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Abstract. We describe the design of the OLPS system, an implementation of the
preferred answer set semantics for ordered logic programs. The basic algorithm
we propose computes the extended answer sets of a simple program using an
intuitive 9-valued lattice, called T9. During the computation, this lattice is em-
ployed to keep track of the status of the literals and the rules while evolving to
a solution. It turns out that the basic algorithm needs little modification in order
to be able to compute the preferred answer sets of an ordered logic program. We
illustrate the system using an example from diagnostic reasoning and we present
some preliminary benchmark results comparing OLPS with existing answer set
solvers such as SMODELS and DLV.
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1 Introduction

In answer set programming (see e.g. [2] and the references therein), one uses a logic
program to modularly describe the requirements that must be fulfilled by the solutions
to a problem. The solutions then correspond to the models (answer sets) of the program,
which are usually defined through (a variant of) the stable model semantics [13]. The
technique has been successfully applied in problem areas such as planning [14, 6, 7],
configuration and verification [20], diagnosis [5, 17, 24], game theory [25], updates [8]
and database repairs [1, 15].

The extended answer set semantics for, possibly inconsistent, simple programs (con-
taining only classical negation) is defined by allowing rules to be defeated (not satis-
fied). An ordered logic program then consists of a simple program with a partial order
on the rules, representing a preference for satisfying certain rules, possibly at the cost
of violating less important ones. Such a rule preference relation induces an order on
extended answer sets, the minimal elements of which are called preferred answer sets.
It can be shown [18] that the resulting semantics has a similar expressiveness as dis-
junctive logic programming, e.g. the membership problem is ΣP

2 -complete. Ordered
programs have natural applications in e.g. database repair [15] or diagnosis [17, 24].
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This paper describes the design and implementation of the OLPS system that can be
used to compute the preferred answer sets of ordered programs. It is organized as fol-
lows: after a brief overview of the preferred answer set semantics for ordered programs
(Section 2), we present the OLPS system in Section 3. Section 4 discusses an algorithm,
based on partial interpretations, to compute the extended answer sets of a simple (un-
ordered) program. In Section 5, this algorithm is adapted to take into account the rule
order, and compute only preferred answer sets. Finally, Section 6 contains the results of
some preliminary experiments and directions for further research.

The OLPS system has been released under the GPL and is available for download
from http://tinf2.vub.ac.be/olp.

2 Preferred Answer Sets for Ordered Programs

Preliminaries and Notation. A literal is an atom a or a negated atom ¬a. For a literal
l we use ¬l to denote its inverse, i.e. ¬l = ¬a iff l = a while ¬l = a iff l = ¬a.
For a set of literals X , we use ¬X to denote {¬l | l ∈ X}. Such a set is consistent iff
X∩¬X = ∅. In addition, we also consider the special symbol⊥ denoting contradiction.
Any set X ∪ {⊥}, with X a set of literals, is inconsistent. For a set of atoms A, we use
LA to denote the set of literals over A and define L⊥A = LA ∪ {⊥}.

A rule r is of the form hr ← br where br, the body of the rule, is a set of literals and
hr, the rule’s head, is a literal or⊥. In the latter case, the rule is called a constraint1, in
the former case, it is called a hr-rule.

For a set of rules R we use R� to denote the unique smallest Herbrand model, see
[22], of the positive logic program obtained from P by considering all literals and ⊥ as
separate atoms.

Simple Logic Programs and Extended Answer Sets. A simple logic program (SLP)
is a countable set of rules. For a SLP P , we use BP to denote its Herbrand base, i.e.
the set of atoms appearing in the rules of P . An interpretation for P is any consistent
subset of LBP . For an interpretation I and a set of literals X we write I |= X just when
X ⊆ I .

A rule r = hr ← br is satisfied by I , denoted I |= r, iff hr ∈ I whenever I |= br,
i.e. whenever r is applicable (I |= br), it must be applied (I |= br∪{hr}); r is defeated
by I , denoted I |= ¬r iff there is an applied competing rule r′ = ¬hr ← br′ . Note that,
consequently, constraint rules cannot be defeated.

The semantics defined below deals with possibly inconsistent programs in a simple,
yet intuitive, way: when faced with contradictory applicable rules for l and ¬l, one
selects one, e.g. the l-rules, for application and ignores (defeats) the contradicting ¬l-
rules.

