
Complexity of the Stable Model Semantics for Queries
on Incomplete Databases

Jos de Bruijn1 and Stijn Heymans2

1 KRDB Research Center, Free University of Bozen-Bolzano, Italy
debruijn@inf.unibz.it

2 Institute of Information Systems, Vienna University of Technology, Austria
heymans@kr.tuwien.ac.at

Abstract. We study the complexity of consistency checking and query answer-
ing on incomplete databases for languages ranging from non-recursive Datalog to
disjunctive Datalog with negation under the stable model semantics. We consider
both possible and certain answers and both closed- and open-world interpreta-
tion of C-databases with and without conditions. By reduction to stable models
of logic programs we find that, under closed-world interpretation, adding nega-
tion to (disjunctive) Datalog does not increase the complexity of the considered
problems for C-databases, but certain answers for databases without conditions
are easier for Datalog without than with negation. Under open-world interpreta-
tion, adding negation to non-recursive Datalog already leads to undecidability,
but the complexity of certain answers for negation-free queries is the same as
under closed-world interpretation.

1 Introduction

In applications of relational databases a need often arises for representing incomplete
information [5], typically in the form of null values. For example, in data exchange
[8,17] anomalies in the semantics for solutions may arise if nulls are not treated with
care. In data integration [1,12,16] incomplete information arises when integrating dif-
ferent complete data sources using a global schema; a materialized view may be incom-
plete with respect to local sources and local sources may be incomplete with respect to
the global schema or constraints of other sources.

Null values in incomplete databases are represented using variables. A single data-
base represents several possible instances, called representations. In our treatment we
follow the landmark paper by Imieliński and Lipski [14], which considers both closed-
world and open-world interpretation of incomplete databases. In the former, represen-
tations are in direct correspondence with valuations of the variables; each tuple in a rep-
resentation is the valuation of a tuple in the database. In the latter, representations may
include additional tuples not originating from the database. In addition, local condi-
tions may be attached to tuples and a global condition to the database. Such incomplete
databases with conditions are called C-databases.

So far, most research on query answering has been concerned with first-order and
Datalog queries [25,3], and has focused mainly on data complexity. However, since
those landmark papers, the formal properties of more expressive query languages such

as Datalog with disjunction [7] and (unstratified) negation with the accompanying Sta-
ble Model Semantics [9] (Datalog¬,∨) established themselves firmly as well-accepted
expressive Knowledge Representation languages. Sufficient reason for having a closer
look again at those query languages for incomplete databases and thus going beyond
PTime queries – queries that can be answered in polynomial time on complete databases
(e.g., stratified Datalog [2]).

We study the data and combined complexity of consistency, and possible and certain
answers for languages ranging from nonrecursive Datalog to Datalog¬,∨. We consider
both the open- and closed-world interpretation of C-databases with and without condi-
tions. Our main contributions are summarized as follows:
– We show that answering Datalog¬,∨ queries on incomplete databases under closed-
world interpretation can be reduced to common reasoning tasks in logic programming,
by an encoding of incomplete databases into logic programs.
– We present complete pictures of the data and combined complexity of consistency,
and possible and certain answers for languages ranging from non-recursive Datalog
to Datalog¬,∨, complementing earlier results [3,25] with combined complexity results
for (fragments of) stratified Datalog¬ queries and novel data and combined complexity
results for queries beyond PTime. The results for closed-world interpretation are sum-
marized in Table 1 on page 10, and for open-world interpretation in Table 2 on page 11.
– Finally, we show that results about checking uniform and strong equivalence of que-
ries from the areas of complete databases and logic programming apply immediately to
the case of incomplete databases.

To the best of our knowledge, ours are the first results about answering Datalog
queries with disjunction and/or stable model negation on incomplete databases. Related
to Datalog¬ queries on incomplete databases are the techniques for consistent query
answering in data integration based under the local-as-view using Datalog¬ programs,
by Bertossi and Bravo [4]. The precise relationship with query answering on incomplete
databases is an open question.

Under open-world interpretation, adding negation leads to undecidability of con-
sistency and query answering, by undecidability of finite satisfiability in first-order
logic [22]. Under closed-world interpretation, for all query languages ranging from non-
recursive Datalog to Datalog¬, the data complexity of possible answers on databases
without conditions is NP-complete and of certain answers on C-databases it is coNP-
complete; for certain answers coNP-completeness holds additionally for Datalog∨ que-
ries. For positive queries these results also apply under open-world interpretation. This
shows that, for possible answers and for certain answers on general C-databases, there
is no computational justification for restricting oneself to PTime languages such as
Datalog and stratified Datalog¬.

In Section 2 we review incomplete databases and define Datalog¬,∨ queries. In
Section 3 we reduce query answering under closed-world interpretation to standard
logic programming reasoning tasks. We present our complexity analysis in Section 4.
Finally, we discuss related and future work in Sections 5 and 6.

