : movies) < not moviedb2.roman(Movies)

Finally, the night out might be a date or not (rdlevhere a rule of the form vV —a —

is shorthand for the ruleg < not —a and—a < not a), and we have a constraint
indicating that a plan for a date should involve a movie teeathere romantic movies
are screened:

d : date V —~date —
c: — plan(Rest, Timel , Movies, Time2), date, =roman(Movies)

In the following, we assume, as is usual in logic programmthgt programs are
grounded each variable is replaced by all possible constants. Irptksence of call
literals, we further generalize this such that every woadtstg with a capital letter is
replaced by all possible constants. The nutaus yields, among others,

plan(pizzi, 8pm, kine, 10pm) «—

pizzi.res(8pm), geo.near(pizzi, kine), not otherpl(pizzi, 8pm, kine, 10pm)

We grounded the wordRBest and Timel in Rest.res(Timel) by pizzi and 8pm re-
spectively. Additionally, grounding takes into accountdualities and subsequently
removes them from the rule§ime! and Time2 are grounded by different constants.
Grounding does not care for semantics, e.g., the litgsal.res(kine) is a valid, albeit
nonsensical, grounding fatest.res(Timel).

Syntactically, a ground program with calls does not diffenfi a ground program
without calls: a literal is only a call literal if it is explitty associated with a particular
instance of a decision problem.

Definition 1. A call semanticgor a programR is a mappingr : Cr C Lr — Inst
from a designated set @fall literalsCg in R to instancednst of decision problem®.

We relate every instance ifst to its decision problem by a mappimg: Inst — D
such thatd(Inst) = D. A call semantics isvell-definedif every decision problem
d € D is decidable and has an associated complexityp(d). The call complexity
comp(co) of a well-defineds is the complexity claskJ{comp(d) | d € D}. For the
groundingR of the above program, we define the call literdls = {pizzi.res(8pm),
pizzi.res(10pm), ilpast.res(8pm), ilpast.res(10pm), geo.near(pizzi, kine),

geo.near (ilpast, kine), moviedb1 .roman(kine), moviedb2.roman(kine) }, with o as

in Table 1. Thus, e.gq(pizzi.res(8pm)) is an instance ohstance checkinépr OWL

DL ontologieso(moviedb1.roman(kine)) is an instance of the problem that involves
checking whether there is an answer set of a program contpintertain literal, and,
o(geo.near(pizzi, kine)) is some other unspecified instance of a decidable problem.
Assuming the complexity of the latter is polynomial, we hawéth the NEXPTIME
complexity for instance checking in OWL DL [22] ameP complexity for the answer

374 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

Table 1. Call Semantics

o (pizzi.res(8pm
o(pizzi.res(10pm

o (ilpast.res(8pm

o (ilpast.res(10pm
o(geo.near(pizzi, kin
o(geo.near(ilpast, kin
o(moviedb!.roman(kine
o(moviedb2.roman(kine

= ‘is res(8pm) in model of OWL DL ontologypizz:’

="is res(10pm) in model of OWL DL ontologypizzi’

= ‘is res(8pm) in model of OWL DL ontologyilpast’

= ‘is res(10pm) in model of OWL DL ontology:ipast’

)= ‘is pizzi nearkine according togeo DB’

)= ‘is ilpast nearkine according togeo DB’

‘exists answer set ahoviedb! containingroman (kine)’
‘exists answer set ahoviedb2 containingroman (kine)’

SR AN N

= = D

~— —

set programming problem [6], theémp (o) = NEXPTIMEUNPUP = NEXPTIME. The
particular dot notationRest.res(Time)) has thus no particular meaning in itself, apart
from hinting that it might be a call ofes to the objectRest. The identification of call
literals and their semantics is the responsibility of thiksemantics only.

In the following, we assume all call semantics are well-dedirand thus have an as-
sociated call complexity. Evaluating call literals amanat evaluating the correspond-
ing instance of the decision problem.

Definition 2. Let o be a call semantics for a prograrR. The evaluationof ¢ is a
mappingeval, : Cr Unot Cr — {true, false} such that, for a call literal, eval, (1) =
true if o(1) evaluates to true andval, (/) = false if o(l) evaluates to false. For a
not I € not Cg, we defineval, (not I) = —eval,(l). For a set of extended call literals
X, eval,(X) ={eval, (1) |l € X}.