Let I be an interpretation for a SLP P . The reduct of P w.r.t. I , denoted PI is the
set of rules satisfied by I , i.e. PI = {r ∈ P | I |= r}. An interpretation I is called an
extended answer set of P iff I is founded, i.e. P �

I = I , and each rule r in P is either
satisfied or defeated, i.e. ∀r ∈ P · I |= r ∨ I |= ¬r.

1 To simplify the theoretical treatment we use an explicit contradiction symbol ⊥ in the head
of constraint rules. The concrete OLPS syntax employs the usual notation where the head of a
constraint is empty.
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Example 1. The program P1 shown below has 2 extended answer sets {¬a, b} and
{a,¬b} corresponding to the reducts {c, r¬a, ra, rb} and {c, r¬b, ra, rb}, respectively.

r¬a : ¬a← ra : a← ¬b r¬b : ¬b←
rb : b← ¬a c : ⊥ ← ¬a,¬b

Ordered Programs and Preferred Answer Sets. An ordered logic program (OLP) is
a pair 〈R, <〉 where R is a simple program and < is a well-founded strict2 partial order
on the rules in R3.

Intuitively, r1 < r2 indicates thats r1 is preferred over r2. The notation is extended
to sets of rules, e.g. R1 < R2 abbreviates

∧
r1∈R1∧r2∈R2

r1 < r2.
The preference < on rules in 〈R, <〉 will be translated to a preference relation on

the extended answer sets of R via an ordering on reducts: a reduct R1 is preferred over
a reduct R2, denoted R1 � R2 iff ∀r2 ∈ R2\R1 ·∃r1 ∈ R1\R2 ·r1 < r2, i.e. each rule
from R2\R1 is “countered” by a rule in R1\R2. It can be shown (Theorem 6 in [15]) that
� is a partial order on 2R. Consequently, we write R1 � R2 just when R1 � R2 but
R1 �= R2. The �-order on reducts induces a preference order on the extended answer
sets of R: for extended answer sets M1 and M2, M1 � M2 iff RM1 � RM2 . Minimal
(according to �) extended answer sets of R are called preferred answer sets of 〈R, <〉.
An extended answer set is called proper iff it satisfies all minimal elements from R.

Example 2. Consider the ordered program below, which is written using the OLPS-
syntax: ¬ is written as “-” and rules are grouped in modules that are partially ordered
using statements of the form “A < B”.

Avoid { pass :− study . study . }
Prefer { −study . }
ForSure { −pass :− −study . pass :− −pass . }
ForSure < Prefer < Avoid

The program expresses the dilemma of a person preferring not to study but aware
of the fact that not studying leads to not passing (-pass :- -study) which is un-
acceptable (pass :- -pass). It is straightforward to verify that the single (proper)
preferred answer set is {study, pass}which satisfies all rules in ForSure and Avoid,
but not the rules in Prefer.

In [15, 16] it is shown that OLP can simulate negation as failure (i.e. adding nega-
tion as failure does not increase the expressiveness of the formalism) as well as dis-
junction (under the minimal possible model semantics) and that e.g. membership is
ΣP

2 -complete. This makes OLP as expressive as disjunctive logic programming under
its normal semantics. However, as with logic programming with ordered disjunction[4],
no effective translation is known in either direction.

2 A strict partial order < on a set X is a binary relation on X that is antisymmetric, anti-reflexive
and transitive. The relation < is well-founded if every nonempty subset of X has a <-minimal
element.

3 Strictly speaking, we should allow R to be a multiset or, equivalently, have labeled rules, so
that the same rule can appear in several positions in the order. For the sake of simplicity of
notation, we will ignore this issue: all results also hold for the general multiset case.
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3 The Ordered Logic Program Solver (OLPS) System

OLPS computes (a selection of) the proper preferred answer sets of a finite ordered
program which is described using a sequence of module definitions and order assertions.
A module is specified using a module name followed by a set of rules, enclosed in braces
while an order assertion is of the form m0 < m1 < . . . < mn, n > 0, where each mi,
0 ≤ i ≤ n is a module name.

Rules are written as usual in datalog, with a few exceptions: variables must start
with an uppercase letter and classical negation (¬) is represented by a “-” in front
of a literal, e.g. -p(X,a). In addition, some convenient syntactic sugar constructs
can be used in non-grounded programs. E.g. rules such as t({1,2-4,a}). abbrevi-
ate t(1).t(2).t(3).t(4).t(a). and variables can be “typed”, where a type is
a unary predicate: e.g. p(X:t) :- q(Y:r,Z). abbreviates p(X) :- q(Y,Z),
t(X), r(Y).