An extended version of this paper, which includes the proofs of Propositions 4, 7, 10,
and 11, can be found online at:
http://www.debruijn.net/publications/sm-incomplete-db.pdf.

2 Incomplete Databases and Queries

We consider C-databases, as defined by Imieliński and Lipski [14], and the Stable
Model Semantics for logic programs, as defined by Gelfond and Lifschitz [9].

Incomplete Databases LetD be a countably infinite set of constants, called the domain,
and let V be a finite set of variables, disjoint from D. A condition ψ is a formula of the
form ϕ1 ∨ · · · ∨ϕm, where ϕj are conjunctions of equality atoms x = y and inequality
atoms x 6= y, with x, y ∈ D ∪ V . A C-table (Conditional table) of arity n is a finite
subset of (D ∪ V)n such that a local condition φt is associated with each tuple t in the
relation. We sometimes omit φt if it is x = x.

A schema is a list T = R1, . . . , Rk of predicate symbols Ri each with an arity ni ≥
1. We assume a constant bound l on the arities. A C-database over T is a tuple T =
(T1, . . . , Tk) with associated condition ΦT, such that each Ti is a C-table with arity ni.
We write individual tuples (a1, . . . , ani

) ∈ Ti as Ri(a1, . . . , ani
); if Ri(a1, . . . , ani

)
contains no variables, it is a fact. With preds(T) we denote the set {R1, . . . , Rk}. We
call a C-database condition-free if every condition is x = x. A complete database or
instance I is a variable- and condition-free C-database.

Validity of variable-free conditions is defined as follows: c1 = c1 is valid; c1 6= c2

is valid, for c1, c2 distinct constants; this extends to conditions in the natural way. A
valuation is a mapping σ : V ∪ D → D such that σ(c) = c, for every c ∈ D. This
extends to tuples and conditions in the natural way. For C-tables T and C-databases T
we define σ(T) = {σ(t) | t ∈ T &σ(φt) is valid} and σ(T) = (σ(T1), . . . , σ(Tk)).
The closed-world interpretation (CWI) of a C-database T with arity (n1, . . . , nk) is
defined as:

rep(T) = {σ(T) | σ is a valuation such that σ(ΦT) is valid} (1)

The open-world interpretation (OWI) of T is defined as:

Rep(T) = {R ⊆ Dn1 × · · · × Dnk | ∃σ.σ(ΦT) is valid,
σ(T) ⊆ R, and R is finite} (2)

Lemma 1 (Implicit in [14]). Let T be a C-database. Then, rep(T) ⊆ Rep(T) and for
every I ∈ Rep(T) there is an I ′ ∈ rep(T) such that I ′ ⊆ I .

Datalog¬,∨ Queries Atoms are of the form p(a1, . . . , an), where the ai’s are terms and
p is an n-ary predicate symbol, n ≥ 1. Positive literals are atoms α and negative literals
are negated atoms not α. A Datalog¬,∨ rule r is of the form:

h1 ∨ · · · ∨ hl ← b1 , . . . , bk (3)

where the hi’s are atoms and the bj’s are literals, such that every variable in r occurs
in some positive bj . We call H(r) = {h1, . . . , hl} the head and B(r) = {b1, . . . , bk}
the body of r. If r contains no negation, then it is a Datalog∨ rule. If l = 1, then r is
a Datalog¬ rule. If r is both a Datalog∨ and Datalog¬ rule, then it is a Datalog rule.

A Datalog¬,∨ program P is a countable set of Datalog¬,∨ rules. Datalog¬, Datalog∨,
and Datalog programs are defined analogously.

The set of predicate symbols of P , denoted preds(P), is partitioned into sets of in-
tentional (int(P)) and extensional (ext(P)) predicates such that there is no p ∈ ext(P)
in the head of any r ∈ P . We assume that each variable occurs in at most one r ∈ P .

The dependency graph of P is a directed graph G(P) = 〈N,E〉: N = preds(P)
and E is the smallest set that includes an edge (p, q) ∈ preds(P)2 if there is an r ∈ P
such that p in some h ∈ H(r) and q in some b ∈ B(r); (p, q) is labeled negative if b is a
a negative literal. P is non-recursive if G(P) contains no cycles and stratified if G(P)
contains no cycles involving a negative edge. We use the prefixes nr- and st- for class
of non-recursive and stratified programs.

Given a set ∆ ⊆ D, the grounding of P with respect to ∆, denoted gr∆(P), is
defined as the union of all substitutions of variables in P with elements of ∆.

Definition 1 (Queries). If X is a class of programs, then an X query Q with signature
(e1, . . . , en) → (o1, . . . , om) is a finite X program without constants and without empty
rule heads such that {e1, . . . , en} = ext(Q) are the input and {o1, . . . , om} ⊆ int(Q)
are the output predicates. Q is well-defined with respect to a database T if ext(Q) ⊆
preds(T).