Definition 3. A program with calls (LPCjs a pair P = (R, o) whereR is a program
ando is a call semantics foR.

The semantics of LPCs is defined by a reduction to the exteadgder set semantics
for programs without calls. For a LP@, o), we evaluate all call literals i by means
of . Since all call literals are interpreted as instances ofdadxte decision problems,
such an evaluation returns either true or false for eachlitadal. Similar to the GL-
reduct, thecall-free reductis then the original progran® with call literals removed
according to their evaluation: a call literal in the bodytthaaluates to false amounts
to the removal of the rule since the rule can never contribiten answer set; if a
call literal in the body evaluates to true, one just remové®im the body. The same
reasoning applies to call literals in the head. If such a lgaltal is true, the rule is
automatically satisfied and one can omit it, otherwise, tilkliteral is removed from
the head.

Definition 4. The call-free reductP of a LPCP = (R,0 : Cp — Inst) are the
rules (a\Cy,) < (B\Cp) wherea — g € R and Aeval,(8 NC},) = true and
Veval,(aNCy) = false?

For the call semantics from Table 1, assume the evaluatieni®fas in Table 2. One

2 |f a setX is empty, we assumpg X = true and\/ X = false

Preferential Reasoning on a Web of Trust 375

Table 2. Evaluation ofo

eval, (pizzi.res(8pm)) = tru eval, (geo.near(pizzi, kine)) = true

evaly (pizzi.res(10pm)) = tru eval, (geo.near(ilpast, kine)) = false
eval, (ilpast.res(8pm)) = tru eval, (moviedb!.roman(kine)) = tru
eval, (tlpast.res(10pm)) = false eval, (moviedb2.roman(kine)) = false

can thus reserve at both 8 P.M. and 10 P.Mpirei while only at 8 P.M. inilpast
Furthermorepizziis near the movie theater, afigastis not. According tomoviedb1 ,
kine features romantic movies, contradictimguviedb2. The call-free reduct of the
example contains, among others, rules

plan(pizzi, 8pm, kine, 10pm) «— not otherpl(pizzi, 8pm, kine, 10pm)
plan(pizzi, 10pm, kine, 8pm) «— not otherpl(pizzi, 10pm, kine, 8pm)

originating from rulep, and rulesroman(kine) «— and-roman(kine) «— , originat-
ing from, respectivelyy; andry.

Definition 5. An interpretationof a LPC P = (R, o) is an interpretation ofP. An
interpretation/ of P is anextended answer sef P if M is an extended answer set
of ?P.

We have 6 different extended answer sets of the example LPC:

={plan(pizzi, 8pm, kine, 10pm), date, roman(kine) }

={plan
M3 ={plan
My ={plan
M5 ={plan
Mes ={plan

pizzi, 8pm, kine, 10pm), ~date, roman(kine) }

pizzi, 8pm, kine, 10pm), ~date, ~roman(kine) }

pizzi, 10pm, kine, 8pm), ~date, roman(kine) }

A~ I~ A/~~~

)
)
)
pizzi, 10pm, kine, 8pm), date, roman(kine) }
)
)

pizzi, 10pm, kine, 8pm), ~date, ~roman(kine) }

For the two possible plans — pizza at 8, movie at 10, or viceaverthe night out may
be a date or not. If it is a date, one defeatfute — by the applied rulelate — .
Furthermore, by constrairt we need to haveoman(kine) if date is in the answer
set, which requires defeatingroman(kine) « by roman(kine) < . Consequently,
although two different sourcegifviedb! andmoviedb?) yield contradictory informa-
tion regarding the romantic nature of movies at a movie #reat situation bound to
occur frequently on the Semantic Web, the extended answeesgantics solves this
by allowing for both solutions to coexist. The particulafe mechanism makes sure
this happens in a sensible way: a rule can be left unsatidfigetiie is a competing
applied rule.

Adding calls to programs, or, from a different perspectiveapping different rea-
soners together using a logic program, amounts to reasahnaigs not much worse
than its worst call to a reasoner. It can be donei*(?) U NP: either in polynomial
time with an oracle of complexity the call complexity of thalcsemantics or inp.

376 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

Theorem 1. Let P = (R,0) be a LPC and a literal in R that is not a call literal.
Checking whether there is an extended answer sBtaintainingl is in p°mP(?) U NP.

