
Chapter

ONTOLOGY REASONING WITH LARGE DATA
REPOSITORIES

Stijn Heymans1, Li Ma2, Darko Anicic1, Zhilei Ma3, Nathalie Steinmetz1,
Yue Pan2, Jing Mei2, Achille Fokoue4, Aditya Kalyanpur4, Aaron
Kershenbaum4, Edith Schonberg4, Kavitha Srinivas4, Cristina Feier1, Graham
Hench1, Branimir Wetzstein3, Uwe Keller1

1Digital Enterprise Research Institute (DERI), University of Innsbruck

2IBM China Research Lab

3Institute of Architecture of Application Systems (IAAS), University of Stuttgart

4IBM T.J. Watson Research Center

Abstract: As reasoning with large amounts of data together with ontological knowledge is becoming an
increasingly more pertinent issue, we will give in this chapter an overall introduction to some
well-known ontology repositories, including native stores and database based stores, and highlight
strengths and limitations of each store. We take Minerva as an example to analyze ontology storage
in databases in depth, as well as to discuss efficient indexes for scaling up ontology repositories.
We then discuss a scalable reasoning method for handling expressive ontologies, as well as
summarize other similar approaches. We will subsequently delve into the details of one particular
ontology language based on Description Logics called WSML-DL and we will show that reasoning
with this language can be done by a transformation from WSML-DL to OWL DL and supports all
main DL specific reasoning tasks. Finally, we want to make reasoning a bit more tangible by
showing a reasoning example in a practical business context: we thus present the Semantic
Business Process Repository (SBPR) for systemical management of semantic business process
models. We first analyze the main requirements on a SBPR. After the comparison of different
approaches for storage mechanisms, we conclude that a RDBMS with the IRIS inference engine
integrated is, due to the expressiveness of the query language and the reasoning capability, a
suitable solution.

Key words: Reasoning with large datasets, OWL DL, WSML DL, IRIS, business repository

1. INTRODUCTION

Reasoning with large amounts of data together with ontological knowledge is becoming an
increasingly more pertinent issue. Especially in the case of Semantic Web Applications an
important question is how to store these ontologies and how to reason with them, without
losing out of sight the need for scalability: in the end the Semantic Web is envisaged to
contain a huge amount of data, and reasoning with ontologies for maintaining semantical
information requires scalable reasoners to extract the relevant information from these
ontologies.

In order to give the reader an overview of existing solutions regarding the storage of
ontologies we will start this chapter by giving an overview of existing ontology stores.
Furthermore, we will explore the use of relational databases extensively as an efficient means
to store ontologies.

After discussing how OWL - currently the most prominent ontology language on the
Semantic Web – ontologies can be stored, we will investigate a particular language,
WSML-DL and see how it can be translated to OWL-DL, thus giving the reader also insight
in WSML-DL reasoning by relating it to the storing capabilities described for OWL in this
chapter.

Whereas the first part of this chapter thus focuses on Description Logic based languages
like OWL and WSML-DL, we will in the final part discuss a Logic Programming approach,
based on WSML-Flight, and see how reasoning with ontologies can be done in that context.

An important use case for the Logic Programming approach is given by the area of
Business Process Management. The globalization of the economy and the ongoing change
of the market situation challenge corporations to adapt their business processes in an agile
manner to satisfy the emerging requirements on the market and stay competitive against their
competitors. Business Process Management (BPM) is the approach to manage the execution
of IT-supported business processes from a business expert’s point of view rather than from a
technical perspective (Smith et al. 2003). However, currently businesses have still very
incomplete knowledge of and very incomplete and delayed control over their process spaces.
Semantic Business Process Management (SBPM) extends the BPM approach by adopting
semantic web and semantic web service technologies to bridge the gap between business and
IT worlds (Hepp et al., 2005).

In both BPM and SBPM business processes play a central role. As business processes
manifest the business knowledge and logics of a corporation and normally more than one
person or organization with different expertise and in different geographic locations are
involved in management of business processes, it is necessary to establish a Business Process
Repository (BPR) within the corporation for effective sharing of valuable business
knowledge. Furthermore, business users tend to reuse existing business process artifacts
during process modeling, so that they are able to adapt the business processes in a more agile
manner. However, as the number of business processes increases, it is difficult for them to
manage the process models by themselves and to find the required business process
information effectively. A BPR helps business users by providing a systematic way to
manage and obtain information on business processes.

In SBPM business process models are based on process ontologies and make use of other
ontologies, such as organizational ontology or semantic web service ontology (Hepp et al.
2007). The BPR has to be able to cope with these ontological descriptions when storing and
retrieving process models, and in particular support efficient querying and reasoning
capabilities based on the ontology formalism used. In order to distinguish from traditional
BPR technology, we call this kind of repository a Semantic Business Process Repository
(SBPR).

We first analyze the functional requirements on the SBPR. We describe what kind of
functionality the SBPR should offer to its clients, which is primarily a process modeling tool.
We then compare different approaches for data storage and querying based on the ontological
descriptions. The comparison is based on the expressiveness of the query language, the
scalability of the query processing and the effort for the integration of the query processing
with the underlying data storage. We then finally describe the overall architecture of the
SBPR.

2. ONTOLOGY STORAGE AND REASONING IN RELATIONAL
DATABASES

2.1 Overview of Ontology Repository

In the past decade, we have seen the development of ontology repositories for use in
semantic web applications. In this section, we classify some well-known repositories based on
their storage schemes, summarize methods to store ontologies in relational databases, and
introduce reasoning methods used by these repositories briefly.

Figure -1. A Taxonomy to Classify Ontology Repositories
An ontology is in essence a directed labeled graph, which makes ontology storage highly

challenging. Figure 1 shows a classification scheme for ontology repositories based on their
storage models. In general, ontology repositories can be divided into two major categories,
i.e., native stores and database based stores. Native stores are directly built on the file system,
whereas database based repositories use relational or object relational databases as the
backend store. Representative native stores include OWLIM (Kiryakov at al., 2005), HStar
(Chen et al., 2006), and AllegroGraph (AllegroGraph, 2006). OWLIM and AllegroGraph
adopt simple triple (N-triple) files to store all data, which results in the extremely fast speed
for load and update. It is reported that AllegroGraph can load RDF data at the speed of more
than 10,000 triples per second. OWLIM uses B+ trees to index triples and AllegroGraph just
sorts triples in the order of (S, P, O), (P, O, S), and (O, S, P), respectively, for indexing
purposes. The triple reasoning and rule entailment engine (TRREE) is utilized by OWLIM,
which performs forward chaining reasoning in main memory, and inferred results are
materialized for query answering. AllegroGraph can expose RDF data to Racer, a highly
optimized DL reasoner (Haarslev & Moller, 2001), for inference. HStar is a hierarchy store
and organizes typeOf triples (namely concept assertions in description logics terminology)
using a class hierarchy and other non-typeOf triples (namely role assertions) using a property
hierarchy. Because of its hierarchical tree models, it can leverage XML techniques to support
a scalable store. Range labeling, which assigns labels to all nodes of an XML tree such that
the labels encode all ancestor-descendant relationships between the nodes (Wu et al., 2004),
can also largely improve query performance. Also, HStar uses B+ trees to index triples. A set
of rules derived from OWL-lite is categorized into two groups, which are executed at load
time using forward chaining and are evaluated at query time using backward chaining,
respectively. In particular, reasoning on SubClassOf or SubPropertyOf could be easily
implemented via its hierarchical trees.

Compared with database based stores, native stores greatly reduce the load and update
time. However, database systems provide many query optimization features, thereby
contributing positively to query response time. It is reported in (Ma et al., 2006) that a simple

exchange of the order of triples in a query may make the query time of native stores 10 times
(or even more) slower. Furthermore, native stores need to re-implement the functionality of a
relational database such as transaction processing, query optimization, access control, logging
and recovery. One potential advantage of database based stores is that they allow users and
applications to access both ontologies and other enterprise data in a more seamless way at the
lower level, namely database level. For instance, The Oracle RDF store translates an RDF
query into a SQL query which can be embedded into another SQL query retrieving non-RDF
data. In this way, query performance can be improved by efficiently joining RDF data and
other data using well-optimized database query engines. Currently, lots of research efforts are
made on database based stores. So, here we focus on ontology storage and reasoning in
databases.

A generic RDF store mainly uses a relational table of three columns (Subject, Property,
Object) to store all triples, in addition to symbol tables for encoding URIs and literals with
internal unique IDs. Both Jena and the Oracle RDF store are generic RDF stores. In Jena2
(Wilkinson et al., 2003), most of URIs and literal values are stored as strings directly in the
triple table. Only the URIs and literals longer than a configurable threshold are stored in
separated tables and referenced by IDs in the triple table. Such a design trades storage space
for time. The property table is also proposed to store patterns of RDF statements in Jena2. An
n-column property table stores n-1 statements (one column per property). This is efficient in
terms of storage and access, but less flexible for ontology changes. Jena2 provides by default
several rule sets with different inference capability. These rule sets could be implemented in
memory by forward chaining, backward chaining or a hybrid of forward and backward
chaining. The Oracle RDF store (Murray et al., 2005) is the first commercial system for RDF
data management on top of RDBMS. Particularly, it supports so-called rulebases and rule
indexes. A rulebase is an object that contains rules which can be applied to draw inferences
from RDF data. Two built-in rulebases are provided, namely RDFS and RDF (a subset of
RDFS). A rule index is an object containing pre-calculated triples that can be inferred from
applying a specified set of rulebases to RDF data. Materializing inferred results would
definitely speed up retrieval. Different from the generic RDF store, improved triple stores,
such as Minerva (Zhou et al., 2006) and Sesame on MySQL database (Broekstra et al., 2002),
manage different types of triples using different tables. As we can see from the storage
schema of Minerva shown in Figure 3, class and property information is separated from
instances, and typeOf triples are isolated from other triples. The improved triple store is
efficient since some self-joins on a big triple table are changed to some joins among
small-sized tables. Both the generic RDF store and the improved triple store make use of a
fixed database schema. That is, the schema is independent of ontologies. The schema of
binary table based stores, however, changes with ontologies. These kinds of stores, such as
DLDB-OWL (Pan & Heflin, 2003) and Sesame on PostgreSQL (Broekstra et al., 2002),
create a table for each class (resp. each property) in an ontology. A class table stores all
instances belonging to the same class and a property table stores all triples which have the
same property. Such tables are called binary tables. For the subsumption of classes and
properties, DLDB-OWL exploits database views to capture them, whereas Sesame leverages
the sub-tables from object relational databases so as to handle them naturally. One of
advantages of the binary table based store is to decrease the traversal space and improve data
access for queries. That is, instances of unrelated classes or properties to a query will not be
accessed. An obvious drawback is the alteration of the schema (e.g., deleting or creating
tables) when ontologies change. Also, this binary table based approach is not suitable for very
huge ontologies having tens of thousands of classes, such as SnoMed ontology (SnoMed,
2006). Too many tables will increase serious overhead to databases.