We assume in the remainder that all queries are well-defined with respect to the database
under consideration; further, let ∆ be a set of constants, P a program, I an instance,
and I a set of instances.

An interpretation M is a set of facts formed using predicate symbols in preds(P)
and constants ∆. Given a set of predicate symbols or constants Υ , with M |Υ we denote
the restriction of M to Υ .

If P is negation- and variable-free, M is a model of P if, for every r ∈ P , whenever
B(r) ⊆ M , H(r)∩M 6= ∅. The reduct PM,∆ is obtained from gr∆(P) by (a) removing
every rule r ∈ gr∆(P) such that not b ∈ B(r) for some b ∈ M and (b) removing all
negative literals from the remaining rules.

M is a stable ∆-model of P with respect to I if M |ext(P) = I|ext(P), M is a model
of PM,∆ and there is no model M ′ of PM,∆ such that M ′|ext(P) = M |ext(P) and
M ′ Ã M . We leave out I if I = ∅ and ∆ if ∆ = D. We note that if ∆ includes the
constants in I and P , then the stable ∆-models of P with respect to I are the same as
the stable models of P ∪ I .

Example 1. Let ∆ = {a}. Consider the instance I = {p(a)} and the program P =
{q(x) ∨ r(x) ← p(x), not s(x)}. M = {p(a), q(a)} is a model of the reduct PM,∆ =
{q(a) ∨ r(a) ← p(a)} and a stable ∆-model of P with respect to I; the other stable
∆-model is {p(a), r(a)}.

Definition 2 (Query Answers). Let I be an instance, I a set of instances, and Q a
Datalog¬,∨ query with signature (e1, . . . , en) → (o1, . . . , om).

Q(I) = {(M |{o1}, . . . ,M |{om}) | M is a stable model of Q with respect to I}
Q(I) =

⋃
{Q(I) | I ∈ I}

The closed-world interpretation of a query Q on a C-database T is written Q(rep(T))
and the open-world interpretation is written Q(Rep(T)).

3 Logic Programming Characterization of Queries under CWI

We reduce queries on incomplete databases under closed-world interpretation to logic
programs with negation. Specifically, we show that there is a polynomial embedding
of C-databases T into Datalog¬ programs PT such that the answers to a query Q on
T correspond with the stable models of Q ∪ PT with respect to the output predicates
(o1, . . . , om).

Recall that the domainD is infinite, and thus there may be infinitely many valuations
for a given variable in T. The following lemma shows we need to consider only a finite
subset.

Lemma 2 (Implicit in [3]). Let Q be a Datalog¬,∨ query, T a C-database, ∆ ⊂ D
include the constants in T, and V the set of variables in T. Then there is a set of
constants ∆′ ⊂ D with cardinality |V | such that ∆ ∩∆′ = ∅ and.

Q(rep(T))|∆ = {I|∆ | σ : V → ∆ ∪∆′, I ∈ Q(σ(T)), and σ(ΦT) is valid}

Note that for given Q, T, ∆, and V , such a ∆′ is finite, since |V | is finite.

Definition 3. Let T be a C-database and ∆ ⊂ D include constants in T. For each
tuple t = R(a) in T, with φt = ϕt,1 ∨ · · · ∨ϕt,m, the program PT,∆ contains the rules

R(a) ← ϕ′t,i , vx1 (x1), . . . , vxk
(xk) (4)

for 1 ≤ i ≤ m, where ϕ′t,i is obtained from ϕt,i by replacing ‘∧’ with ‘,’, and x1, . . . , xk

are the variables occurring in t or ϕt,i.
PT,∆ contains D(c) ← , for every c ∈ ∆ ∪∆′, with ∆′ as in Lemma 2,

vx(z) ← not v′x(z), D(z) ← vx(z), vx(y), z 6= y

v′x(z) ← not vx(z), D(z) ex ← vx(z)
← not ex

(5)

for every variable x in T. Finally, for ΦT = ϕT,1 ∨ · · · ∨ ϕT,l, PT,∆ contains

g ← ϕ′T,i, vx1(x1), . . . , vxk
(xk) ← not g (6)

for 1 ≤ i ≤ l, where ϕ′T,i is obtained from ϕT,i as before and x1, . . . , xk are the
variables in ϕT,i. PT,∆ contains no other rules.

Note that equality and inequality can be straightforwardly axiomatized using Datalog¬

rules, such that PT,∆ is indeed a Datalog¬ program.
Intuitively, the rules (5) ensure the presence of an atom vx(c) in every stable model,

indicating that the variable x is assigned to c. The constraints ensure that there is such
a guess for each variable and this guess is unique. The rules (4) subsequently ensure
evaluating the conditions.