Given theNexPTIME call complexity for the night out example, checking whethere
is an extended answer set containing a literal is"fH*TME U Np = pNEXPTIME "j g it
can be done in polynomial time with an oracleNEXPTIME (corresponding to the
complexity of OWL DL instance checking).

Theorem 2. Let P = (R,0) be a LPC and a literal in R that is not a call literal.
Checking whether there is an extended answer sBtadntainingl is (comp(c) UNP)-
hard.

Approaches where input from the program can be send to teemattsource are not
expressible in this framework, e.g. in [11] atoms calcwatethe program can influence
reasoning in a DL knowledge base (semantically, by addiamtto the DL knowledge
base). Our approach does allow for parametrized calls tocespbut the parameters
must be known at compile-time before starting the companatf the answer set.

The extended answer set semantics enables resolution fhittsorHowever, usu-
ally, some resolutions are more preferred than others, & garticular user preference
is that one rather has a quiet night out instead of a stredafal-date < < date « .
Moreover, not being on a date, there is no need to endure Waodig's romantic ideafs

roman(kine) < moviedb!.roman(kine)

(Kine)
(kine) — moviedb2.roman(kine)
(Kine)
(Kine)

roman

—roman(kine) «— not moviedb1.roman(kine)

—roman(kine) «— not moviedb2.roman(kine)

The preference between rules in the LPC, induces a natwetdrpnce relation on the
rules in the call-free reductiroman(kine) «— < roman(kine) «— . Formally, for
an order< on the rules in a LP® = (R,o : Cp — Inst), we define, for rules
r1: (041 \C};) — (ﬁ] \C}k{) € °P andr; : (QQ\C};) — (ﬁg \C}k{) € P,

ro<ro iff a; «— B; < as « (s .

Definition 6. An ordered program with calls (OLP® a pair P = (R, <) whereR
is a LPC and< is a strict partial order on the rules itR. An extended answer sef
P is an extended answer set Bf An extended answer set Bfis preferredif it is a
preferred answer set of the OLPR, 7 <).

Note that{’R, ?<) is indeed an OLP, more specificalfx is a strict partial order on
the rules i’R. The OLPC(R, <) defining the night out example, yields the preferred
answer setd/; and Mg, corresponding to the preference for nights out devoid & da
and romantic movie. The complexity of reasoning with OLP@Gaia mostly depends
on the call complexity.

Theorem 3. Let P = (R, <) be an OLPC and a literal in R that is not a call literal.
Checking whether there is a preferred answer sg® abntaining! is in pmP(@) U X2

% The notation in modules indicates that all rules in one meddivided by a horizontal line,
are more preferred than all the rules in the module above.

Preferential Reasoning on a Web of Trust 377

Theorem 4. Let P = (R, <) be an OLPC and a literal in R that is not a call literal.
Checking whether there is a preferred answer set abntaining! is (comp (o) U X1)-
hard.

Even though the night out example did not feature it, the Beddules may contain
calls as well. This allows a form of ontology alignment in $ense that one can en-
force that ontologies should agree on some facts. Enguiedb2.roman(kine) «—
moviedbl .roman(kine) enforces that ifine is a theater screening romantic movies
according tomoviedb1 thenmouviedb2 should agree. Calls in the heads of rules can,
however, always be replaced by their negation in the body.

Theorem 5. Let (R, o) be a LPC witha — § € R and a call literala . Then, M
is an extended answer set@®, o) iff M is an extended answer set@’, o) where

R' = (R\{a — B}) U{ < not a, 5}.

A similar theorem does not hold for heads that are not caltdis:a «— has the
extended answer sét } while its shifted version— not a has no extended answer sets
(one cannot motivate since there no rules with in the head, although the constraint
demands the presencedf

4 Preferential Reasoning on a Web of Trust

Often, the user has its particular knowledge, in the form pf@gram, and a sense
of which calls he believes more than other calls, e.g. bex§art of) one source of
information is more reliable than (part of) another one.eTdie LPC(S, o) with S the
progrant

stock(Imby) «— buy(S) «— ft.buy(S), nyt.buy(S)
stock(wtww) «— —buy(S) « not pdh.buy(S)

with a call semantic (ft.buy(Imby)) = ‘buy stock Imby according to Financial

Times’ and similarly for the grounded call literals invabg nyt (New York Times)
andpdh (analyst Paul D’'Hoore) with the stoal¢ww. Assume the evaluation efis as
follows