The above gives an overall introduction to some well-known ontology repositories,
including native stores and database based stores, and highlights strengths and limitations of
each store. It is reported in (Ma et al., 2006) that Minerva achieves good performance in
benchmarking tests. Next, we will take Minerva as an example to analyze ontology storage in

databases in depth, as well as to discuss efficient indexes for scaling up ontology repositories.
We will then discuss a scalable reasoning method for handling expressive ontologies, as well
as summarize other similar approaches.

2.2 Practical Methods for Ontology Storage and Index in Relational
Databases

This section discusses methods to store and index ontologies in relational databases by
investigating an improved triple store, namely Minerva (Zhou et al., 2006). Figure 2 shows
the component diagram of Minerva, which is comprised of Import Module, Inference Module,
Storage Module (viz. an RDBMS schema) and Query Module.

Figure -2. The Component Diagram of Minerva

The import module consists of an OWL parser and two translators. The parser parses
OWL documents into an in-memory EODM model (EMF ontology definition metamodel)
(IODT, 2005), and then the DB translator populates all ABox assertions into the backend
database. The function of the TBox translator is twofold, one is to populate all asserted TBox
axioms into a DL reasoner and the other is to obtain inferred results from the DL reasoner and
insert them into the database. A DL reasoner and a rule inference engine comprise the
inference module. Firstly, the DL reasoner infers complete subsumption relationships
between classes and properties. Then, the rule engine conducts ABox inference based on the
description logic programs (DLP) rules (Grosof et al., 2003). Currently, the inference rules
are implemented using SQL statements. Minerva can use well-known Pellet (Sirin & Parsia,
2004) or a structural subsumption algorithm for TBox inference (IODT, 2005). The storage
module is intended to store both original and inferred assertions by the DL reasoner and the
rule inference engine. But, there is a way to distinguish original assertions from inferred
assertions by a specific flag. Since inference and storage are considered as an inseparable
component in a complete storage and query system for ontologies, a specific RDBMS schema
is designed to effectively support ontology reasoning. Currently, Minerva can take IBM DB2,
Derby, MySQL and Oracle as the back-end database. The query language supported by
Minerva is SPARQL (Prud’hommeaux & Seaborne, 2006). SPARQL queries are answered by
directly retrieving inferred results from the database using SQL statements. There is no

inference during the query answering stage because the inference has already been done at the
loading stage. Such processing is expected to improve the query response time.

In summary, Minerva combines a DL reasoner and a rule engine for ontology inference,
followed by materializing all inferred results into a database. The database schema is well
designed to effectively support inference and SPARQL queries are answered by direct
retrieval from the database. Jena and Sesame have provided support for ontology persistence
in relational databases. They persist OWL ontologies as a set of RDF triples and do not
consider specific processing for complex class descriptions generated by class constructors
(boolean combinators, various kinds of restrictions, etc). The highlight of Minerva’s database
schema is that all predicates in the DLP rules have corresponding tables in the database.
Therefore, these rules can be easily translated into sequences of relational algebra operations.
For example, Rule Type(x,C) :- Rel(x,R, y).Type(y,D).SomeValuesFrom(C,R,D) has four
terms in the head and body, resulting in three tables: RelationshipInd, TypeOf and
SomeValuesFrom. It is straightforward to use SQL statements to execute this rule. We just
need to use simple SQL select and join operations among these three tables. Leveraging
well-optimized database engines for rule inference is expected to significantly improve the
efficiency. Figure 3 shows the relational storage model of Minerva.

Figure -3. Database Schema of Minerva

We categorize tables of the database schema of Minerva into 4 types: atomic tables, TBox
axiom tables, ABox fact tables and class constructor tables. The atomic tables include:
Ontology, PrimitiveClass, Property, Datatype, Individual, Literal and Resource. These tables
encode the URI with an integer (the ID column), which reduces the overhead caused by the
long URI to a minimum. The hashcode column is used to speed up search on URIs and the
ontologyID column denotes which ontology the URI comes from. The Property table stores
characteristics (symmetric, transitive, etc.) of properties as well. To leverage built-in value
comparison operations of databases, boolean, date time and numeric literals are separately
represented using the corresponding data types provided by databases. There are three

important kinds of ABox assertions involved in reasoning: TypeOf triples, object property
triples and datatype property triples. They are stored in three different tables, namely tables
TypeOf, RelationshipInd and RelationshipLit. A view named Relationship is constructed as
an entry point to object property triples and datatype property triples. Triples irrelevant to
reasoning, such as those with RDFS:comment as the property, are stored in Table Utility.
Tables SubClassOf, SubPropertyOf, Domain, Range, DisjointClass, InversePropertyOf are
used to keep TBox axioms. The class constructor tables are used to store class expressions.
Minerva decomposes the complex class descriptions into instantiations of OWL class
constructors, assigns a new ID to each instantiation and stores it in the corresponding class
constructor table. Taking the axiom Mother ≡ Woman ⊓∃hasChild.Person as an example,
we first define S1 for ∃hasChild.Person in Table SomeValuesFrom. Then I1, standing for the
intersection of Woman and S1, will be defined in Table IntersectionClass. Finally, {Mother
⊑ I1, I1 ⊑ Mother} will be added to the SubClassOf table. Such a design is motivated by
making the semantics of complex class description explicit. In this way, all class nodes in the
OWL subsumption tree are materialized in database tables, and rule inference can thus be
easier to implement and faster to execute via SQL statements. Also, a view named Classes is
defined to provide an overall view of both named and anonymous classes in OWL ontologies.

The triple table of three columns (Subject, Property, Object) is also called a vertical table
in data management. In (Agrawal et al., 2001), Agrawal et al. discussed the advantages of
vertical tables over binary tables in terms of manageability and flexibility. Improved triple
stores, including Minerva, generally adopt vertical tables to store ABox facts. The vertical
table is efficient in space, but its retrieval often requires a 3-way join. This becomes a
bottleneck in the case of complex queries or a large number of records involved, although
using some indexes. Wang et al. (Wang et al., 2002) gives an insight into why the vertical
table sometimes results in long query response time. Most relational databases transform a
user query into a physical query plan which represents the operations, the method of
performing the operations, and the order of processing the different operations
(Garcia-Molina et al., 2000). A query optimizer of the database considers multiple physical
plans and estimates their costs, and then selects a plan with the least estimated cost and passes
it to the execution engine. So, the accuracy of the cost estimation seriously affects the
efficiency of a query execution. Usually statistics collected from the base data are used to
estimate the cost of a query plan. The query optimizer builds a histogram for each column.
The histogram contains information about the distribution of the corresponding column and is
stored in a database catalog (Wang et al., 2002, Poosala et al., 1996, Matias et al., 1998).
Apparently, if the statistical information represented by the histogram is inaccurate, the query
optimizer may make a wrong selection among different physical query plans. Since values of
different properties are stored in the same column of the vertical table, the corresponding
histogram can not accurately reflect the value distribution of each property. This may affect
the query plan selection and execution of a query which needs to access information in the
vertical table. Wang et al. proposed to build external histograms for values of different
attributes and rewrite the physical query plan based on these external histograms. That is,
with the external histograms, the DBMS query engine could generate an optimal query plan.
Therefore, we can adopt this optimization method for the performance of triple stores.
Sometimes, it is impossible to apply this method since one needs to access the core engine of
the database. So, it is desirable to leverage indexes as much as possible to improve ontology
repositories.

Currently, most commercial database systems provide primary clustering indexes. In this
design, an index containing one or more keyparts could be identified as the basis for data
clustering. All records are organized on the basis of their attribute values for these index
keyparts by which the data is ordered on the disk. More precisely, two records are placed
physically close to each other if the attributes defining the clustering index keyparts have
similar values or are in the same range. Clustering indexes could be faster than normal
indexes since they usually store the actual records within the index structure and the access on

the ordered data needs less IO costs. In practice, it is not suitable to create an index on a
column with few distinct values because the index does not narrow the search too much. But,
a clustering index on such a column is a good choice because similar values are grouped
together on the data pages. Considering that real ontologies have a limited number of
properties, the property column of triple tables, such as the RelationshipInd table of Minerva,
could be a good candidate for clustering. So, it is valuable to use clustering indexes on triple
tables for performance purpose.

Similar to normal unclustered indexes, the clustering index typically contains one entry for
each record as well. More recently, Multi-Dimensional Clustering (MDC) (Bhatt et al., 2003)
is developed to support block indexes which is more efficient than normal clustering indexes.
Unlike the primary clustering index, an MDC index (also called MDC table) can include
multiple clustering dimensions. Moreover, the MDC supports a new physical layout which
mimics a multi-dimensional cube by using a physical region for each unique combination of
dimension attribute values. A physical block contains only records which have the same
unique values for dimension attributes and could be addressed by block indexes, a higher
granularity indexing scheme. Block indexes identify multiple records using one entry and are
thus quite compact and efficient. Queries using block indexes could benefit from faster block
index scan, optimized prefetching of blocks, as well as lower path length overheads while
processing the records. Evaluation results from (Brunner et al., 2007) showed that the MDC
indexes could dramatically improve query performance (20 times faster and even more) and
the set of indexes P*, (P,O), (S,P,O) on the triple table gives the best result for most queries
on Minerva using DB2, where P* means an MDC index, other two represent composites
unclustered indexes. Additionally, the MDC index could be built on the table defining typeOf
information, grouping the records by classes.

Currently, the MDC index is a unique feature of DB2. But other popular databases provide
advanced index functionalities as well. Oracle supports range partitioning which is a single
dimension clustering of the data into partitions. It allows tables, indexes, and index-organized
tables to be subdivided into smaller pieces, enabling these objects to be managed and
accessed at a finer level of granularity. SQL Server and Teradata Non StopSQL support B+
tree tables. In this scheme, one can define the entire table as a B+ tree itself clustered on one
or more columns. These features are helpful for the performance of triple stores.

2.3 A Scalable Ontology Reasoning Method by Summarization and
Refinement

Reasoning algorithms that could be scaled to realistic databases are a key enabling
technology for the use of ontologies in practice. Unfortunately, OWL-DL ontology reasoning
using the tableau algorithm is intractable in the worst case. As we discussed previously, rule
inference is adopted for OWL reasoning by some ontology repositories, and sometimes,
inferred results are materialized for retrieval. But, rule inference cannot realize complete and
sound reasoning of OWL-DL ontologies and maintaining the update of materialized results is
also a non-trivial problem. Here, we introduce a novel method that allows for efficient
querying of SHIN ontologies with large ABoxes stored in databases. Currently, this method
focuses on instance retrieval that queries all individuals of a given class in the ABox. This
summarization and refinement based method can also be treated as an optimization that any
tableau reasoner can employ to achieve scalable ABox reasoning.