The following proposition establishes correspondence between the answers to Q on
rep(T) and the stable models of Q ∪ PT,∆.

Proposition 1. Let Q be a query with signature (e1, . . . , en) → (o1, . . . , om) on a
C-database T and let ∆ be a superset of the set of constants in T. Then,

Q(rep(T))|∆ = {(M |{o1}, . . . ,M |{om}) | M is a stable model of Q ∪ PT,∆}|∆
Proof. One can verify that M is a stable model of PT,∆ iff M = σ(T) for a σ : V →
∆ ∪∆′ such that σ(ΦT) is valid. The proposition then straightforwardly follows from
the definition and Lemma 2. ut
Observe that the grounding of the program PT,∆ is in general exponential in the size
of T,∆, since the size of the non-ground rules (4) depends on the size of T. However,
we will see in Proposition 5 that using an intelligent polynomial grounding, the stable
models of PT,∆ can be computed in time NP.

Example 2. Consider a C-database T with ternary table T describing the flights of a
plane on a particular day. T contains the tuples t1 = T (v , x1, y1) and t2 = T (i , x2, y2),
with variables x1, x2, y1, y2, indicating that the plane flies from v to a destination x1

with a pilot y1 and from i to x2 with y2. As mg and mc are the only pilots certified to
fly on i, t1 has associated condition x1 6= i ∨ y1 = mg ∨ y1 = mc and t2 has condition
y2 = mg ∨ y2 = mc. Additionally, a pilot may not fly two stretches, hence the global
condition y1 6= y2 ∧ x1 6= v ∧ x2 6= i.

Let ∆ be the set of constants in T. Besides the guess rules (5), PT,∆ contains

T (v , x1, y1) ← x1 6= i, vx1(x1), vy1(y1) T (i , x2, y2) ← y2 = mg, vx2(x2), vy2(y2)
T (v , x1, y1) ← y1 = mg, vx1(x1), vy1(y1) T (i , x2, y2) ← y2 = mc, vx2(x2), vy2(y2)
T (v , x1, y1) ← y1 = mc, vx1(x1), vy1(y1)

g ← y1 6= y2, x1 6= v, x2 6= i, vy1(y1), vy2(y2), vx1(x1), vx2(x2) ← not g

Among the stable models of PT,∆ (restricted to preds(T)) are M1 = {T (v, i, mg),
T (i, v, mc)} and M2 = {T (v, i, mc), T (i, v, mg)}. One can verify that these indeed
correspond to elements of rep(T). Consider the Datalog¬ query Q

flying(x , y , z) ← T (x , y , z)
flying(x , y , z) ← T (x , u, z),flying(u, y , z)
roundtrip(z) ← flying(x , x , z)
stranded(x) ← not roundtrip(z),flying(x , y , z)

where flying is the transitive closure of the trips in T and the pilot is stranded if the
departure and final destination do not coincide. The output predicate is stranded .

Consider the stable models M ′
1 and M ′

2 of Q ∪ PT,∆, which are extensions of M1

and M2, respectively. Both M ′
1 and M ′

2 contain stranded(mg) and stranded(mc). How-
ever, Q ∪ PT,∆ also has the stable models {T (v, cx1 , cy1), T (i, v, mc), stranded(mc),
stranded(cy1)} and {T (v, cx1 , cy1), T (i, v, mg), stranded(mg), stranded(cy1)}, and
so neither stranded(mg) nor stranded(mc) is included in every stable model.

4 Complexity Analysis

In this section we study the complexity of checking consistency (cons) and of query
answering, under the possible (poss) and certain (cert) answer semantics.

We consider two notions of complexity (cf. [23]): combined complexity is measured
in the combined size of the database and the query and data complexity is measured
in the size of the database – the query is considered fixed. We consider the following
decision problems. As inputs (in parentheses) we consider a set of facts A, a C-database
T, and a query Q.

cons(T, Q) question: is there an I ∈ Q(rep(T)) such that I 6= ∅?
poss(A,T, Q) question: is there an I ∈ Q(rep(T)) such that A ⊆ I?
cert(A,T, Q) question: for all I ∈ Q(rep(T)), A ⊆ I?

consQ, possQ, and certQ are like the above except that Q is not part of the input.

We denote the consistency and certain answer problems under open-world inter-
pretation with the symbols Cons and Cert, respectively. Their definitions are obtained
from the above by replacing rep(·) with Rep(·). We do not consider possible answers
in the open-world case, since representations may include facts not justified by tuples
in the database.