eval, (ft.buy(Ilmby)) = false eval, (nyt.buy(wtww)) = true
eval, (ft.buy(wtww)) = true eval, (pdh.buy(Imby)) = false
eval, (nyt.buy(Imby)) = true eval, (pdh.buy(wtww)) = false

such that both the Financial Times and Paul D'Hoore disapitauyingimby, the
Financial Times suggests buyingww, while Paul would not buytww, and the New
York Times suggests buying both stocks. The call-free rediihis LPC is then

sy @ stock(lmby) «— by o buy(witww) «—
sg @ stock(wtww) «— by, © —buy(lmby) —
by, : "buy(wtww) —

4 As usual, we identify the program with its grounding.

378 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

such that we have two extended answer sets

Ny ={stock(Imby), stock(wtww), ~buy(Imby), buy(wtww) }
Ny ={stock(lmby), stock(wtww), ~buy(lmby), ~buy(witww) }

whereb; defeats,,, , andb,, defeats ; respectively, corresponding to the two strategies
of resolving the conflicts caused lby andb,,. In order to deduce the most preferred
answer, we allow the user to express its belief in certails.cal

{not pdh.buy(Imby), not pdh.buy(wtww)} <
{ft.buy(Imby), ft.buy(wtww), nyt.buy(Imby), nyt.buy(wtww)} ,

which signifies that every extended call literal in the settloa left-hand side ok

is more believed than any extended call literal in the sethenright-hand side, i.e.
the opinion of Paul D’'Hoore is valued more than the opinionthaf Financial Times
or the New York Times. Intuitively, this order on calls indiscan order on rules.
E.g. take the ground rulels; : buy(wtww) «— ft.buy(wtww), nyt.buy(wtww) and
be : —buy(wtww) «— not pdh.buy(wtww). We can order those rules based on the or-
der on the call literals: we consider more preferred thaby since for every extended
call literal in the body ob; that is not in the body of; we have a more believed ex-
tended call literal in the body df; that is not in the body o06,. Put otherwise, for
every call that; needs to make in order to dedukey(wtww) and thath, does not
make to deduce-buy(wtww), bo makes a more credible call that does not make.
The order on extended call literals thus induces the drger b;, and a similar order-
ing for the grounding withmby, which in turn leads to the orderbuy(wtww) «— <
buy(wtww) «— in the call-free reduct. Consequently, the example LPOCiapre-
ferred answer seV,. Things get more complicated, however, if we replace, &,y
bi : buy(wtww) < tmp andb? : tmp «— ft.buy(wtww), nyt.buy(wtww). Obviously,
one still prefers, overb}, but, now, a direct comparison based on the order on the call
literals in their respective bodies does not makes senstdd, we look at thigace of
both bodies, i.e. those extended call literals that mustvaéuated as true in order to
make the extended literals in the body true. The trace of afsettended literals thus
identifies those calls that are responsible for the truttho$e literals in an extended
answer set, and on which we can base the induced order on rules

Definition 7. Let(R, o) be a LPC with call literalr, ¢ € C;, andl € L;;,\C},. Then
c € tr(l) iff for every evaluatioreval,, of o: if M is an extended answer set(@®, o)
(w.rt. eval,) such thatM |= [, theneval,(c) = true.

Furthermore tr(c) = {c} andtr(8) = U{tr(b) | b € 3}.

The trace oftmp is thentr(tmp) = {ft.buy(witww), nyt.buy(wtww)}, i.e. in order
maketmyp true one needs the truth of the call literalgititmp). The trace of the body

of by is {not pdh.buy(wtww)}. Such that, based on those traces and the order on the
call literals, we can deduce thiatis more preferred thabt .

Definition 8. A program with ordered calls (LPO@ a pair P = (R, <) whereR
is a LPC with call literalsCr and < is a strict partial order on the (extended) call
literals in C3. Anextended answer sef P is an extended answer set®f An extended

Preferential Reasoning on a Web of Trust 379

answer set of is preferredf it is a preferred answer set of the OLR®, <), where,
for conflicting rulesr; : @ < B; andry : —a — Bz in R, r < ro iff tr(G2)\tr(61) #
OAVe € tr(B2)\tr(f1)-3c € tr(B1)\tr(B2)-¢ < ¢, and, for arbitrary rules-, s € R,
r < siff r <* s A s £* r where<* is the transitive closure of.