Figure -4. The Workflow of SHER Reasoner

It is well known that all queries over DL ontologies can be reduced to consistency check
(Horrocks & Tessaris, 2002), which is usually checked by a tableau algorithm. As an
example, an instance retrieval algorithm can be realized by testing if the addition of an
assertion a : ¬C for a given individual a results in an inconsistency. If the resulting ABox is
inconsistent, then a is an instance of C. But, it is impractical to apply such a simple approach
to every individual. Motivated by the fact that in most real ontologies: 1) individuals of the
same class tend to have the same assertions with other individuals; 2) most assertions are in
fact irrelevant for purposes of consistency check, Fokoue et al. (Fokoue et al., 2006) proposed
to group individuals which are instances of the same class into a single individual to generate
a summary ABox of a small size. Then, consistency check can be done on the dramatically
simplified summary ABox, instead of the original ABox. By testing an individual in the
summary ABox, all real individuals mapped to it are effectively tested at the same time.
Figure 4 shows the workflow of the algorithm.

The first step is to construct a summary ABox A’ corresponding to the original ABox A.
This can be done by two steps: 1) Generate a single individual in the summary to represent all
individuals which have the same concept set (the concept set consists of all classes of an
individual). But individuals involved in differentFrom assertions are preserved in the
summary. 2) Add a relation R to a pair of summary individuals (C, D) if there is an R edge
between an individual mapped to C and another individual mapped to D in the ABox.
Formally, we can use a mapping function f to describe the correspondence between A and A’.
It satisfies the following constraints:

(1) if a : C ∈ A, then f (a) : C ∈ A′
(2) if R(a, b) ∈ A, then R(f (a), f (b)) ∈ A′
(3) if a ≠ b ∈ A, then f (a) ≠ f (b) ∈ A′
It is proven that if the summary ABox A’ of ABox A is consistent w.r.t. an ontology’s

TBox, then A is consistent as well. However, the converse does not hold. This is because the
summarization may cause inconsistencies.

Next is to filter out role assertions that cannot be responsible for the detection of an
inconsistency in the ABox, either because they cannot be used to propagate a concept
assertion, or because they cannot be involved in the detection of an inconsistency due to a
merger of ABox individuals. For the SHIN sub-language of DL, these are role assertions
where the roles are not specified in any universal restriction or a maximum cardinality

restriction in clos(A). Note that the clos(A) includes the negated query, because the queried
concept is effectively a part of the summary ABox. This filtering step further reduces the size
of the summary ABox that is used as a starting point for instance retrieval.

When the summary ABox contains disconnected sub-graphs, each isolated sub-graph can
be processed separately. Since the algorithm currently works for the description logic SHIN,
which does not contain nominals, it is safe to partition the ABox without affecting soundness
and completeness of the instance retrieval algorithm. Note that individuals in disconnected
partitions can only interact via axioms in the TBox by using nominals. The partitioning
strategy works well in a lot of realistic large ontologies where the class hierarchy is spread
out, typically observed when dealing with separate domains or specializing in numerous
areas. In such cases, there exist a lot of disconnections between sub-ABoxes that are tied into
separate class hierarchies. In addition, filtering out irrelevant role assertions that connect
instances together in practice produces a large number of disconnected partitions. Partitioning
presents a great opportunity for parallelization since consistency check can be executed on
each separate partition simultaneously with the results being combined at the end.

Each individual s in the summary ABox A’ is tested by adding an assertion s :
¬QueriedConcept to A’, and checking for consistency using a tableau reasoner, such as Pellet
reasoner. To achieve scalability, one can test multiple individuals in the summary graph at the
same time.

Definition A. Let A be an ABox. Let Q be a concept expression. Let S be a subset of
individuals in A such that for all s ∈ S, s : ¬Q ∉ A. 1 We define the tested ABox w.r.t. A, Q
and S, denoted tested(A,Q, S), to be the ABox obtained from A by adding the assertion s : ¬Q
for each s ∈ S. Formally, tested(A,Q, S) = A ∪ {s : ¬Q|s ∈ S}.

If the result of testing a single individual s is consistent, then we know that none of real
individuals mapped to s is a query solution. However, if the result is inconsistent, then we
cannot conclude anything about individuals mapped to s. This situation arises because
individuals are aggregated based only on the similarity of their concepts, not relationships.
One approach for resolving summary ABox inconsistencies is to iteratively refine the
summary. Refinement partitions the set of individuals mapped to a single summary individual
and remaps each partition to a new summary individual. Obviously, refinement increases the
size and precision of the summary, and preserves three properties defined by the above
summary mapping function. Here, the strategy is to refine only individuals that are part of a
summary ABox justification, where a justification is a minimal set of assertions which, when
taken together, imply a logical contradiction, thus making the entire ABox inconsistent. In
addition to guiding refinement, justifications are helpful for users to understand query results.
Since justifications are at a summarized level, the information is more useful than detailed
information about each individual in an ABox. In some cases, inconsistencies disappear
through refinement. Otherwise, when a justification J is precise, we typically know that we
have converged on a solution. That is, there is a tested individual s in J, such that all real
individuals mapped to s are instances of the query. We say that a tested individual s is tested
in J for query Q if s : ¬Q is an assertion in J .

Definition B. Let A′ be a summary ABox of an ABox A obtained through the summary
mapping f . Let Q be a queried concept, S be a subset of individuals in A′such that for all x ∈
S, x : ¬Q ∉ A′and let H be a subset of tested(A′,Q, S). We say that an individual s ∈ H is
precise w.r.t. H iff the following conditions are satisfied:

1. for all individuals t ∈ H and for all roles R, R(s, t) ∈ H (resp. R(t, s) ∈ H) implies that,
for all individuals a ∈ A such that f (a) = s, there is an individual b ∈ A such that f (b) = t
and R(a, b) ∈ A (resp. R(b, a) ∈ A); and

2. for all individuals s, t ∈ H, s ≠ t ∈ H (resp. t ≠ s ∈ H) implies that, for all individuals
a ∈ A such that f (a) = s, there is an individual b ∈ A such that f (b) = t and a ≠ b ∈ A (resp.
b ≠ a ∈ A); and

3. There is an individual a ∈ A such that f (a) = s; and

4. s : C ∈ H − {x : ¬Q|x ∈ S} implies that, for all individuals a ∈ A such that f (a) = s, a :
C ∈ A

We say that H is precise iff all its individuals are precise w.r.t. H.
In summary, a high level outline of the algorithm is shown below.

S←{x|x ∈ individuals in A′and x : ¬Q∉ A′};
R←A′;
Results←∅;
while S ≠ ∅ do

RT←tested(R,Q, S) (see Definition A) ;
if consistent(RT) then

return Results;
end
Find Justifications in RT ;
T←individuals tested in precise Justifications;
Results←Results ∪ Image(T);
S←S − T;
Execute refinement strategy on R ;

end
return Results

The SHER reasoner (Dolby et al., 2007) implemented this reasoning approach on top of
Minerva’s storage component (Zhou et al., 2006) and proved its effectiveness and efficiency
on the UOBM benchmark ontology. It is reported that SHER can process ABox queries with
up to 7.4 million assertions efficiently, whereas the state of the art reasoners could not scale to
this size.

2.4 Other approaches to scaling reasoning over large knowledge bases

The issue of scaling reasoning over large ABoxes has recently received a lot of attention
from the Semantic Web and Description Logics communities. Two main approaches have
been proposed to tackle it. The first approach consists in building new algorithms, heuristics
and systems that exhibit acceptable performance on realistic large and expressive knowledge
bases. Proponents of the second approach, on the other hand, advocate reducing the
expressiveness of TBoxes describing large ABoxes so that the worst-case data complexity1 of
reasoning becomes tractable. The summarization and refinement technique to scale reasoning
over large and expressive ABoxes presented in the previous section is an illustration of
research work guided by the first approach. In this section, we present other important recent
work on reasoning over large and expressive knowledge bases as well as Description Logics
that have been defined with a tractable worst-case data complexity.

Since state-of-the-art in-memory reasoners, such as Pellet (Sirin & Parsia, 2004) and
Racer (Haarslev & Moller, 2001), offer good performance on realistic expressive but small
knowledge bases, Guo et al. have recently proposed to decompose large and expressive
ABoxes into possibly overlapping small components that could be separately fed to
state-of-the-art in-memory reasoners. The decomposition is such that the answer to a
conjunctive query over the original ABox is the union of the answers of the same conjunctive
query over each component of the decomposition. Conservative analyses of the inference
rules of the considered DL provide the understanding of interdependency between ABox
assertions. Two ABox assertions depend on each other if they might be used together to infer
new assertions. The decomposition is such that two assertions that depend on each other
always appear together in a component. Results of initial experimental evaluation presented in
(Guo & Heflin, 2006) are very promising. Another approach (Hustadt et al., 2004) to

1 Data complexity refers to the complexity of reasoning over the ABox only assuming that the TBox is fixed. It

measures the complexity of reasoning as a function of the ABox size only.

efficiently answer conjunctive queries over large and expressive knowledge bases consists in
transforming any SHIN(D) 2 knowledge base into a disjunctive datalog program. The
advantages of this approach are twofold. First, it leverages decades of research on
optimizations of disjunctive datalog programs (e.g. magic set transformation). Second, it
naturally supports DL-safe rules (Motik et al., 2004), which can straightforwardly be
translated into datalog rules.

Other researchers have advocated reducing the expressive power in order to obtain
tractable reasoning over large ABoxes. Calvanese et al. have introduced a family of
inexpressive Description Logics, the DL-Lite family, with data complexity varying from
LogSpace to co-NP-hard (Calvanese et al., 2006). DL-Litecore, the least expressive language in
the DL-Lite family, consists of existential restriction and a restricted form of negation
(Calvanese et al., 2005). The language for DL-Litecore concepts and roles is defined as
follows:

Cl A | ∃R; Cr A | ∃R| ¬A | ¬∃R
R P | P -

where Cl (resp. Cr) denotes a concept that may appear in the left (resp. right) hand side of a
concept inclusion axiom in the TBox. Two simple extensions of DL-Litecore, DL-LiteF,6 and
DL-LiteR,6 , have been defined and shown to be FOL-reducible: i.e. answering a conjunctive
query in DL-Litecore or in one of these extensions can be reduced to evaluating a SQL query
over the database corresponding to the ABox. The advantages of these FOL-reducible
languages are straightforward for applications with very limited expressiveness needs.
DL-LiteF,6 extends DL-Litecore by allowing intersections on the left hand side of concept
inclusion axioms and functional roles; while DL-LiteR,6 extends DL-Litecore by allowing
inclusion axioms between roles, intersections on the left hand side of concept inclusion
axioms, and qualified existential restrictions on the right hand side of concept inclusion
axioms. All the other extensions3 to DL-Litecore are not FOL-reducible, but, for the most part,
they remain tractable. Other Description Logics with polynomial data complexity include
Horn-SHIQ (Hustadt et al., 2005, Krotzsch et al., 2006), a fragment of SHIQ analogous to the
Horn fragment of first-order logic, and description logic programs (Grosof et al., 2003).