The example program in Figure 1 describes the operation of a unary adder, as shown
in Figure 2 [12]. It illustrates how ordered programs can be used to implement diagnos-
tic systems [17].

Error { fault (N:gate , F: fault ). } % May be needed to explain observation.
Default { − fault (N:gate , F: fault ). % By default, gates are not faulty.
−adder(X:bit , Y:bit , Z: bit , Sum:bit , Carry: bit ). % Naf for adder/5.
}

Model { bit ({0, 1}). gate({xor1 , xor2 , and1 , and2 , or1}).
fault ({ stuck at 0 , stuck at 1 }).
xor(N:gate ,0,0,1) :− fault (N, stuck at 1 ). xor(N:gate ,1,1,1) :− fault (N, stuck at 1 ).
xor(N:gate ,0,1,0) :− fault (N, stuck at 0 ). xor(N:gate ,1,0,0) :− fault (N, stuck at 0 ).
and(N:gate ,1,1,0) :− fault (N, stuck at 0 ). and(N:gate ,1,0,1) :− fault (N, stuck at 1 ).
and(N:gate ,0,1,1) :− fault (N, stuck at 1 ). and(N:gate ,0,0,1) :− fault (N, stuck at 1 ).
or(N:gate ,1,1,0) :− fault (N, stuck at 0 ). or (N:gate ,1,0,0) :− fault (N, stuck at 0 ).
or(N:gate ,0,1,0) :− fault (N, stuck at 0 ). or (N:gate ,0,0,1) :− fault (N, stuck at 1 ).
% Normal model
adder(X:bit , Y:bit , Z: bit , Sum:bit , Carry: bit ) :−

xor(xor1 , X,Y,S ), xor(xor2 , Z,S,Sum), and(and1 , X,Y,C1), and(and2 , Z,S,C2),
or(or1 , C1,C2,Carry).

% Normal behaviour of gates.
xor(N:gate , 1,1,0). xor(N:gate , 0,1,1). xor(N:gate , 1,0,1). xor(N:gate , 0,0,0).
and(N:gate , 1,1,1). and(N:gate , 1,0,0). and(N:gate , 0,1,0). and(N:gate , 0,0,0).
or(N:gate , 1,1,1). or(N:gate , 1,0,1). or(N:gate , 0,1,1). or(N:gate , 0,0,0).

}
Observations { :− −adder (0,0,1,0,1). }
Model < Default < Error

Fig. 1. A program for circuit diagnosis.

Intuitively, observations are represented using constraints, and rules describing the
normal operation of the system are preferred over “fault rules” that specify possible ab-
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X

Y

Z

S

Sum

Carry

C1

C2

xor1

and1

and2

xor2

or1

Fig. 2. Unary adder [12] described in the program of Figure 1.

normal behaviors. Here, the adder-rule in Model describes the normal operation of
the circuit where variables correspond to the connections between the gates, which are
named in the gate/1-predicate. It is assumed that a broken gate may have a fixed out-
put, whatever its inputs. This leads to the introduction of two constants stuck at 0
and stuck at 1 (defined in the fault/1 rules) and a specification of the behav-
ior of the various gate types when they are stuck using rules such as xor(N:gate,
0, 0, 1) :- fault(N, stuck at 1). The Default module specifies that
fault/2 and adder/5 are false by default (Model< Default).

To add diagnostic capabilities, it suffices to add another weaker module Error that
contains rules that should only be used “as a last resort”.

The observation of a malfunctioning circuit is described using a constraint, e.g.
:- -adder(0,0,1,0,1) forces OLPS to find an explanation for adder(0,0,1,
0,1). To this end, some rules in Default will need to be defeated by applying some
weaker rules from Error. As shown in [17], each preferred answer set will contain a
(subset) minimal set of fault/2 literals.

Running OLPS on the example using the command4

olps -p ’fault/2’ -n 0 circuit.olp

will compute the possible minimal explanations shown below.

{ + fault (xor1 , stuck at 1 ) }
{ + fault (or1 , stuck at 1 ) + fault (xor2 , stuck at 0 ) }
{ + fault (and2 , stuck at 1 ) + fault (xor2 , stuck at 0 ) }
{ + fault (and1 , stuck at 1 ) + fault (xor2 , stuck at 0 ) }

Like SMODELS[21], OLPS first produces a grounded version of the program that
then serves as input to the solver proper. The default grounding5, olpg, produces all
(some are, however, optimized away) the instances of rules that are used in the compu-
tation of the minimal answer set of the positive program, obtained by considering all
literals as separate atoms.