The preference ordet is a strict partial order such thak, <) is indeed a LPOC.

Note that one can immediately reduce an order on knowledgess — knowledge
sourceX’; has more authority thal; — to an order on extended call literals by group-
ing call literals concerning the same sources togethereadigvin the stock example.
An order on extended call literals instead of on sourceswallor a finer granularity as
it makes it possible to prefer sources for certain types afikadge while preferring
others for other types of knowledge: calls to the sports phjigjuipe regarding ten-
nis could be considered more reliable than tennis-relaadld © Le Monde while the
opposite may be true for political subjects.

A Semantic Web agent may not always have preferences on thieexoit is rea-
soning with, but if there is a network of agents it trusts klde, it can easily learn
preferences from those trusted agents. We model the Sem\&ab as a pait/C, A)
whereK is a set of knowledge sourcésand.A = (V, E) is a directed graph with
agentsV and edgedr between them. Each agentinis defined as a LPOC, i.e. an
agent has reasoning capabilities through a logic progratim @élls and can express
preferences on its calls. Denote wilt{A) the sequence of agents that are reachable
from A via a path inE, and assumé(A) is ordered according to the trudthas in
them. Thusk(A) is a sequence of agends, Ao, .. ., such that eacH, is trusted more
by A than A, 4, is. We thus assume that the agent resides on a web of trubtawit
suitable trust metric that allows for the constructionR{f4) for every agent.

For our convenience, we identify the set of sourkewith the set of all instances
of decidable decision problerdghat have an associated complexitynp(d). E.g., the
identification of a particular description logic knowledggseX' € K includes the set
of all satisfiability checking problems w.r.X.

Take an agend = (P, <) with P a simplified version of the stock example,
by : buy «— ft.buy, nyt.buy, andbs : —buy < not pdh.buy, with call literalsft.buy,
nyt.buy, andpdh.buy, evaluated arue, true, andfalserespectively. We assume that
the agent has no preference on the two extended answebsgtsand{—buy} of this
program, i.e< is empty, such that both extended answer sets are pref@uedo the
empty preference, the agent has to choose bet@egpally preferred, but contradict-
ing, strategies. Assuming the agentis part of network oftgjétrusts, it can try to find
out what the trusted agents think of its call literals. Eagsume that agent is con-
nected to agentd; = (P, <1), Ay = (P, <), andAs = (Ps, <3) with preferences
defined as follows:

not pdh.buy <1 ft.buy not pdh.buy <3 nyt.buy
lat.buy <1 ft.buy ft.buy <3 lat.buy
ft.buy <o not pdh.buy

Thus, agentd; prefers Paul D'Hoore’s advice as well as the Los Angeles Sisnad-
vice over that of the Financial Times, agety holds an opposite view and prefers the
Financial Times over Paul D'Hoore, and ageht prefers Paul’s advice over the New

380 Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

York Times’s and has more believe in the Financial Times timathe Los Angeles
Times. We do not specify the programs of those agents sin@revenly interested to
learn preferences for agedt from the preferences its trusted agents have —Afar
does not matter how the trusted agents deploy those prefesen

In order to let agentl construct its preferences based on this web of agents, we as-
sume its reachable agents are ranked according to trubiness:R(A) = A;, Az, As,
such that4, is the agent thatl trusts the most and; the agent that it trusts the least.
Considering the preference df;, A only retainsnot pdh.buy <1 ft.buy: combining
this preference withd’s own preference, a strict partial order on the call literai P
can be constructed. The other preferencd pinvolvesiat.buy which is of no concern
to agentA since it is not a call literal irP.

Moving to agentA,, second in the line of trust4 ignores<s,: it contradicts the
order already constructed i with the more trusted agent; . Finally, A ignores the
preference in<3 involving lat.buy, but it updates its preference wittvt pdh.buy <3
nyt.buy. This results in an updated agefit = (P, <) with not pdh.buy <’ ft.buy,
andnot pdh.buy <’ nyt.buy. This order on call literals induces then the orblek by
such tha —buy} is the preferred answer set of the updated agént

Definition 9. For an agentd = (P, <) in A, let R(A) = (P1,<1), (P2, <2),... The
updated agerif A is A’ = (P, <") where<'= (< UJ,_, B;)* with

1. B; €=,

2.Vec1 <2 € B;-c1,09 € Cl*p,

3. (RU U;Zl Bj)* is a strict partial order,
4. B; is a maximal set satisfying, 2., and3.