2.5 Bridging Discrepancies Between OWL ontology and Database

Recently, Semantic Web and ontologies are receiving extensive attention from data
management area. Ontologies are used as semantic models which are believed to be able to
represent more semantics of the underlying data and are easy to understand. OWL provides
numerous constructs to define complex and expressive models. However, it is gradually
recognized that there are remarkable discrepancies between description logics (the logical
foundation of OWL) and databases. As is well-known, DL is based on an open world
assumption (OWA) permitting incomplete information in an ABox, while DB adopts a closed
world assumption (CWA) requiring information always understood as complete. The unique
name assumption (UNA) is often emphasized in DB but not in DL. OWL Flight (Bruijn et al.,
2005), furthermore, clarifies restrictions in DL and constraints in DB, of which the former is
to infer and the latter to check. When negation comes, DBs prefer to “non-monotonic
negation”, while DLs rely on “monotonic negation”. The following simple example gives us
an intuitive understanding of such discrepancies. In a relational database, if “each employee
must be known to be either male or female” is specified as an integrity constraint, the
database system would check whether the gender of a person is given and set to be male or
female during database updates. If the gender is not specified as male or female, the update
would fail. In an ontology, the same requirement would naturally be represented by an axiom
that Employee is subsumed by the union of Male and Female. Adding an employee without

2 SHIN(D) is the subset of OWL DL without nominal.
3 We are not considering extension allowing n-ary predicate with n>2.

expressing he/she is an instance of Male or Female to the ontology would not result in any
errors, and just imply that the employee could be either Male or Female.

Some research work on extending DLs with integrity constraints are mainly based on
autoepistemic extensions of DLs, such as the description logics of minimal knowledge and
negation-as-failure (MKNF) (Donini et al., 2002) and some nonmonotonic rule extensions of
DLs (Motik et al., 2007). This may be inspired by Reiter’s observation that integrity
constraints describe the state of the database and have an epistemic nature (Reiter, 1992).
Motivated by representing integrity constraints in MKNF, Mei et al. imposed epistemic
operators on union and existential restrictions and explained them using integrity constraints
in an ontology (Mei et al., 2006). Given the ABox of an SHI ontology is satisfiable with
regard to its epistemic TBox, reasoning on such an ontology could be done by a datalog
program.

More recently, Boris et al. proposes an extension of OWL that attempts to mimic the
intuition behind integrity constraints in relational databases (Motik et al., 2006). Integrity
constraints, introduced in (Mei et al., 2006), are used for conveying semantic aspects of OWL
that are not covered by deductive databases, while (Motik et al., 2006) extends standard TBox
axioms with constraint TBox axioms, s.t., for TBox reasoning, constraints behave like normal
TBox axioms; for ABox reasoning, however, they are interpreted in the spirit of relational
databases. Acting as checks, constraints are thrown away, if satisfied, without losing relevant
consequences. Algorithms for checking constraint satisfaction are also discussed in (Motik et
al., 2006), and the complexity of constraint checking is primarily determined by the
complexity of the standard TBox. As a result, answering queries under constraints may be
computationally easier due to a smaller input of the standard TBox concerning. Currently,
(Motik et al., 2006) plans to implement such an approach in the OWL reasoner KAON2 and
tests its usefulness on practical problems.

Technically, (Motik et al., 2006) defines constraints in the same way as subsumptions,
having the form of C⊑D where C and D are DL concepts. Keeping the semantics of DLs
unchanged, constraints rely on Herbrand models for checking satisfiability. Query answering
is another reasoning service, provided the constraints are satisfied, and again uses the standard
semantics of DLs after throwing those constraints away. That is, authors define TBox axioms,
of which some are for inferring (namely, standard TBox axioms) and some for checking
(namely, constraint TBox axioms). The extended DL system will provide support for DL
reasoning as usual, in addition to checking constraint satisfiability using the well-known
methods of logic programming.

By definition, an extended DL knowledge base is a triple K=(S, C, A) such that S is a
finite set of standard TBox axioms, C is a finite set of constraint TBox axioms, and A is a
finite set of ABox assertions, D(a), ¬D(a), R(a,b), a≈b, a ≠ b, for D an atomic concept, R a
role, and a, b individuals. Checking C in the minimal models of A ∪ S, the algorithm is
sketched as follows (Motik et al., 2006).
1. The standard TBox S is translated into a first-order formula π(S) according to the standard

DL semantics, and the results are further translated into a (possibly disjunctive) logic
program LP(S) = LP(π(S)) which can be exponentially larger than S. For each rule in LP(S)
in which a variable x occurs in the head but not in the body, the atom HU(x) is added to
the rule body. Additionally, for each individual a occurring in A ∪ S, an assertion HU(a)
is introduced.

2. The constraint TBox C is translated into a first-order formula π(C), and CN(C) = CN(π(C))
is constructed as a stratified datalog program. For each formula ϕ, a unique predicate Eϕ is
associated, also μ(ϕ) and sub(ϕ) are defined, where μ(ϕ) is a translation rule for ϕ and
sub(ϕ) is the set of sub-formulae of ϕ, s.t. the following logic program is computed: CN(ϕ)
= μ(ϕ) ∪ ∪ φ∈sub(ϕ) CN(φ).
As a consequence, K=(S, C, A) satisfies the constraint TBox C if and only if

A∪LP(S)∪CN(C) |=c EC, where |=c denotes the well-known entailment in stratified (possibly
disjunctive) logic programs, and EC = Eπ(C).

Intuitively, CN(C) simply evaluates C and ensures that EC holds in a model if and only if
C is true in the model. Thus, EC is derived if and only if C is satisfied in all minimal models.
Finally, suppose K=(S, C, A) be an extended DL knowledge base that satisfies C. For any
union of conjunctive queries γ(v) over K=(S, C, A) and any tuple of constants u, it holds that
A∪S∪C |= γ(u) if and only if A∪S |= γ(u).

Not surprising, in query answering, constraints are thrown away, if they are satisfied. All
other reasoning problems look like before, and the existing DL algorithms can be applied to
solve them.

3. REASONING WITH WSML-DL

In this section, we take the approach of looking at another practical language for ontology
reasoning. We focus on reasoning with the Description Logic-based Ontology language
WSML-DL. We use WSML-DL as a more intuitive surface syntax for an expressive
Description Logic (DL) in the WSML family of knowledge representation languages. Its
syntax is inspired by First-order Logic modelling style.

WSML-DL is less expressive than OWL DL, given that WSML-DL does not support
nominals. This reduces the complexity of WSML-DL, which is important for reasoning. In
fact, until recently many state-of-the-art DL reasoners did not support reasoning with
nominals, since no good optimization techniques were known.

To enable the use of existing DL reasoning engines for WSML, we transform WSML-DL
to OWL DL. This is because OWL DL is the appropriate syntax for DL reasoners as e.g.
Pellet or KAON2. Then we integrate the reasoners into a flexible WSML reasoner
framework.

In the following, we first point out the particularities of DL reasoning. Next we describe
the WSML-DL syntax and its correspondence to DLs. We show the translation from
WSML-DL to OWL DL abstract syntax and explain the architecture and implementation of
the WSML2Reasoner framework.

3.1 Reasoning with Description Logics

Description Logics can be seen as particularly restricted subset of Predicate Logic and
constitute a family of logic-based knowledge representation formalisms. They have become a
cornerstone of the Semantic Web for its use in the design of ontologies.

DL knowledge bases are separated into two components: TBoxes, containing the
terminological knowledge of a knowledge base (e.g. concept definitions), and ABoxes,
containing the assertional knowledge (knowledge about the individuals of a domain).

In DLs, there are different basic reasoning tasks for reasoning with TBoxes or ABoxes. As
described in Baader et al. (2003), the main inference procedures with TBoxes are concept
subsumption and concept satisfiability. With ABoxes, the main reasoning tasks are ABox
consistency and instance checking.

The OWL community focuses on entailment and query answering as the key inference
services. Entailment can be reduced to satisfiability, while query answering amounts to
compute the result of a query for instances with specific properties over a database, or an
ABox respectively.

Descriptions of the main standard DL reasoning tasks, as well as of some main
non-standard inference tasks can be found in Baader et al. (2003).

http://tools.deri.org/wsml2reasoner/DIPFactSheet.html#ReasWSMLDL
http://tools.deri.org/wsml2reasoner/DIPFactSheet.html#ReasWSMLDL

3.2 WSML-DL

The Web Service Modeling Language WSML (de Bruijn et al., 2005) is a family of formal
Web languages based on the conceptual model of WSMO (Roman et al., 2004). Conforming
to different influences, as e.g. Description Logics (Baader et al., 2003), Logic Programming
(Lloyd, 1987) and First-order Logic (Fitting, 1996), there exist five variants of WSML:
WSML-Core, WSML-DL, WSML-Flight, WSML-Rule and WSML-Full.

The WSML-DL variant captures the expressive Description Logic SHIQ(D). The
following sections will introduce the WSML-DL syntax and its correspondence to
Description Logics.

3.2.1 WSML-DL Syntax

WSML makes a clear distinction between the modelling of conceptual elements
(Ontologies, Web Services, Goals and Mediators) and the specification of logical definitions.
Therefore the WSML syntax is split in two parts: the conceptual syntax and the logical
expression syntax. The following sections will provide an overview of the WSML-DL
conceptual and the logical expression syntax. A more detailed description can be found in de
Bruijn et al. (2005).

3.2.1.1 WSML-DL Conceptual Syntax
A WSML ontology specification may contain concepts, relations, instances, relation

instances and axioms. Concepts form the basic terminology of the domain of discourse and
may have instances and associated attributes. A concept can be defined as subconcept of
another concept, and in this case, a concept inherits all attribute definitions of its
superconcept.

A concept may have an arbitrary number of instances associated to it. The instance
definition can be followed by the attribute values associated with the instance. Instead of
being explicitly defined in the ontology, instances can exist outside the ontology in an
external database.

There are two sorts of attribute definitions that a concept may contain: inferring
definitions with the keyword impliesType and constraining definitions with the keyword
ofType. The constraining definitions may only be used for datatype ranges. Inferring attribute
definitions are similar to range restrictions on properties in RDFS (Brickley and Guha, 2004)
and OWL (Bechhofer et al., 2004).

In WSML-DL only binary relations are allowed. They correspond to the definition of
attributes. The usage of inferring and constraining definitions in relations corresponds to their
usage in attribute definitions. A relation can be defined as a subrelation of another relation.