4 The “-p” option is used to print only the fault/2 predicate, “-n 0” will cause the system
to compute all proper preferred answer sets.

5 The grounding program runs as a separate process and can be selected at run time.
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4 Computing Extended Answer Sets for Simple Programs

Partial Interpretations

OLPS searches for answer sets by building and extending partial interpretations that
carry intermediate information regarding the status of literals and rules. To represent
such information on literals, we use the lattice T9 of truth values depicted in Figure 3.
Intuitively, T9 can be considered as an extension of FOUR from [3, 19] with approxima-
tions6

� t and � f of resp. t and f , denoting that a literal must eventually become resp.
true or false at the end of the computation in order for a partial interpretation to result
in an extended answer set. Further, we use not t and not f as explicit representations of
the complements of t and f . Clearly, the order � in T9 corresponds to the “knowledge”
ordering[3,19], i.e. t1 � t2 indicates that t1 is more determined than t2.

not f

� f� t

not t

�

t f

⊥

u

Intuition
⊥ Contradiction.
� No information.
t True.
f False.
� t Eventually true.
� f Eventually false.
not t Not true.
not f Not false.
u Neither true nor false.

t ¬t

⊥ ⊥
� �
t f
f t

� t � f

� f � t
not t not f
not f not t
u u

Fig. 3. Truth value lattice T9.

The general idea behind the usage of T9 is to start with � (“no information”) for
each literal and evolve during the computation towards either t, f , u or ⊥, taking the
knowledge ordering � into account. When, at the end of the computation, a partial
interpretation assigns either t, for u to each literal, we have found an extended answer
set.

Definition 1. A T9-valuation on a set of atoms A is a total function φ assigning a
truth value φ(a) to each a ∈ A; it is extended to literals over A by defining φ(¬a) =
¬φ(a), for a ∈ A. A valuation φ is consistent iff φ−1(⊥) = ∅. It is final iff it assigns
only to truth values that cannot be improved without introducing contradiction, i.e.
∀t �∈ {t, f ,u} · φ−1(t) = ∅.

The order in T9 induces a partial ordering on valuations: φ1 extends φ2, denoted
φ1 � φ2, iff φ1(a) � φ2(a) for all a ∈ A. Intuitively, φ1 � φ2 (i.e. φ1 � φ2 and
φ1 �= φ2) if φ1 is more determined than φ2.

T9-valuations will be represented as sets of extended literals where an extended
literal is a literal or of one of the forms � l or not l, with l an ordinary literal. For an

6 The notation � t should not be confused with the “always” modality from modal logic.
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extended literal e, we use ê to denote the underlying atom, i.e. ¬̂a = â = a, while

�̂ l = n̂ot l = l̂. For a set of extended literals E, Ê abbreviates {ê | e ∈ E}. The set of
all extended literals over a set of atoms A is denoted EA while E⊥A = EA ∪ {⊥}. For a
set of literals X , �X abbreviates {� x | x ∈ X}.

We associate a truth value v(e) from T9 with an extended literal e, where ê = a,
in the obvious way: v(a) = t, v(not a) = not t and v(� a) = � t while v(¬a) =
¬(v(a)) = f , v(not¬a) = ¬v(not a) = not f and v(�¬a) = ¬v(� a) = � f . Using v,
we can interpret a set E of extended literals as a valuation φE by defining

φE(a) = �{v(e) | e ∈ E ∧ ê = a}
where, by definition, �∅ = �. E.g., if E = {�a, a, not b, not ¬b, � c, not c} is a set
of extended literals over {a, b, c, d} then φE(a) = t, φE(b) = u, φE(c) = ⊥ and
φE(d) = �. A set of extended literals E is consistent and/or final iff φE is consistent
and/or final. Obviously, if E1 ⊆ E2, then φE2 � φE1 .

A set of extended literals E1 extends a set E2, denoted E1 � E2 iff φE1 � φE2 . A
conservative extension of a set of extended literals E is any superset E′ ⊇ E that pre-
serves the associated valuation, i.e. φE′ = φE . Since the set of conservative extensions
of a set of extended literals is closed under union, we can define the closure E of a set
of extended literals E as the unique maximal conservative extension of E. E.g., the clo-
sure of E = {� a, a, not b, not¬b, � c, not c} is E = {�a, a, not¬a, not b, not¬b, � c,

�¬c, c,¬c, notc, not¬c} . It can be shown that, for sets of extended literals E1 and E2,
E1 � E2 iff E2 ⊆ E1.