Intuitively, the agent updates its own prefererceith maximal subsets of preferences
of trusted agents, and this according to the order of trumtd@ion2. ensures that only
preferences on call literals of the agent’s own progtdrare considered, and condi-
tion 3. ensures that only those preferences<gfare retained that, when added to the
accumulated preference and transitively closing the tesne still has a strict partial
order. The latter only amounts to checking irreflexivitycgrtransitivity is entailed by
taking the transitive closure. Conditidnforces<’ to consider as much preferences as
possible from each prefereneg.

The updated<’ is a strict partial order on call literals such that the updeadgent
A’ is a LPOC, and we can compute preferred answer sets of anlageoimputing the
preferred answer set of its updated version that takes oot the web of trust.

Definition 10. Let A be an agent ind. The preferred answer set dfis the preferred
answer set of the updatet!.

In order to be able to compute the updated agent for an afjemé assume thag(A)

is finite. Since the Semantic Web with software agents isfthits sounds like a reason-
able restriction. However, due to the sheer amount of egeitagents on the Semantic
Web, it is unlikely that feasible reasoning with all conregtagents is possible. A pos-
sible strategy in overcoming this problem is to add a bounthemumber of trusted
agents in the sequen¢& A).

Preferential Reasoning on a Web of Trust 381

In considering an agent as a logic program, we neglected aof lthte machinery
involved in agent definitions. E.g., in the IMPACT System i agent consists of
two parts: software code and a semantic wrapper consisfirgnessage manager,
an action module, and a meta-knowledge module. In [12], hkery and implemen-
tation of the action module is described, with, among othesde call atoms that are
able to call software, and agent programs that express thieezhfor actions. E.g.,
O(send_note(Person)) <— Do(run_audit(Person)), indicates that if one is executing
the audit run, one is obliged to send a note. Conflict resmiuti [12] amounts to allow-
ing defeat of the meta-rule “Da thenDoca”, which says that if actiom is obliged then
one should execute it. This type of behavior can be simulatelér our extended answer
set semantics by introducing the ordered ridegw) «— O(a) <—-Do(a) «— O(a),
thus minimizing defeat of the meta-rule. Moreover, our prefice relation between
rules allows for more fine-grained types of conflict res@utas showed in this section.

5 Conclusions and Directions for Further Research

We devised and discussed a logic programming based frarkdaoagents on the
Semantic Web, where agents are capable of expressing gmeé= on the rules or on
the call literals in their knowledge. Those preferencebkththe resolution of conflicts
with the most preferred solution. In case an agent has negeces but is part of a web
of trusted agents, we showed how the agent can repleniswitpreferences based on
the preferences of trusted agents.

The preferred answer set semantics from Section 2, i.eowiitballs, was imple-
mented by theoLPs solver [26], available at http://tinf2.vub.ac.be/olphrFa given
OLPC, i.e. a program with calls and an order on those rulégrdnt plug-ins are en-
visaged to be written, depending on the type of desired.&lish a plug-in’s main task
would be to execute the decision problem associated withrtecplar call, e.g. check
the satisfiability of a concept with thesET [21] DL reasoner, and subsequently calcu-
late the call-free reduct and the reduced order on this tedinich are then to be fed
tooLPs

References

1. K. Arisha, T. Eiter, S. Kraus, F. Ozcan, R. Ross, and V. $ir&manian. IMPACT: In-
teractive Maryland Platform for Agents Collaborating Towe. IEEE Intelligent Systems
14(2):64-72, 1999.

2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, andtBl-BahneiderThe Description
Logic Handbook Cambridge University Press, 2003.

3. C. Baral. Knowledge Representation, Reasoning and Declarativel®molsolving Cam-
bridge Press, 2003.

4. S. Bechhofer, F. van Harmelen, J. Hendler, |. Horrocks. DMcGuinness, P. F. Patel-
Schneider, and L. A. Stein. OWL Web Ontology Language Refeze2004.

5. K. Van Belleghem, M. Denecker, and D. De Schreye. A Strongé&3pondence between
DLs and Open Logic Programming. Rroc. of ICLP’97 pages 346—360, 1997.

6. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Comjpigxand Expressive Power of
Logic ProgrammingACM Comput. Sury33(3):374-425, 2001.