A relation may contain relation instances with parameter values associated to it.
Axioms can be used to refine the definitions already given in the conceptual syntax, e.g.

the subconcept and attribute definitions of concepts. By defining respective axioms one can
define cardinality restrictions and global transitivity, symmetricity and inversity of attributes,
just like in DLs or OWL. The logical expression syntax is explained in the following section.

3.2.1.2 WSML-DL Logical Expression Syntax
The form of WSML-DL logical expressions and their expressiveness is based on the

Description Logic SHIQ(D). The WSML-DL logical expression syntax has constants,
variables, predicates and logical connectives, which all are based on First-order Logic
modelling style.

An atom in WSML-DL is a predicate symbol with one or two terms as arguments. WSML
has a special kind of atoms, called molecules. There are two types of molecules that are used
to capture information about concepts, instances, attributes and attribute values: “isa

molecules”, that are used to express concept membership or subconcept definitions, and
“object molecules”, that are used to define attribute and attribute value expressions.

These molecules build the set of atomic formulae in WSML-DL. Using First-order
connectives, one can combine the atomic formulae to descriptions and formulae. How exactly
the molecules can be combined to build descriptions and formulae, can be seen in detail in de
Bruijn et al. (2005).

3.2.2 WSML-DL vs. SHIQ(D)

Table 1 illustrates the relationship between the WSML-DL semantics, the Description
Logics syntax and the OWL DL syntax. The table follows de Bruijn et al (2005), Volz (2004)
and Borgida (1996).

In the table, “id” can be any identifier, “dt” is a datatype identifier, “X” can be either a
variable or an identifier and “Y” is a variable.

Table -1. WSML-DL logical expressions - DL syntax
WSML-DL DL Syntax OWL DL
τ(lexpr impliedBy rexpr) rexpr lexpr ⊆ subClassOf
τ(lexpr or rexpr) lexpr rexpr ∪ unionOf
τ(lexpr and rexpr) lexpr rexpr ∩ intersectionOf
τ(neg expr) ¬ expr complementOf
τ(forall Y expr) . expr R∀ allValuesFrom
τ(exists Y expr) .R∃ expr someValuesFrom
τ(X memberOf id) idX : Type
τ(id1 subConceptOf id2) 21 idid ⊆ subClassOf
τ(X1[id hasValue X2]) < X1, X2 > : id Property
τ(id1[id2 impliesType id3]) 3.21 ididid ∀⊆ subPropertyOf
τ(id1[id2 ofType dt]) dtidid .21 ∀⊆ subPropertyOf
τ(p(X1,…,Xn)) < X1,…Xn > : p Type
τ(X1 :=: X2) 21 XX ≡ equivalentClass

3.3 Translation of WSML-DL to OWL DL

The following sections show the translation from WSML-DL to OWL DL abstract syntax
(Steinmetz, 2006). The mapping is based on a mapping from WSML-Core to OWL DL,
which can be found in de Bruijn et al. (2005), and can be applied to WSML ontologies and
logical expressions.

3.3.1 Transformation Steps

The transformation of a WSML-DL ontology to an OWL DL ontology is done in a line of
single transformation steps that are executed subsequently.

• Relations, subrelations and relation instances are replaced by attributes and axioms,

according to the preprocessing steps described in Steinmetz (2006).
• All conceptual elements are converted into appropriate axioms specified by logical

expressions. The resulting set of logical expressions is semantically equivalent to the
original WSML ontology.

• Equivalences and right implications in logical expressions are replaced by left
implications.

• Conjunctions on the left side and disjunctions on the right side of inverse implications are
replaced by left implications.

• Complex molecules inside of logical expressions are replaced by conjunctions of simple
ones.

As last step, the resulting axioms and logical expressions are transformed one by one into
OWL Descriptions according to the mapping presented in the following section.

3.3.2 Mapping Tables

Table 2 and Table 3 contain the mapping between the WSML-DL syntax and the OWL
DL abstract syntax. The mapping is described through the mapping function τ. In Table 3 we
will introduce the functions α and ε, which are needed for the correct translation of
WSML-DL descriptions.

Boldfaced words in the tables refer to keywords in the WSML language. “X” and “Y” are
meta-variables and are replaced with actual identifiers and variables during the translation,
while “DES” stands for WSML-DL descriptions. IRIs4 are abbreviated by qualified names.
The prefix ’wsml’ stands for ’http://wsmo. org/wsml/wsml-syntax#’ and ’owl’ stands for
’http://www.w3.org/2002/07/owl#’.

Table -2. Mapping WSML-DL ontologies and axioms to OWL DL
WSML-DL OWL-DL Remarks
Mapping for ontologies
τ(ontology id
 header1
 …
 headern
 ontology_element1
 …
 ontology_elementn
)

Ontology(id
τ(header1)
…
τ(headern)
τ(ontology_element1)
…
τ(ontology_elementn)
)

A header can contain
nonFunctionalProperties,
usesMediator and
importsOntology statements.
An ontology_element can be
a concept, a relation, an
instance, a relation instance
or an axiom.

τ(nonFunctionalProperties
 id1 hasValue value1
 …
 idn hasValue valuen
endNonFunctionalProperties)

Annotation(id1 τ(value1))
…
Annotation(idn τ(valuen))

For non functional
properties on the ontology
level “Annotation” instead
of “annotation” has to be
written.

τ(importsOntology id) Annotation(owl#import id) “id” stands for the identifier
of a WSML file.

τ(usesMediator id) Annotation(
 wsml#usesMediator id)

As OWL doesn’t have the
concept of a mediator, a
wsml#usesMediator
annotation is used.

τ(datatype_id(x1,…,xn)) datatype_id(x1,…,xn)^^
τdatatypes(datatype_id)

τdatatypes maps WSML
datatypes to XML Schema
datatypes, according to de
Bruijn et al. (2005).

τ(id) id In WSML an IRI is enclosed
by _” and “, which are
omitted in OWL abstract
syntax.

Mapping for axioms
τ(axiom id log_expr nfp) τ(log_expr) A log_expr can be a logical

expression like the
following. The axiom does
not keep its non functional
properties.

τ(id[att_id impliesType
 range_id])

Class(id
 restriction (att_id
 allValuesFrom
range_id))
ObjectProperty (att_id)

4 http://www.ietf.org/rfc/rfc3987.txt

WSML-DL OWL-DL Remarks
τ(id[att_id ofType range_id]) Class(id

 restriction (att_id
 allValuesFrom
range_id))
DatatypeProperty (att_id)

τ(id1 subConceptOf id2) Class(id1 partial id2)
τ(id[att_id hasValue value]) Individual (id

 value (att_id τ(value)))

τ(id1 memberOf id2) Individual(id1 type(id2))
τ(?x[att_id2 hasValue ?y]
 impliedBy
 ?x[att_id hasValue ?y])

SubProperty(att_id att_id2) A left implication with
attribute values as left-hand
and right-hand sides is
mapped to an OWL
subProperty.

τ(?x[att_id hasValue ?y]
 impliedBy
 ?x[att_id hasValue ?z] and
 ?y[att_id hasValue ?z])

ObjectProperty(att_id
 Transitive)

Transitive Property

τ(?x[att_id hasValue ?y]
 impliedBy
 ?y[att_id hasValue ?x])

ObjectProperty(att_id
 Symmetric)

Symmetric Property

τ(?x[att_id hasValue ?y]
 impliedBy
 ?y[att_id2 hasValue ?x])

ObjectProperty(att_id
 inverseOf(att_id2))

Inverse Property

τ(?x memberOf concept_id2
 impliedBy
 ?x memberOf concept_id)

Class(concept_id partial
 concept_id2)

Equivalence of concepts can
be expressed as follows,
with A and B being
membership molecules: “A
equivalent B” :=: “A
impliedBy B and B
impliedBy A”.

τ(?x memberOf concept_id
 impliedBy
 ?x[att_id hasValue ?y])

ObjectProperty(att_id
 domain(concept_id))

τ(?y memberOf concept_id
 impliedBy
 ?x[att_id hasValue ?y])

ObjectProperty(att_id
 range(concept_id))

τ(DES1 impliedBy DES2) α(DES1)
α(DES2)
subClassOf(ε(DES2)
ε(DES1))

“A impliedBy B” can be
written as
“subClassOf(B,A)”.

τ() If τ is applied for a
non-occurring production no
translation has to be made

Table 3 shows the mapping of WSML-DL descriptions that are used inside of axioms, as

can be seen in Table 2. The descriptions are translated to concept expressions and to axioms.
Concept expressions are again used within other expressions, while the axioms are added as
such to the OWL ontology. The mapping τ is translated into a tuple of concept expressions
and axioms as follows: τ (DES) = (ε (DES), α (DES)).

The table also indicates a mapping for Qualified Cardinality Restrictions (QCRs). In
WSML-DL the QCRs are represented by a combination of WSML-DL descriptions. The
mapping to OWL DL is done according a workaround with OWL subproperties, described in
Rector (2003).

Table -3. Mapping WSML-DL descriptions to OWL DL
WSML-DL OWL-DL – concept

expression ε
OWL-DL – axiom α Remarks

Mapping for descriptions (DES)

WSML-DL OWL-DL – concept
expression ε

OWL-DL – axiom α Remarks

τ(?x memberOf id) id Class(id) Membership
molecule.

τ(?x[att_id hasValue
 ?y])

restriction(att_id
 allValuesFrom(
 owl:Thing))

ObjectProperty(att_id) Attribute value
molecule with ?y
being an unbound
variable within the
logical expression.

τ(?x[att_id hasValue
 ?y] and
 ?y memberOf
id)

restriction (att_id

someValuesFrom(
 id))

Class(id)
ObjectProperty(att_id)

Attribute value
molecule with ?y
being a bound
variable.

τ(DES1 and … and
 DESn)

intersectionOf(ε(DES1

),…,ε(DESn))
α(DES1)
…
α(DESn)

Conjunction.

τ(DES1 or … or
 DESn)

unionOf(ε(DES1),…,ε
 (DESn))

α(DES1)
…
α(DESn)

Disjunction.

τ(neg DES) complementOf(ε(DES
))

α(DES) Negation.

τ(exists ?x (?y[att_id
 hasValue ?x]
and
 DES))

restriction(att_id

someValuesFrom(
 ε(DES)))

α(DES)
ObjectProperty(att_id)

Existential
quantification.

τ(exists ?x (?x[att_id
 hasValue ?y]
and
 DES))

restriction(inverseOf(
 att_id)

someValuesFrom(
 ε(DES)))

α(DES)
ObjectProperty(att_id)

Existential
quantification with
inverse role.

τ(forall ?x (DES
 impliedBy
 ?y[att_id
hasValue
 ?x]))

restriction(att_id
 allValuesFrom(
 ε(DES)))

α(DES)
ObjectProperty(att_id)

Universal
quantification.