With a problem Y (resp., Y Q) for a class X of queries, we mean the restriction
of the problem Y (resp., Y Q) such the queries Q in the input (resp., parameter) are in
the class X . We use the following notation for complexity classes: LSpace (logarithmic
space), PTime, NP, coNP, Σp

2 = NPNP, Πp
2 = coNPNP, PSpace, Exp (exponential

time), NExp, coNExp, NExpNP, and coNExpNP. See, e.g., [6, Section 3] for definitions.
We consider the closed-world interpretation in Section 4.1 and the open-world in-

terpretation in Section 4.2.

4.1 Complexity of Closed-World Interpretation

In order to give a full picture of the complexity, we repeat some results from literature
of query answering over incomplete databases in Proposition 2 and 3. Queries in these
propositions have no negation or only stratified negation such that a stable model se-
mantics coincides with the usual minimal model semantics as defined in the respective
literature. The following result is due to Abiteboul et al. [3].

Proposition 2 ([3]). The problem possQ is NP-complete and certQ is coNP-complete
for nr-Datalog, nr-Datalog¬, Datalog, and st-Datalog¬ queries.

In addition, Grahne [11] showed that when restricting local conditions φt to conjunc-
tions of equalities and the global condition ΦT to a conjunction of Horn clauses, the
problem certQ can be solved in PTime for Datalog queries.

The hardness results in the following proposition follow from the hardness results
for the case of complete databases; see [6,7,26]. Observe that the complement of poss
for Datalog∨ queries is easily reduced to cert for stratified Datalog¬,∨ queries; Πp

2

(resp., coNExpNP)-hardness of certQ (resp., cert) for st-Datalog¬,∨ follows immedi-
ately from Σp

2 (resp., NExpNP)-hardness of possQ (resp., poss) for Datalog∨ queries
[7]. Observe also that the problems poss and cert correspond for nr-Datalog que-
ries on complete databases; PSpace-hardness of cert was established by Vorobyov and
Voronkov [26].

Proposition 3. The problem
– possQ is Σp

2 -hard for Datalog∨ queries,
– certQ is Πp

2 -hard for st-Datalog¬,∨ queries,
– poss and cert are PSpace-hard for nr-Datalog queries,
– poss is NExpNP-hard for Datalog∨ queries, and
– cert is coNExpNP-hard for st-Datalog¬,∨ queries.

We state our novel hardness result of combined complexity for Datalog in Proposition
4. Our novel membership results for queries beyond Datalog are in Propositions 5 and
6. The results are summarized in Table 1 on page 10.

Proposition 4. The problem poss is NExp-hard and cert is coNExp-hard for Datalog
queries.

Proof (Sketch). The proof is by an encoding of nondeterministic Turing machines that
run in exponential time into Datalog queries Q on C-databases T. Q, which has one
output predicate accept, encodes all possible transitions of the machine, using binary
coding for time points and positions on the tape. T encodes a guess for each time point
j. Conditions ensure that in a given representation, exactly one guess is made for each
time point. We have that accept(1) ∈ I for some (resp., all) I ∈ Q(rep(T)) iff some
(resp., all) run(s) of T are accepting. Consequently, poss is NExp-hard and cert is
coNExp-hard for Datalog queries.

The complete encoding can be found in the extended version. ut

We obtain the following membership results with the help of the reduction to logic
programs in Section 3 (see Proposition 1).

Proposition 5. The problem
– possQ is in NP and certQ is in coNP for Datalog¬ queries,
– possQ is in Σp

2 and certQ is in Πp
2 for Datalog¬,∨ queries,

– poss and cert are in PSpace for nr-Datalog¬ queries,
– poss is in NExp and cert is in coNExp for Datalog¬ queries, and
– poss is in NExpNPand cert is in coNExpNPfor Datalog¬,∨ queries.

Proof. Let T be a C-database, A a set of facts, Q a Datalog¬,∨ query, ∆ the set of
constants occurring in T or A, V the set of variables in T, and PT,∆ the logic pro-
gram that encodes T (see Definition 3). Without loss of generality we assume that the
facts in A all involve output predicates of Q. By Proposition 1, poss(A,T, Q) (resp.,
cert(A,T, Q)) iff for some (resp, all) stable model(s) M of PT,∆ ∪Q, A ⊆ M .

Consider the following algorithm for computing the stable models of PT,∆ ∪ Q.
Observe that for each stable model M of PT,∆ ∪ Q it must hold, by the rules (5), that
(†) for each vxi , with xi ∈ V , there is exactly one vxi(txi) ∈ M .

1. Guess an interpretation M for PT,∆ ∪Q such that (†) holds.
2. Check whether M is a minimal model of (gr∆∪∆′(P ′T,∆ ∪ Q))M , where P ′T,∆ is

obtained from PT,∆ by replacing every vxi(xi) with vxi(txi).