For a set of extended literals E we write that E |= F , with F a set of extended
literals, iff F ⊆ E.

In the sequel, we will often abuse notation by considering a set of rules R also as a
set of atoms (disjoint from BR), one for each rule r ∈ R, thus defining e.g. LR.

Definition 2. A partial interpretation of a simple program R is a set I ⊆ LR ∪ E⊥BR
.

Intuitively, the rule literals IR = I∩LR represent the desired status of the rules from R:
if r ∈ IR then r should be satisfied while ¬r ∈ IR indicates that r should be defeated.
IL = I ∩ EBR represents a valuation of BR. The reduct of R w.r.t. I , denoted RI is
defined by RI = {r | r ∈ IR}. A partial interpretation I is

– complete iff ÎR = R, i.e. each rule has a desired status;
– consistent iff ⊥ �∈ I , both IR and φIL are consistent and, moreover, there exists

a final consistent extension F � IL such that ∀l ∈ IR · F ∩ LBR |= l, i.e. IR is
consistent with IL;

– final iff φIL is final; and
– founded iff (RI)� = IL ∩ L⊥BR

.

A partial interpretation J extends a partial interpretation I , denoted I � J iff IR ∪
IL ⊆ JR ∪ JL.

Note that a partial interpretation need not be consistent. It is easily seen that �
defines a partial order on partial interpretations and that all extensions of an inconsistent
partial interpretation are themselves inconsistent.

Extended answer sets correspond to partial interpretations that are complete, con-
sistent, final and founded.
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Proposition 1. Let R be a simple program. If M is an extended answer set of R then

ΠR(M) = RM ∪ ¬(R\RM ) ∪M ∪
⋃

a∈BR\M̂
{not a, not ¬a}

is a partial interpretation that is complete, consistent, final and founded. Conversely,
I ∩ LBR is an extended answer set for any partial interpretation I that is complete,
consistent, final and founded.

Note that the last component of ΠR(M) corresponds to a version of the closed world
assumption: any literal l for which no information is available is assumed to be “neces-
sarily unknown”, i.e. φΠR(M)(l) = u.

A rule r is blocked w.r.t. a set of extended literals E iff ∃l ∈ br · E |= not l. If r is
not blocked w.r.t. E, it is said to be open. We use Rh(E) to denote the sets of h-rules
from R that are open w.r.t. E. An open rule r is applicable w.r.t. E iff E |= � br, it is
applied iff it is applicable, hr �= ⊥, and, moreover, E |= �hr.

For a given partial interpretation I , we need an operator Φ�
R(I) to compute the

maximal deterministic extension of I . This operator is based on the primitive notion
of forcing, that, for a partial interpretation I and a single rule r, defines which new
information can be deterministically derived from I and r.

Definition 3. A partial interpretation I for an SLP R forces a set of (extended or rule)
literals J , denoted I � J iff X � J (and I fulfills the extra condition, if any) for some
X ⊆ IR ∪ IL where � is defined below.

� {r} if hr = ⊥ (1)

{¬r} � � br ∪ {�¬hr} if hr �= ⊥ (2)

{not ¬hr} � {r} (3)

{r} ∪ � br � {� hr} if hr �= ⊥ (4)

{r} ∪ � br � {⊥} if hr = ⊥ (5)

{r} ∪ br � {hr} (6)

� br ∪ {not hr} � {¬r} (7)

{� hr} � {r} ∪� br if Rhr(IL = I ∩ EBR) = {r} (8)

� (br\{b}) ∪ {r, not hr} � {not b} if b ∈ br (9)

� (br\{b})∪ {r} � {not b} if b ∈ br and hr = ⊥ (10)

� {not hr} if hr �= ⊥ and Rhr (IL) = ∅ (11)

{not b} � {r} if b ∈ br (12)

Intuitively, (1) asserts that constraints cannot be defeated while (2) encodes the def-
inition of defeat: ¬r, i.e. r is defeated, iff r is applicable but ¬hr is implied by some
defeating rule. Consequently, if ¬hr cannot be true, the rule r must be satisfied (3).
Definitions (4,5) and (6) encode (satisfied) rule application while (7) expresses that an
applicable rule that cannot be applied must be defeated. Definition (8) indicates that if
only a single rule is available to motivate a needed literal, it must eventually become
applied. On the other hand, an almost applicable satisfied rule with a conclusion that is
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inconsistent with the interpretation must be blocked (9,10). If there are no open rules
for a literal a, then not a must hold (11). Finally, a blocked rule must be satisfied (12).