τ(forall ?x (DES
 impliedBy
 ?x[att_id
hasValue
 ?y]))

restriction(inverseOf(
 att_id)
 allValuesFrom(
 ε(DES)))

α(DES)
ObjectProperty(att_id)

Universal
quantification with
inverse role.

τ(exists ?y1,…,?yn
 (?x [att_id
 hasValue ?y1]
and
 … and ?x[att_id
 hasValue ?yn]
and
 DES and
neg(?y1
 :=: ?y2) and …
 and neg(?yn-1
:=:
 ?yn)))

restriction(att_id’

minCardinality(n))

α(DES)
ObjectProperty(att_id)
ObjectProperty(att_id’
 range(ε(DES)))
SubPropertyOf(att_id’
 att_id)

(Qualified)
minCardinality
restriction.

τ(forall ?y1,…,?yn+1
 (?y1 :=: ?y2 or
…
 or ?yn :=: ?yn+1
 impliedBy
 ?x[att_id
hasValue
 ?y1] and … and
 ?x[att_id
hasValue

restriction(att_id’

maxCardinality(n))

α(DES)
ObjectProperty(att_id)
ObjectProperty(att_id’
 range(ε(DES)))
SubPropertyOf(att_id’
 att_id)

(Qualified)
maxCardinality
restriction.

WSML-DL OWL-DL – concept
expression ε

OWL-DL – axiom α Remarks

 ?yn+1] and
DES)

3.3.3 Restrictions to the Transformation

The transformation is not complete, i.e. WSML-DL supports features that cannot be
expressed in OWL DL and that can thus not be translated. Concretely, OWL DL does not
support datatype predicates. They are lost during the transformation.

3.3.4 Translation Example

Table 4 shows two simple translation examples of both WSML-DL conceptual syntax and
logical expression syntax. More examples can be found in Steinmetz (2006).

Table -4. Translation Example
WSML-DL OWL DL
concept Human
 hasChild impliesType Human
 hasBirthday ofType date

axiom definedBy
 ?x memberOf Man implies neg(?x
 memberOf Woman).

ObjectProperty(hasChild
 domain(Human) range(Human))
DatatypeProperty(hasBirthday
 domain(Human) range(xsd:date))
Class(Human partial)

Class(Man partial)
Class(Woman partial)
SubClassOf(Man complementOf(Woman))

3.3.5 Architecture and Implementation

In the following we will discuss the architecture and the implementation of a reasoner
prototype that allows us to perform reasoning with WSML-DL ontologies using
state-of-the-art reasoning engines by means of a wrapper component.

The WSML2Reasoner framework5 is a flexible and highly modular architecture for easy
integration of external reasoning components. It has been implemented in Java and is based
on the WSMO4J6 project, which provides an API for the programmatic access to WSML
documents. Instead of implementing new reasoners, existing reasoner implementations can be
used for WSML through a wrapper that translates WSML expressions into the appropriate
syntax for the reasoner.

As already said above, the appropriate syntax for many DL Reasoners is OWL DL. We
have implemented the transformation from WSML-DL to OWL DL using the Wonderweb
OWL API (Bechhofer et al., 2003). The OWL API allows a programmatic access to OWL
ontologies. It offers a high-level abstraction from the Description Logics underlying OWL
DL, what increases the usage of DL knowledge bases in the Semantic Web area.

The WSML2Reasoner framework infrastructure offers an interface that represents a
façade to various DL reasoning engines. The façade provides a set of DL usual reasoning
task methods and mediates between the OWL DL ontologies produced by the transformation
and the reasoner-specific internal representations. For each new DL reasoning engine that is
integrated into the framework, a specific adapter façade has to be implemented.

The framework currently comes with façades for two OWL DL reasoners: Pellet7 and
KAON28:

5 http://tools.deri.org/wsml2reasoner/
6 http://wsmo4j.sourceforge.net/
7 http://pellet.owldl.com/

• Pellet – Pellet is an open-source Java based OWL DL reasoner. It can be used directly in
conjunction with the OWL API.

• KAON2 – KAON2 is an infrastructure to manage, amongst others, OWL DL ontologies.
It provides a hybrid reasoner that allows datalog-style rules to interact with structural
Description Logics knowledge bases.

4. SEMANTIC BUSINESS PROCESS REPOSITORY

In the final section of this chapter, we take a look at a practical use of ontological
reasoning with large instance data.

4.1 Requirements Analysis

In general, a repository is a shared database of information about engineered artifacts
produced or used by an enterprise (Bernstein et al. 1994). In SBPM, these artifacts are
semantic business process models (process models for short).

Process models are modeled by business users with help of a process modeling tool. To
support process modeling, the SBPR has to provide standard functionality of a Database
Management System, such as storage of new process models, update, retrieval or deletion of
existing process models, transaction support for manipulation of process models and query
capability. The query capability enables business users or client applications to search process
models in the SBPR based on the criteria specified. We classify the queries into two
categories. The first category of queries can be answered based on the artifacts explicitly
stored in the SBPR. This kind of queries is of the same kind as the queries that traditional
database systems can process. The second category of queries is “semantic queries”, which
can only be processed, when the ontological knowledge of the process models is taken into
account.

The modeling of process models can be a time-consuming task. It may take days or even
months for business users to finish modeling a given business process. Therefore, treating the
entire modeling activity related to a process model as a single transaction is impractical. The
SBPR has to provide check-in and check-out operations, that support long running
interactions, enable disconnected mode of interaction with the SBPR, and are executed as
separate short transactions. In this case the modeling tool could work in a disconnected mode
regarding the SBPR. The process model in the SBPR can be locked when the modeling tool
obtains it (check-out), so that no other users can modify the process model in the SBPR in the
meantime. After the modeling work has been done the process model is updated in the SBPR
and any locks that have been held for the process model are released (check-in). Please note
that the locking mechanism refers only to the locking of the process models in the SBPR. The
process ontologies, that are stored separately in an ontology store and have been referenced
by the process models, are not locked simultaneously. Furthermore, in a distributed modeling
environment several business users may work on the same process model simultaneously. A
fine-grained locking of elements in a process model enables different business users to lock
only the part of the process model they are working on, thus avoiding producing inconsistent
process models.

Process models may undergo a series of modifications undertaken by business users. The
series of modification is called change history of the process model. The SBPR represents the
change history as versions. A version is a snapshot of a process model at a certain point in its
change history (Bernstein et al. 1994). In certain industry sectors corporations must record all
the change histories of their process models for government auditing or for some legal
requirements. From the modeling perspective it is meaningful to keep process models in

8 http://kaon2.semanticweb.org/

different versions, so that business users can simply go back to an old version and develop the
process model from the old version further. Due to these reasons the SBPR has to provide
also versioning functionality, so that the change history of process models can be
documented.

4.2 Comparison of Storage Mechanisms

As storing and querying process models stored are the main requirements for the SBPR,
we evaluate in this section several options for storage mechanism and their query capabilities.

A process model is an instance of a process ontology. Process ontologies which are
developed in the SUPER project (SUPER, Hepp et al. 2007) include the Business Process
Modeling Ontology (BPMO); the semantic Business Process Modeling Notation ontology
(sBPMN), which is an ontological version of Business Process Modeling Notation (BPMN);
the semantic Event Process Chain ontology (sEPC), which is an ontological version of Event
Process Chain (EPC) (Keller 1992); the semantic Business Process Execution Language
ontology (sBPEL), which is a ontological version of Business Process Execution Language
(BPEL) (Andrews 2003). These ontologies are described using the ontology-formalism Web
Service Modeling Language (WSML) (de Bruijn et al. 2005). There are 5 variants of WSML:
WSML-Core, WSML-DL, WSML-Flight, WSML-Rule, and WSML-Full, differing in logical
expressiveness and underlying language paradigm. The ontologies considered in this paper
are formalized using WSML-Flight, which is a compromise between the allowed
expressiveness and the reasoning capability of the ontology language. In the following, we
assume thus that a process model is an instance of a process ontology, which is specified in
WSML-Flight.

For each option we take into account the expressiveness of the query language, the
scalability of the query processing and the effort for the integration of the query processing
with the underlying data storage. Scalability is a rather fuzzy term. In general, one would
understand that in the context of reasoning. Reasoning is used to infer conclusions that are not
explicitly stated but are required by or consistent with a known set of data (cf. (Passin 2004)).
A system or a framework is scalable if enlarging the data-set, which is in our context the set
of actual process models that described using ontologies, leads to a performance loss that is
tolerable. More formal, one could say that reasoning is scalable if augmenting the input size
of the problem, which in this case refers to the ontologies plus the instance data of the
ontologies, leads at most to a polynomial increase of the time in which reasoning can be
performed. With regards to the reasoning capability we consider two options, namely the
storage mechanism with or without reasoning capability.

4.2.1 Option 1: Without Reasoning Capability

For storage mechanisms without reasoning capability we considered Relational Database
Management System (RDBMS) and RDF store, which have been widely adopted at the time
of writing this paper.

Queries against RDBMS are normally formalized using the Structured Query Language
(SQL). SQL is quite powerful and bases on both the relational algebra and the tuple relational
calculus (Siberschatz 2006). However, it has still some limitations. For example, a simple
query such as:

Find all supervisors of the employee John Smith
requires computation of transitive closures on the personnel hierarchies. It is known that

transitive closure can not be expressed using relational algebra (Libkin 2001,Abiteboul 1995).
In SQL one can express transitive closures using WITH RECURSIVE to create recursive
views, which could be very expensive. Furthermore the “supervisor” relationship must be
stored explicitly in the database system. Because SQL can express queries aim at the
explicitly stored data, it has no capability to take into account of the implicit data, which can

be derived from the instances of the ontologies based on the axioms specified there. This is
not sufficient for the requirements on query processing of the SBPR.

(de Bruijn 2006) defined a RDF representation of WSML, which allows storing WSML
data in a RDF store. RDF (RDF 2004) store is a framework providing support for the RDF
Schema (RDFS 2004) inference and querying, which uses a relational database system as the
underlying storage for the RDF data. In this section we only consider RDF stores without
third-party inference engine or reasoner integrated. The inference here refers to the RDFS
entailments supported by the RDFS semantics. There are already several reference
implementations of RDF stores like Sesame9. The inference in such RDF stores is normally
based on the RDF schema, which provides only restricted number of constructs to describe
the relationships between the resources, as well as these between the properties, such as
rdfs:subClassOf, rdfs:subPropertyOf. The query processing of RDF stores is based on special
query languages for RDF data like Simple Protocol and RDF Query Language (SPARQL) or
Sesame RDF Query Language (SeRQL). Using these query languages one cannot express
transitivity or transitive closure. Furthermore, these query languages take only into account
explicitly stored data. The implicit data can be derived by the inference capability. However,
the inference capability is very limited in RDF stores.