382

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

Stijn Heymans, Davy Van Nieuwenborgh, and Dirk Vermeir

L. Ding, L. Zhou, and T. Finin. Trust Based Knowledge Outsing for Semantic Web
Agents. InProc. of the 2003 IEEE/WIC International Conference on Weblligence 2003.

. F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AlLgolIntegrating Datalog and

Description LogicsJ. of Intell. and Cooperative Information Systerh8:227-252, 1998.

. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. PollerdanRing under Incomplete Knowl-

edge. InProc. of CL 200Qvolume 1861 oL NCS pages 807-821. Springer, 2000.

T. Eiter, G. Gottlob, and H. Veith. Modular Logic Progmaing and Generalized Quantifiers.
In Proc. of LPNMR pages 290-309, 1997.

T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tomp@®mbining Answer Set Program-
ming with DLs for the Semantic Web. Froc. of KR 2004pages 141-151, 2004.

T. Eiter, V. S. Subrahmanian, and G. Pick. HeterogenAotige Agents, |I: Semanticgrtif.
Intell., 108(1-2):179-255, 1999.

M. Gelfond and V. Lifschitz. The Stable Model Semantmslfogic Programming. IfProc.
of ICLP’88, pages 1070-1080, Cambridge, Massachusetts, 1988. M§E.Pre

Y. Gil and V. Ratnakar. Trusting Information Sources @itzen at a Time. IrProc. of
International Semantic Web Conference (ISWC 20payes 162—-176, 2002.

J. Golbeck and J. Hendler. Inferring Reputation on tha&wic Web. InProc. of WWW
2004 ACM, 2004.

J. Golbeck, B. Parsia, and J. Hendler. Trust NetworksherSemantic Web. |Rroc. of
Cooperative Intelligent Agents 2003003.

B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. DediwipLogic Programs: Combining
Logic Programs with Description Logic. Rroc. of WWW 2003ages 48-57, 2003.
James Hendler. Agents and the Semantic WEIEE Intelligent Systems Journal6(2),
2001.

S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Nonrtario Ontological and Rule-
based Reasoning with Extended Conceptual Logic Prograniot. of ESWC 2005 um-
ber 3532 in LNCS, pages 392-407. Springer, 2005.

S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Prafe&leReasoning on a Web
of Trust. Technical report, Vrije Universiteit Brussel, @eof Computer Science, 2005.
http://tinf2.vub.ac.be/"sheymans/tech/aspc-techzps.

I. Horrocks. The FaCT system. Rroc. of Tableaux’98number 1397, pages 307-312.
Springer-Verlag, 1998.

I. Horrocks and P. Patel-Schneider. Reducing OWL Emgsik to Description Logic Satisfi-
ability. J. of Web Semantic4(4):345-357, 2004.

U. Hustadt, B. Motik, and U. Sattler. Reduci6@3{ZQ~ Description Logic to Disjunctive
Datalog Programs. FZI-Report 1-8-11/03, Forschungsaentnformatik (FZI), 2003.

V. Lifschitz. Answer Set Programming and Plan Genenatidournal of Artificial Intelli-
gence 138(1-2):39-54, 2002.

B. Motik, R. Volz, and A. Maedche. Optimizing Query Anging in Description Logics
using disjunctive deductive databasesPhoc. of KRDB’03 pages 39-50, 2003.

D. Van Nieuwenborgh, S. Heymans, and D. Vermeir. An Grdéiogic Program Solver. In
Proc. of PADL 2005number 3350 in LNCS, pages 128-142. Springer, 2005.

C. H. PapadimitriouComputational ComplexityAddison Wesley, 1994.

M. Richardson, R. Agrawal, and P. Domingos. Trust Manage for the Semantic Web. In
Proc. of ISWC 2003pages 351-368. Springer-Verlag, 2003.

R. Rosati. Towards Expressive KR Systems Integratinglbg and Description Logics:
Preliminary Report. IfProc. of DL'99 pages 160-164, 1999.

D. Van Nieuwenborgh and D. Vermeir. Preferred Answes 8&tOrdered Logic Programs.
In Proc. of JELIA 2002volume 2424 of NAI, pages 432—443. Springer, 2002.

Matthias Wagner, Thorsten Liebig, Olaf Noppens, SteBalzer, and Wolfgang Kellerer.
Towards Semantic-based Service Discovery on Tiny Mobileids.