Definition 4. Let R be a finite simple program. The operator ΦR is defined by ΦR(I) =
I ∪ ⋃

I�X X , for any partial interpretation I . The closure Φ�
R of ΦR is defined by

Φ�
R(I) =

⋃
n>0 Φn

R(I).

It can be shown that Φ�
R(I) is unique and extends I , i.e. I � Φ�

R(I).
Clearly, Φ�

R(I) computes the maximal deterministic extension of a partial interpre-
tation I . It encompasses the Fitting operator[11] and plays a similar role as does the
function det cons in DLV[9], or expand in SMODELS[21].

Example 3. Reconsider program P1 from Example 1 and the interpretation I = {r¬a}.
The table below illustrates a possible computation of Φ�

P1
(I).

{r¬a} � {¬a} (6) {¬r¬b} � {� b} (2)
� {c} (1) {� b} � {rb, �¬a} (8)

{c,¬a} � {not ¬b} (10) {not ¬b} � {ra} (12)
{not ¬b} � {¬r¬b} (7) on r¬b {rb,¬a} � {b} (6) on rb

Thus, Φ�
P1

(I) = {r¬a,¬r¬b, ra, rb, c,¬a, b} = ΠP1({¬a, b}).
Consistency is easy to check for fixpoints of ΦR.

Proposition 2. Let I be a partial interpretation of a simple program R such that
ΦR(I) = I . Then I is consistent iff ⊥ �∈ I and both IR and IL are consistent.

The following is an easy consequence of (6) in Definition 3.

Proposition 3. Let I be a partial interpretation of a simple program R. If I is founded
then so is Φ�

R(I).

Complete founded fixpoints of ΦR have no consistent founded proper extensions.

Proposition 4. Let I be a consistent complete founded partial interpretation of a sim-
ple program R such that ΦR(I) = I . Then J = I for all I � J such that J is consistent
and founded.

Replacing an interpretation I by Φ�
R(I) does not loose any answer sets.

Proposition 5. Let I be an interpretation of a simple program R. Any extended answer
set M of R that extends I , i.e. I � ΠR(M), also extends Φ�

R(I), i.e. Φ�
R(I) � ΠR(M).

The following example shows that consistent maximal (and thus complete) founded
extensions are not necessarily final.

Example 4. Consider the simple program P2 shown below and the empty partial inter-
pretation.

r0 : ¬a← r1 : b← a r2 : c← b
r3 : a← c r4 : ⊥ ← ¬a

It is straightforward to verify that Φ�
P2

(∅) = {r4,¬r0, r1, r2, r3, not ¬a, � a, � b, � c}
does not correspond to an extended answer set (in fact, P2 does not have any extended
answer sets). Intuitively, r0 cannot be defeated because the only possible motivation for
a is based on a circularity.
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A set such as {�a, � b, � c} in Example 4 is called unfounded7. Formally, a set X ,
X ⊆ �LBP , is unfounded w.r.t. a partial interpretation I iff, for any � l ∈ X , each
non-blocked (w.r.t. I) l-rule r contains a literal d ∈ br such that � d ∈ X . It can be
shown that if I contains an unfounded set, then there are no extended answer sets among
its extensions. This result is used in the prune function from Figure 4.

The aset Procedure

The main procedure for enumerating extended answer sets that are extensions of a given
partial interpretation is shown in Figure 4. Note that the select function returns an arbi-
trary rule from its argument set.

PartialInterpretation
prune(const Program& R, PartialInterpretation I) {
J = Φ�

R(I);
if (J contains an unfounded set )

J = J ∪{⊥};
return J;
}

set< Interpretation >
aset (const Program& R, PartialInterpretation I) {
// Precondition: I is founded and ΦR(I) = I .
if (! I is consistent ) // Easy to check because of Proposition 2.
return ∅; // There are no answer sets extending I.

if ( I is complete) {
if ( I is final ) // I corresponds to an answer set by Proposition 1.
return {I ∩ (BR ∪ ¬BR)};

else return ∅; // By Proposition 4, there are no answer sets extending I.
}

else {
Rule r = select (R\ÎR);
// The preconditions for the calls are assured by Proposition 3..
return aset(R, prune(I ∪ {r}) ∪ aset(R, prune(I ∪ {¬r});
}

}

Fig. 4. The aset function for simple programs.

Proposition 6. Let R be a simple program and let I be a founded fixpoint of ΦR. Then
aset(R, I) will return all extended answer sets of R that extend I .