4.2.2 Option 2: With Reasoning Capability

Jena 2 (JENA) is another RDF store, which support not only native entailment of RDFS
semantics but also third-party inference engines or reasoner. The primary use of plug-in such
inference engine or reasoner is to support the use of languages such as RDFS and OWL
which allow additional facts to be inferred from instance data and class descriptions. The
default OWL reasoner in Jena can only perform reasoning on a subset of OWL semantics. To
provide complete support of OWL DL reasoning one can use external OWL DL reasoner
such as Pellet10, Racer11 or FaCT12. Jena can handle OWL DL, but there is only a partial
bi-directional mapping defined between WSML-Core and OWL DL, which is not sufficient to
fulfill the requirements of SBPR.

Besides Jena OWLIM (OWLIM 2006) is another implementation, which enables RDF
store with reasoning capability. OWLIM is a high performance Storage and Inference Layer
(SAIL) for Sesame, which performs OWL Description Logic Programs (DLP) (Grosof 2003)
reasoning, based on forward-chaining of entailment rules (Kiryakov 2005). As argued in
(Kiryakov 2005), OWLIM can query the Knowledge Base (KB) of 10 million statements with
an upload and storage speed of about 3000 statements per second. In more detail [OWLIM],
querying is done by materializing the KB, i.e., for every update to the KB, the inference
closure of the program is computed: all conclusions that can be recursively obtained by
applying Process Ontology rules, given certain instance data (process models), are computed.
This approach has the advantage that querying or other reasoning tasks are performed fast
because the reasoning was done beforehand. Moreover, one could store the inference closure
in the persistent storage, effectively using optimization methods for storage. The approach
taken in OWLIM shows that taking into account ontologies does not need to lead to a
significant performance loss per se. Nonetheless, the approach has some disadvantages.

OWLIM provides support for a fraction of OWL, close to OWL DLP and OWL-Horst (ter
Horst 2005), which can be mapped to WSML and vice versa. However, the expressiveness of
OWL DLP corresponds to WSML-Core. OWL-Horst is more powerful than WSML-Core, but
it is still not as powerful as WSML-Flight. Therefore, the expressiveness is not adequate. As
we already discussed, the reasoning in OWLIM takes the forward-chaining approach.
Forward-chaining means that the reasoner starts from the facts that are already known and

9 http://www.openrdf.org/index.jsp
10 http://pellet.owldl.com/
11 http://www.racer-systems.com/
12 http://www.cs.man.ac.uk/~horrocks/FaCT/

infers new knowledge in an inductive fashion. The result of forward-chaining can be stored
for reuse. This enables efficient query answering, because all facts needed for the query
processing are already available in the data storage. But in the meanwhile this introduces also
the expensive time and space consuming operations of data manipulation such as update or
delete. Newly added or updated data leads to computing the inference closure in the SBPR
again. Removal of process models is even more problematic, as facts from the inference
closure that were introduced by this removed process models have also to be removed from
the SBPR, which could lead to more removal operations. In the worst case this could lead to a
recalculation of a large part of the inference closure. However, the removal of process models
from the SBPR seems to be an action that is less common. The OWLIM approach also relies
heavily on the fact that the semantics of OWL DLP and extensions towards OWL Lite are
monotonic. The monotonic semantics allows for incremental additions to the Process Library,
i.e. one can extend the current inference closure with new inferences. In the presence of
non-monotonism, e.g., negation as failure as for example in WSML-Flight (de Bruijn 2006),
such an incremental approach no longer works, as adding knowledge may prohibit previously
made deductions.

IRIS (Integrated Rule Inference System)13 is an inference engine, which together with the
WSML2Reasoner framework 14 , supports query answering for WSML-Core and
WSML-Flight. In essence, it is a Datalog engine extended with stratified negation15. The
system implements different deductive database algorithms and evaluation techniques. IRIS
allows different data types to be used in semantic descriptions according the XML Schema
specification and offers a number of built-in predicates. Functionality for constructing
complex data types using primitive ones is also provided.

The translation from a WSML ontology description to Datalog is conducted using the
WSML2Reasoner component. This framework combines various validation, normalization
and transformation functionalities which are essential to the translation of WSML ontology
descriptions to set of predicates and rules. Further on, rules are translated to expressions of
relational algebra and computed using the set of operations of relational algebra (i.e., union,
set difference, selection, Cartesian product, projection etc.). The motivation for this
translation lies in the fact that the relational model is the underlying mathematical model of
data for Datalog and there are a number of database optimization techniques applicable for
the relational model. Finally optimized relational expressions serve as an input for computing
the meaning of recursive Datalog programs.

The core of the IRIS architecture, see Figure 5, is defined as a layered approach consisting
of:

• Knowledgebase API;
• Invocation API;
• Storage API.

The knowledgebase API is a top API layer encapsulating central abstractions of the
underlying system (e.g., rule, query, atom, tuple, fact, program, knowledge base, context etc.).
The purpose of this layer is to define the basic concepts of data model used in IRIS as well as
to define the functionality for the knowledge base and program manipulation.

The invocation API characterizes a particular evaluation strategy (e.g., bottom-up,
top-down or mixture of these two strategies) and evaluation methods for a given strategy
which are used with respect to a particular logic program.

IRIS implements the following evaluation methods16:
• Naive evaluation;

13 http://sourceforge.net/projects/iris-reasoner/
14 WSML2Reasoner framework: http://tools.deri.org/wsml2reasoner/
15 IRIS is continuously being developed and the support for non-stratified negation and unsafe rules is envisioned

in coming releases.
16 More evaluation techniques are under development.

• Semi-naive evaluation;
• Query-subquery (QSQ) evaluation.

The storage layer defines the basic API for accessing data and relation indexing. A central
abstraction in this layer is a relation which contains a set of tuples and serves as an argument
in each operation of relation algebra. The implementation of IRIS relation is based on
Collection and SortedSet Java interfaces where red-black binary search trees are utilized for
indexing.

Figure 5: IRIS Architecture

Current inference systems exploit reasoner methods developed rather for small knowledge

bases. Such systems either process data in main memory or use a Relational Database
Management System (RDBMS) to efficiently access and do relational operations on disk
persistent relations. Main memory reasoners cannot handle datasets larger than their memory.
On the other side, systems based on RDBMSs feature great performance improvement
comparing with main memory systems, but efficient database techniques (e.g., cost-based
query planning, caching, buffering) they utilize are suited only for EDB relations and not
fully deployable on derived relations.

IRIS is designed to meet requirements for large scale reasoning. Apart from the
state-of-the-art deductive methods, the system utilizes database techniques and extends them
for implicit knowledge in order to effectively process large datasets. We are building an
integrated query optimizer. The estimation of the size and evaluation cost of the intentional
predicates will be based on the adaptive sampling method (Liption 1990, Ruckhaus 2006),
while the extensional data will be estimated using a graph-based synopses of data sets
similarly as (Spiegel 2006). Further on, for large scale reasoning (i.e., during the derivation of
large relations which exceeds main memory), run time memory overflow may occur.

Therefore in IRIS we are developing novel techniques for a selective pushing of currently
processed tuples to disk. Such techniques aim to temporarily lessen the burden of main
memory, and hence to make the entire system capable of handling large relations.

The comparison shows that a RDBMS with integrated IRIS inference engine is the only
suitable solution to fulfill the requirements of the SBPR.

4.3 Overall Architecture

In this section we present the overall architecture of the SBPR. The BPL has been
designed in a layered architecture style consisting of

Semantic Business Process Repository API
Service Layer
Persistence Layer

Service Layer
Version ManagerLock Manager IRIS Framework

Persistence Layer

Semantic Business Process Repository API

Relational Database
System

Service Layer
Version ManagerLock Manager IRIS Framework

Persistence Layer

Semantic Business Process Repository API

Relational Database
System

Figure 6: SBPR Architecture

Semantic Business Process Repository API

The Semantic Business Process Repository API provides the programmatic access to the
SBPR. It includes the API designed after the CRUD pattern, which represents the four basic
functions of persistent storage, namely create, retrieve, update and delete. Besides the CRUD
API the SBPR API also provides check-in and check-out functions for long-running process
modeling. The query API rounds off the SBPR API by providing programmatic access to the
IRIS Framework for query answering.

Service Layer

The Service Layer implements the SBPR API and processing logic of the SBPR. The
Service Layer contains three modules: Lock Manger, Version Manager and the IRIS
Framework. The Lock Manager take charge of requests on locking and unlocking for the
process models in the SBPR. A locking request can only be granted when the process model
is yet not locked. The Version Manager takes care of the management of the versions of
process models. To record the modeling history every new process model or changed process
model is stored as a new version in the SBPR. IRIS Framework takes the responsibility for
the query processing in SBPR.

Persistence Layer

The Persistence Layer manages the data access to the underlying relational database
system and provides an abstraction for data access operations. It provides persistent solutions
for persistent objects by adopting Object Relational Mapping (ORM) middleware such as
Hibernate and Data Access Object (DAO) pattern.

5. CONCLUSIONS AND DIRECTIONS FOR FURTHER
RESEARCH

We gave an overall introduction to some well-known ontology repositories, including

native stores and database based stores, and highlights strengths and limitations of each store.
It is reported in (Ma et al., 2006) that Minerva achieves good performance in benchmarking
tests. We took Minerva as an example to analyze ontology storage in databases in depth, as
well as to discussed efficient indexes for scaling up ontology repositories. We then discussed
a scalable reasoning method for handling expressive ontologies, as well as summarized other
similar approaches.

We have presented a framework for reasoning with Description Logic based WSML. It
builds on top of a transformation from WSML-DL to OWL-DL and supports all main DL
specific reasoning tasks. We thus linked the work for storing OWL ontologies, to the work
on WSML-DL, providing the reader with an insight in storing and reasoning with both
OWL-DL and WSML-DL ontologies.

As a practical use case of storing ontologies and reasoning with them, we presented
Semantic Business Process Repository (SBPR) for systemically management of semantic
business process models. We first analyzed the main requirements on SBPR. After the
comparison of different approaches for storage mechanisms we concluded that a RDBMS
with IRIS inference engine integrated is, due to the expressiveness of the query language and
the reasoning capability, the most suitable solution.

Currently IRIS is a WSML-Flight reasoner. The system is extensively being developed to
support reasoning with WSML-Rule (i.e., support for function symbols, unsafe rules and
non-stratified negation). Further on, IRIS will tightly integrate a permanent storage system
designed for distributed scalable reasoning. One of our major objectives is the implementation
of Rule Interchange Format (RIF)17 in IRIS. Implementing RIF, IRIS will be capable of
handling rules from diverse rule systems and will make WSML rule sets interchangeable with
rule sets written in other languages that are also supported by RIF.