The size of the guess M is clearly polynomial in T. The reduct (gr∆∪∆′(P ′T,∆∪Q))M

can be computed in time polynomial in the size of T (since every predicate has bounded
arity) and exponential in the combined size of T and Q. Then, checking whether M is
a minimal model of the reduct can be done in PTime if Q ∈ Datalog¬ and with an
NP oracle if Q ∈ Datalog¬,∨ (cf. [6]). The first, second, fourth, and fifth bullet follow
immediately.

Finally, if Q does not contain recursion, it is not necessary to consider the complete
grounding; the algorithm can consider the possible variable substitutions one at a time.
This requires polynomial space; the third bullet follows from the fact that nondetermin-
istic PSpace =PSpace. ut
For determining the complexity of the certain answer semantics for Datalog∨ queries
we exploit the fact that entailment from Datalog∨ programs corresponds to proposi-
tional consequence from its ground instantiation.

Proposition 6. The problem certQ is in coNP and the problem cert is in coNExp for
Datalog∨ queries.

Proof. We have that certQ(A,T) iff A ⊆ M for every I ∈ rep(T) and stable model
M of Q ∪ I , which is in turn equivalent to gr∆(Q ∪ I) |= A, where |= is propositional
consequence and ∆ is the set of constants in I . The problem there is an I ∈ rep(T)
such that gr∆(Q ∪ I) 6|= A can be decided as follows: (1) guess a valuation σ for the
variables in T and a propositional valuation γ for the atoms in gr∆(Q ∪ σ(T)) and (2)
check σ(T) ∈ rep(T), γ |= gr∆(Q ∪ σ(T)), and γ 6|= A. Clearly, the algorithm runs
in NP in the size of T and in NExp in the combined size. It follows that certQ can be
decided in coNP and cert in coNExp. ut
We observe that poss can be straightforwardly reduced to cons, and vice versa.

Proposition 7. There exists an LSpace reduction from cons (resp., consQ) for a class
of queries X to poss (resp., possQ′) for X , and vice versa.

Therefore, our results for consistency correspond with those for possible answers.
When considering C-databases without conditions (called V-databases in [14]), Abite-
boul et al. [3] showed that certQ is in PTime for Datalog, while possQ is NP-complete
for nr-Datalog queries and certQ is coNP-complete for nr-Datalog¬ queries. We com-
plement these results as follows.

Proposition 8. When considering C-databases without conditions, certQ is in LSpace
for nr-Datalog queries, cert is Exp-complete for Datalog queries, and poss is NExp-
complete for Datalog queries.

Proof. For deciding cert, variables in C-databases without conditions can be treated
as constants (Skolemization), and so the database can be treated as if it were a com-
plete database (implicit in [14,24]). Exp-completeness of cert for Datalog and mem-
bership in LSpace of certQ for nr-Datalog queries follows from the results for complete
databases.
By Proposition 6, poss is in NExp. Hardness is proved by a slight modification of
the proof of Proposition 4: the guess of the next computation step i at time point j is

consQ possQ certQ cons poss cert
nr-Datalog NP NP coNP/LSpace PSpace PSpace PSpace
nr-Datalog¬ NP NP coNP PSpace PSpace PSpace
Datalog NP NP coNP/P NExp NExp coNExp/Exp
st-Datalog¬ NP NP coNP NExp NExp coNExp
Datalog¬ NP NP coNP NExp NExp coNExp
Datalog∨ Σp

2 Σp
2 coNP NExpNP NExpNP coNExp

st-Datalog¬,∨ Σp
2 Σp

2 Πp
2 NExpNP NExpNP coNExpNP

Datalog¬,∨ Σp
2 Σp

2 Πp
2 NExpNP NExpNP coNExpNP

Table 1. Complexity results for C-databases with/without conditions under closed-
world interpretation

performed using a single variable xj , which may or may not be valuated with a valid i.
This means that not all I ∈ Q(rep(T)) correspond to runs, but still T has an accepting
run iff there is an I ∈ Q(rep(T)) such that accept(1) ∈ I . ut
The further complexity results for V-databases are the same as for C-databases. We
note that the stated complexity results about V-databases apply even if variables may
not occur twice in the database. Such V-databases are called Codd databases in [14].

Table 1 summarizes the complexity results for consistency and query answering un-
der closed-world interpretation (CWI), both for databases with and without conditions
(separated by the ‘/’ symbol). Where the two cases correspond, only one complexity
class is written. The results in boldface are novel. Note that all results in the table, save
the LSpace result, are completeness results.

We can observe from the table that problems for query languages that are complete
for (the complement of) a nondeterministic complexity class when considering com-
plete databases (e.g., Datalog¬) do not increase in complexity when considering incom-
plete databases. So, for Datalog with disjunction and/or negation, answering queries on
incomplete databases is not harder than answering queries on complete databases.

All considered PTime query languages jump to NP (resp., coNP) when consider-
ing data complexity and queries on C-databases. However, differences arise when con-
sidering the size of the query: for example, the combined complexity of the Datalog
NExp-complete, whereas it is PSpace-complete for nr-Datalog.