From Proposition 6, it follows that all extended answer sets of R can be obtained using
the call aset(R, Φ�

R(∅)).
7 We use the term “unfounded” in this context since the intuition behind it is similar to un-

founded sets in the well-founded semantics[23].
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The implementation of Φ�
R uses a queue of pattern occurrences, each pattern corre-

sponding to the left hand side of one of the rules in Definition 3. The queue is processed
by adding the right hand side of the pattern to the partial interpretation, thus possibly
generating further patterns for the queue. The computation finishes when an inconsis-
tency is detected or the queue becomes empty. This design is sound because a pattern
remains applicable in any consistent extension of the partial interpretation where it was
first detected. Detection is facilitated by keeping some derived information such as the
number of “open” literals in rule bodies, the number of open rules for a given literal etc.

5 Computing Preferred Answer Sets

A naive way to compute preferred answer sets would be to compute all extended answer
sets and then retrieve the minimal (according to �) elements.

OLPS tries instead to detect (and prune) partial interpretations that cannot lead to
preferred answer sets as soon as possible. This is done by (a) always extending a partial
interpretation I using a minimal rule (among the “open” rules), and (b) checking, for
each previously found preferred answer set M , whether it is still possible to find a set
of rules N ⊆ R such that {r ∈ R | r ∈ IR} ⊆ N and RM �� N .

In this context, a module8 X ⊆ R is said to be decided by a partial interpretation I
when, by abuse of notation, X ⊆ ÎR, i.e. each rule r ∈ X has a status in I . Further, two
partial interpretations I and J are equal w.r.t. a module X iff IX = JX , i.e. they have
the same status for the rules in X .

For a complete partial interpretation I and an arbitrary partial interpretation J , we
say that I is incomparable w.r.t. J iff there exist a module X ⊆ R such that

– (JX ∩X)\(IX ∩X) �= ∅, i.e. J has at least one satisfied rule in X that is defeated
by I; and

– every module Y ⊆ R with Y < X is decided by J and, moreover, I and J are
equal w.r.t. Y .

On the other hand, I is stronger than J iff for each module X which is such that I and
J are equal w.r.t. all more preferred modules Y < X9, it holds that

– (X ∩ JX) � (X ∩ IX) i.e. I satisfies strictly more rules in X than does J ; and
– (X\Ĵ) ⊆ I , i.e. all rules in X that have not yet a status in J are satisfied w.r.t. I .

The following are easy consequences of the above definitions.

Proposition 7. Let I be a complete partial interpretation and let J be a partial inter-
pretation. I incomparable w.r.t. J implies that RIL �� RKL for every extension K of
J .

Proposition 8. Let I be a complete partial interpretation and let J be a partial inter-
pretation. I stronger than J implies that RIL � RKL for every extension K of J .

8 We use the term module, just as in the syntax of OLPS, to denote a maximal set of rules X ⊆ R
that are all at the same position in the well-founded strict partial order on R. Clearly, this order
on rules induces an equivalent order on the modules.

9 This implies that Y is decided by J .
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Clearly, checking incomparability or being stronger can be performed, even in the
absence of optimization, in linear time and space (w.r.t. the size of the program).

Importing these checks into an adapted version of the prune function, as shown in
Figure 5 ensures an early detection of a situation where no extended answer sets that
extend I can be minimal.

〈PartialInterpretation , set < CompletePartialInterpretation >〉) {
preferred prune (const Program& R,

〈PartialInterpretation I, set < CompletePartialInterpretation > P 〉) {
J = Φ�

R(I);
if (J contains an unfounded set ) {

J = J ∪{⊥};
return 〈J, P 〉;

}
for each T ∈ P {
if T incomparable w.r.t . J

P = P \{T}; // Due to Proposition 7.
else if T stronger than J {

J = J ∪{⊥}; // Due to Proposition 8.
return 〈J, P 〉;

}
}
return 〈J, P 〉;
}

Fig. 5. The preferred prune function for ordered programs.

The procedure for finding preferred answer sets is shown in Figure 6. It can be
shown that, if I is founded and ΦR(I) = I , then preferred aset(R,〈I, P 〉) will re-
turn the set of all minimal (according to �) extended answer sets M of R that ex-
tend I and such that no T ∈ P exists for which T � M holds. It follows that pre-
ferred aset(R,〈Φ�

R(∅), ∅〉) computes all preferred answer sets of 〈R, <〉10.

6 Conclusions and Directions for Further Research

Some preliminary tests of the current implementation have been conducted on a 2GHz
Linux PC. The results are shown in Table 1: circuit refers to the program of Figure 1
while ham-N and ham-dN refer to programs that solve the Hamiltonian circuit problem
on a randomly generated graph with N nodes and N2/10, resp. N2/2, edges. Note that
the latter problem is ΣP

1 -complete and thus directly solvable by both SMODELS, DLV

and OLPS. In [15] a transformation is presented of non-disjunctive seminegative pro-
grams into ordered programs where the preferred answer sets of the latter coincide with
the classical subset minimal answer sets of the former. We have used this transformation
to conduct our experiments with OLPS. It is clear from the table that the current naive

10 Proper preferred answer sets are obtained by preferred aset(R,〈Φ�
R(Rmin), ∅〉), with Rmin

contains the (atoms corresponding to the) <-minimal elements of R.
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set< Interpretation >
preferred aset ( const Program& R,

〈PartialInterpretation I, set < CompletePartialInterpretation > P 〉) {
// Precondition: I is founded and ΦR(I) = I .
if (! I is consistent ) // Easy to check because of Proposition 2.
return ∅; // There are no answer sets extending I.

if ( I is complete) {
if ( I is final ) // I corresponds to an answer set by Proposition 1.
return {I ∩ (BR ∪ ¬BR)};

else return ∅; // By Proposition 4, there are no answer sets extending I.
}

else {
Rule r = select min (R\ÎR);
// Note that n 
� m for any n ⊇ (R ∪ {¬r}), m ⊇ (R ∪ {r}).
set< Interpretation > M = preferred aset (R, preferred prune (〈I ∪ {r}, P 〉));
return M ∪ preferred aset(R, preferred prune(〈I ∪ {¬r}, P ∪ M〉));
}

}

Fig. 6. The preferred aset function for ordered programs.

Table 1. Preliminary performance tests.

input olpg OLPS lparse SMODELS DLV

circuit 0m02.536s 0m00.154s NA NA NA
ham-50 0m00.176s 0m00.060s 0m00.072s 0m00.084s 0m00.084s
ham-d50 0m04.465s 0m01.537s 0m00.118s 0m00.670s 0m06.613s
ham-60 0m00.245s 0m00.081s 0m00.086s 0m00.135s 34m14.371s
ham-d60 0m07.807s 0m03.553s 0m00.202s 0m02.103s 0m23.051s
ham-70 0m00.368s 0m00.124s 0m00.109s 0m00.216s 0m00.815s
ham-d70 0m12.882s 0m11.030s 0m00.265s 0m04.513s 0m57.121s
ham-80 0m00.533s 0m00.162s 0m00.145s 0m00.313s 0m00.276s
ham-d80 0m20.078s 0m35.501s 0m00.418s 0m11.050s 1m55.984s
ham-90 0m00.788s 0m00.248s 0m00.175s 0m00.468s 0m00.512s
ham-d90 0m29.781s 1m36.511s 0m00.429s 0m17.944s 3m57.191s
ham-100 0m01.326s 0m00.395s 0m00.228s 0m00.764s 0m01.164s
ham-d100 2m20.249s 54m04.504s 0m00.881s 2m30.887s 47m08.002s
ham-200 0m01.190s 0m00.459s 0m00.684s 0m02.937s 570m12.123s

grounder program olpg should be improved considerably: it performs much worse than
lparse11. On the other hand, on the sparser graphs, olps performs similarly or slightly
better than smodels, while on the dense graphs OLPS performs worse. The reason for the
latter is subject to further research. For dlv only total (grounding and solving) figures
are shown. Clearly, these tests are anecdotal and only a wider comparison on a range
of applications can lead to firm conclusions. Nevertheless, we believe that the prelim-

11 The fact that olpg outputs source code while lparse uses an efficient binary format does not
help.
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inary results are encouraging. One could argue that a similar approach can be used to
compare OLPS with DLV on ΣP

2 -complete problems, however, at the moment there is
no known transformation between ordered programs and disjunctive programs in either
direction, as is also the case with e.g. logic programming with ordered disjunction[4].

Future versions should investigate the use of heuristics[10]. Currently, select min
(Figure 6), simply picks a minimal “open” rule that has a minimal number of undecided
body literals. The use of more sophisticated heuristics by select min and the detection
and exploitation of certain special cases in other parts of the system could improve
performance considerably. Finally, adding support for negation as failure (directly or
through the construction used in [16]) would make it easy to add new front-ends for
e.g. LPOD[4].
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