Finally, we can observe that problems for queries on databases without conditions
are only easier than those with conditions when considering PTime queries without
negation and even then only certain answers are easier; possible answers and consis-
tency are just as hard.

4.2 Complexity of Open-World Interpretation

For positive queries, certain answers under open-world interpretation (OWI) correspond
to certain answers under CWI, which is a straightforward consequence of Lemma 1.

Proposition 9. Let T be C-database, Q a Datalog∨ query, and A a set of facts. Then,
Cert(A,T, Q) iff cert(A,T, Q).

ConsQ CertQ Cons Cert
nr-Datalog NP/constant coNP/LSpace NP/LSpace PSpace
nr-Datalog¬ Undec. Undec. Undec. Undec.
Datalog NP/constant coNP/P NP/P coNExp/Exp
st-Datalog¬ Undec. Undec. Undec. Undec.
Datalog¬ Undec. Undec. Undec. Undec.
Datalog∨ NP/constant coNP Σp

2 coNExp
st-Datalog¬,∨ Undec. Undec. Undec. Undec.
Datalog¬,∨ Undec. Undec. Undec. Undec.

Table 2. Complexity results for C-databases with/without conditions under open-world
interpretation

Checking Cons(T, Q) for consistent T (i.e., Rep(T) 6= ∅) corresponds to checking
satisfiability of Q, which is known to be decidable for Q ∈ Datalog [2, Theorem
12.5.2]. Observe that databases without conditions are trivially consistent. We estab-
lish the complexity of ConsQ and Cons in the following two propositions.

Proposition 10. Satisfiability of Datalog queries is PTime-hard and satisfiability of
Datalog∨ queries is Σp

2 -hard.

Proposition 11. The problems ConsQ and Cons are NP-complete for nr-Datalog and
Datalog; ConsQ is NP-complete and Cons is in Σp

2 for Datalog∨ queries.
When considering C-databases without conditions, Cons is in LSpace for nr-Datalog
queries and in PTime for Datalog queries.

Adding negation to any of the considered query languages results in undecidability, by
the undecidability of finite satisfiability of nr-Datalog¬ queries [22]. Table 2 summa-
rizes the complexity results under OWI where “Undec.” is short for “Undecidable” and
“constant” means “decidable in constant time”. All results, save the two LSpace results,
are completeness results.

As can be seen from the table, checking consistency under OWI is often easier than
checking consistency under CWI. Intuitively, this is the case because under CWI one
needs to take the absence of tuples in the database into account.

5 Related Work

Variations on Query Languages Reiter [18] devised an algorithm for evaluating cer-
tain answers to queries on logical databases, which are essentially condition-free C-
databases under CWI. The algorithm, based on relational algebra, is complete for pos-
itive first-order queries (i.e., nr-Datalog) and for conjunctive queries extended with
negation in front of atomic formulas (i.e., a subsef of st-Datalog¬). We obtain sound
and complete reasoning for free by our translation of queries on C-databases to calcu-
lating the stable models of a logic program.

Rosati [19] considers condition- and variable-free databases under OWI and certain
answers for conjunctive queries and unions of conjunctive queries, as well as exten-
sions with inequality and negation. The data complexity of such queries is polynomial

as long as the queries are safe, but becomes undecidable when considering unions of
conjunctive queries extended with negation involving universally quantified variables.

We considered nr-Datalog, which generalize (unions of) conjunctive queries, but
did not (yet) consider extensions with inequality and restricted forms of negation. A
topic for future work is query answering on C-databases for such languages, both under
CWI and OWI.
Logic Programming with Open Domains One traditionally assumes in Logic Program-
ming information regarding individuals is complete. Hence, the grounding of logic pro-
grams with the constants in the program. Approaches that allow for incomplete infor-
mation in that sense, e.g., where one does not need all relevant constants in the program
to deduce correct satisfiability results, are, the finite k-belief sets of [10,20,21] and its
generalization3, open answer sets [13]. Both deal with incomplete information by not
a priori assuming that all relevant constants are present in the program under consid-
eration. It is not clear what the exact relation with C-databases is; this is part of future
work.
Or-sets An alternative way of representing incomplete information is through objects
with or-sets [15]. For example, a tuple (John, {30, 31}) indicates that John has age
30 or 31. This notion of incompleteness (which assumes closed-world interpretation)
is somewhat simpler than C-databases and could be simulated using disjunctions of
equality atoms. In [15], one shows that certain answers for existentially quantified con-
junctive first-order formulas are data complete for coNP. A result that conforms with
the coNP result for certQ with nr-Datalog queries in Table 1.

6 Outlook

We studied query languages ranging from nr-Datalog to Datalog¬,∨. Besides exten-
sions of positive query languages (including conjunctive queries) with inequality and
limited forms of negation (e.g., only in front of extensional predicates), in future work
we plan to consider integrity constraints, both as part of the query language, as is com-
mon in logic programming, and as part of the database. While under OWI adding in-
tegrity constraints to the database leads to undecidability already for very simple query
languages [19], query answering under integrity constraints for databases under CWI
is largely uncharted territory. We suspect that there are cases that are undecidable un-
der OWI, but solvable under CWI, because by Lemma 2 we need to consider only a
finite subset of rep(T). We note that Vardi [24] showed that checking integrity of an
incomplete database is often harder under CWI than under OWI.

Abiteboul and Duschka [1] argue that a materialized view (e.g., the result of data
integration) should be seen as an incomplete database, where the source predicates are
seen as incomplete. Indeed, viewing a global schema as a sound view – essentially
a condition- and variable-free incomplete database – is common in data integration
[12,16]. Considering variables and, possibly, also conditions in (materialized) global
views is a natural extension in this scenario; for example, local relations may have fewer
columns than global relations, requiring view definitions of the form ∃Y.v(X, Y, Z) ←
s(X, Z). In future work we intend to consider query answering using such views.

3 Both finite and infinite open answer sets are allowed.

Acknowledgements We thank the anonymous reviewers for useful comments and feed-
back. The work in this paper was partially supported by the European Commission
under the project ONTORULE (IST-2009-231875).

References
1. S. Abiteboul and O. M. Duschka. Complexity of answering queries using materialized views.

In Proc. PODS, pp. 254–263, 1998.
2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
3. S. Abiteboul, P. C. Kanellakis, and G. Grahne. On the representation and querying of sets of

possible worlds. Theoretical Computer Science, 78(1):158–187, 1991.
4. L. E. Bertossi and L. Bravo. Consistent query answers in virtual data integration systems. In

Inconsistency Tolerance, LNCS 3300:42–83, 2005.
5. E. F. Codd. Extending the database relational model to capture more meaning. ACM ToDS,

4(4):397–434, 1979.
6. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of logic

programming. ACM Computing Surveys, 33(3):374–425, 2001.
7. T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM ToDS, 22(3):364–418, 1997.
8. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: semantics and query

answering. Theor. Comput. Sci., 336(1):89–124, 2005.
9. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.

New Generation Computing, 9(3–4):365–386, 1991.
10. M. Gelfond and H. Przymusinska. Reasoning on open domains. In Proc. LPNMR, pp. 397–

413, 1993.
11. G. Grahne. Horn tables - an efficient tool for handling incomplete information in databases.

In Proc. PODS, pp. 75–82, 1989.
12. A. Y. Halevy. Answering queries using views: A survey. VLDB J., 10(4):270–294, 2001.
13. S. Heymans, D. V. Nieuwenborgh, and D. Vermeir. Open answer set programming with

guarded programs. ACM ToCL, 9(4), 2008.
14. T. Imieliński and W. Lipski. Incomplete information in relational databases. Journal of the

ACM, 31(4):761–791, 1984.
15. T. Imieliński, S. A. Naqvi, and K. V. Vadaparty. Incomplete objects - a data model for design

and planning applications. In Proc. SIGMOD, pp. 288–297, 1991.
16. M. Lenzerini. Data integration: A theoretical perspective. In PODS, pp. 233–246, 2002.
17. L. Libkin. Data exchange and incomplete information. In Proc. PODS, pp. 60–69, 2006.
18. R. Reiter. A sound and sometimes complete query evaluation algorithm for relational

databases with null values. Journal of the ACM, 33(2):349–370, 1986.
19. R. Rosati. On the decidability and finite controllability of query processing in databases with

incomplete information. In Proc. PODS, pp. 356–365, 2006.
20. J. Schlipf. Some Remarks on Computability and Open Domain Semantics. In Proc. WS on

Structural Complexity and Recursion-Theoretic Methods in Logic Programming, 1993.
21. J. Schlipf. Complexity and Undecidability Results for Logic Programming. Annals of Math-

ematics and Artificial Intelligence, 15(3-4):257–288, 1995.
22. B. Trakhtenbrot. Impossibility of an algorithm for the decision problem for finite models.

Dokl. Akad. Nauk SSSR, 70:596–572, 1950.
23. M. Y. Vardi. The complexity of relational query languages (extended abstract). In ACM

Symposium on Theory of Computing, pp. 137–146, 1982.
24. M. Y. Vardi. On the integrity of databases with incomplete information. In Proc. PODS, pp.

252–266, 1986.
25. M. Y. Vardi. Querying logical databases. Journal of Computer and System Sciences,

33(2):142–160, 1986.
26. S. G. Vorobyov and A. Voronkov. Complexity of nonrecursive logic programs with complex

values. In PODS, pp. 244–253, 1998.