Finally, IRIS will implement novel techniques for reasoning with integrating frameworks
based on classical first-order logic and nonmonotonic logic programming as well as
techniques for Description Logics reasoning.

6. REFERENCES

AllegroGraph, http://www.franz.com/products/allegrograph/index.lhtml, 2006
SnoMed Ontology, http://www.snomed.org/snomedct/index.html, 2006
IODT, IBM’s Integrate Ontology Development Toolkit, http://www.alphaworks.ibm.com/tech/semanticstk, 2005
Abiteboul, Serge; Hull, Richard; Vianu, Victor: Foundations of Databases. Addison-Wesley, 1995
Agrawal, R., Somani, A., and Xu, Y., 2001, Storage and Querying of E-Commerce Data. In Proceedings of the

27th International Conference on Very Large DataBases, pages 149–158, Morgan Kaufmann.
Andrews, Tony; Curbera, Francisco; Dholakia, Hitesh; et al.: Business Process Execution Language for Web

Services Version 1.1. 5 May 2003

17 Rule Interchange Format-W3C Working Group: http://www.w3.org/2005/rules/

http://www.franz.com/products/allegrograph/index.lhtml
http://www.snomed.org/snomedct/index.html
http://www.alphaworks.ibm.com/tech/semanticstk

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D. and Patel-Schneider, P. F., 2003, The Description Logic
Handbook. Cambridge University Press.

Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-Schneider, P. F., and Stein, L.
A., 2004, Owl web ontology language reference. Technical report. Available from:
http://www.w3.org/TR/owl-ref/.

Bechhofer, S., Volz R. and Lord P.W., 2003, Cooking the Semantic Web with the OWL API, in: International
Semantic Web Conference, pp. 659-675.

Bernstein, Philip A.; Dayal, Umeshwar: An Overview of Repository Technology. In VLDB 1994.
Bhattacharjee, B., Padmanabhan, S., and Malkemus, T., 2003, Efficient Query Processing for Multi-Dimensionally
Clustered Tables in DB2, In Proceedings of the 29th Conference on Very Large Data Bases, pages 963–974,
Morgan Kaufmann.
Borgida, A., 1996, On the relative expressiveness of description logics and predicate logics. Artificial Intelligence

82(1-2):353–367. Available from: http://citeseer.ist.psu.edu/borgida96relative.html.
BPMN, Business Process Modeling Notation Specification. OMG Final Adopted Specification, February 6, 2006
Brickley, D. and Guha, R. V., 2004, Rdf vocabulary description language 1.0: Rdf schema. Technical report.

Available from: http://www.w3.org/TR/rdf-schema/.
Broekstra, J., Kampman, A., and Harmelen, van F., 2002, Sesame: A generic architecture for storing and querying

RDF and RDF schema. In Proceedings of the 1st International Semantic Web Conference, volume 2342 of
Lecture Notes in Computer Science, pages 54–68, Springer.

Bruijn, Jos de; Kopecký, Jacek; Krummenacher, Reto: RDF Representation of WSML. 20 December 2006
Bruijn, de J., Lausen, H., Krummenacher, R., Polleres, A., Predoiu, L., Kifer, M., and Fensel, D., 2005, The web

service modeling language WSML. WSML Final Draft D16.1v0.21, WSML. Available from:
http://www.wsmo.org/TR/d16/d16.1/v0.21/.

Bruijn, de J., Polleres, A., Lara, R., and Fensel, D., 2005, OWL DL vs. OWL Flight: Conceptual Modeling and
Reasoning on the Semantic Web. In Proceedings of the 14th International Conference on the World Wide Web.

Brunner, J., Ma, L., Wang, C., Zhang, L., Wolfson, D. C., Pan, Y., and Srinivas, K., 2007, Explorations in the Use
of Semantic Web Technologies for Product Information Management. In Proceedings of the 16th International
Conference on the World Wide Web. To appear.

Calvanese, D., Giacomo, De G., Lembo, D., Lenzerini, M., and Rosati, R., 2005, DL-Lite: Tractable Description
Logics for Ontologies. In Proceedings of the 12th National Conference on Artificial Intelligence, pages
602-607.

Calvanese, D., Giacomo, De G., Lembo, D., Lenzerini, M., and Rosati, R., 2006, Data Complexity of Query
Answering in Description Logics. In Proceedings of the 10th International Conference on the Principles of
Knowledge Representation and Reasoning, pages 260-270, AAAI Press.

Chen, Y., Ou, J., Jiang, Y., and Meng, X., 2006, HStar-a Semantic Repository for Large Scale OWL Documents.
In Proceedings of the 1st Asian Semantic Web Conference, volume 4185 of Lecture Notes in Computer Science,
pages 415-428, Springer.

Das, S., Chong, E.I., Eadon, G., and Srinivasan, J., 2004, Supporting Ontology-Based Semantic matching in
RDBMS. In Proceedings of the 30th International Conference on Very Large Data Bases, pages 1054-1065.

Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Ma, L., Schonberg, E., and Srinivas, K., 2007, Scalable
semantic retrieval through summarization and refinement. IBM Technical report, 2007.

Donini, M. F., Nardi, D., and Rosati, R., 2002, Description Logics of Minimal Knowledge and Negation as Failure.
ACM Transactions on Computational Logic, 3(2):177–225.

Fitting, M., 1996, First-Order Logic and Automated Theorem Proving. 2nd ed., Springer-Verlag, New York.
Fokoue, A., Kershenbaum, A., Ma, L., Schonberg, E., and Srinivas, K., 2006b, The summary abox: Cutting

ontologies down to size. In Proceedings of the 5th International Semantic Web Conference, volume 4273 of
Lecture Notes in Computer Science, pages 343–356, Springer.

Garcia-Molina, H., Ullman, J., and Widom, J., 2000, Database System Implementation. Prentice-Hall.
Grosof, B., Horrocks, I., Volz, R., and Decker, S., 2003, Description logic programs: combining logic programs

with description logic. In Proceddings of the 12th International Conference on the World Wide Web, pages
48-57.

Guo, Y., and Heflin, J., 2006, A Scalable Approach for Partitioning OWL Knowledge Bases. In Proceedings of the
2nd International Workshop on Scalable Semantic Web Knowledge Base Systems.

Haarslev, V., and Moller, R., 2001, RACER System Description. In Proceedings of Automated Reasoning, the 1st
International Joint Conference.

Hepp, Martin; Leymann, Frank; Domingue, John; Wahler, Alexander; Fensel, Dieter: Semantic Business Process
Management: A Vision Towards Using Semantic Web Services for Business Process Management.
Proceedings of the IEEE ICEBE 2005, October 18-20, Beijing, China, pp. 535-540.

Hepp, Martin; Roman, Dumitru: An Ontology Framework for Semantic Business Process Management,

Proceedings of Wirtschaftsinformatik 2007, February 28 - March 2, 2007, Karlsruhe

(forthcoming).

http://citeseer.ist.psu.edu/borgida96relative.html

Horrocks I., Patel-Schneider P.F., van Harmelen F., 2003, From SHIQ and RDF to OWL: The making of a Web
Ontology Language, J. of Web Semantics, 1570-8268, pp. 7-26, Available from:
http://www.cs.man.ac.uk/~horrocks/Publications/download/2003/HoPH03a.pdf

Horrocks, I., and Tessaris, S., 2002, Querying the semantic web: a formal approach. In Proceedings of the 1st
International Semantic Web Conference, volume 2342 of Lecture Notes in Computer Science, pages 177–191,
Springer.

Hustadt, U., Motik, B., and Sattler, U., 2004, Reducing SHIQ Descrption Logic to Disjunctive Datalog Programs.
In Proceedings of the 9th International Conference on Knowledge Representation and Reasoning, pages
152-162.

Hustadt, U., Motik, B., and Sattler, U., 2005, Data Complexity of Reasoning in Very Expressive Description
Logics. In Proceedings of the 19th International Joint Conference on Artificial Intelligence, pages 466-471.

JENA, http://jena.sourceforge.net/index.html
Keller, G.; Nüttgens, M.; Scheer, A.-W.: Semantische Prozeßmodellierung auf der Grundlage „Ereignisgesteuerter

Prozeßketten (EPK)", in: Scheer, A.-W. (Hrsg.): Veröffentlichungen des Instituts für Wirtschaftsinformatik,
Heft 89, Saarbrücken 1992.

Kiryakov, A., Ognyanov, D., and Manov, D, 2005, OWLIM - a pragmatic semantic repository for OWL. In
Proceedings of the 2005 International Workshop on Scalable Semantic Web Knowledge Base Systems.

Kiryakov, Atanas; Ognyanov, Damyan; Manov, Dimitar: OWLIM – a Pragmatic Semantic Repository for OWL. In

Proc. of Int. Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS 2005),

WISE 2005, 20 Nov, New York City, USA.
Krotzsch, M.., Rudolph, S., and Hitzler, P., 2006, On the complexity of Horn description logics. In Proceedings of

the 2nd Workshop OWL Experiences and Directions.
Libkin, Leonid: Expressive Power of SQL. The 8th International Conference on Database Theory. London, United

Kingdom, 2001
Lipton, Richard and Naughton, Jeffrey. Query size estimation by adaptive sampling (extended abstract). In PODS

’90: Proceedings of the ninth ACM SIGACTSIGMOD-SIGART symposium on Principles of
database systems, pages 40–46, New York, NY, USA, 1990. ACM Press.

Lloyd, J. W., 1987, Foundations of Logic Programming. 2nd ed., Springer-Verlag, New York.
Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., and Liu. S., 2006, Towards a complete owl ontology benchmark. In

Proceedings of the 3rd Europe Semantic Web Conference, volume 4011 of Lecture Notes in Computer Science,
pages 125–139, Springer.

Matias, Y., Vitter, J. S., and Wang, M., 1998, Wavelet-based histograms for selectivity estimation. In Proceedings
of the ACM SIGMOD International Conference on Management of Data.

Mei, J., Ma, L., and Pan, Y., 2006, Ontology Query Answering on Databases. In Proceedings of the 5th
International Semantic Web Conference, volume 4273 of Lecture Notes in Computer Science, pages 445-458,
Springer.

Motik, B., Sattler, U., and Studer, R., 2004, Query Answering for OWL-DL with Rules. In Proceedings of the 3th
International Semantic Web Conference, volume 3298 of Lecture Notes in Computer Science, pages 549-563,
Springer.

Motik, B., Horrocks, I., and Sattler, U., 2006, Integrating Description Logics and Relational Databases. Technical
Report, University of Manchester, UK.

Motik, B., and Rosati, R., 2007, A Faithful Integration of Description Logics with Logic Programming. In
Proceedings of the 20th International Joint Conference on Artificial Intelligence.

Murray C., Alexander N., Das S., Eadon G., Ravada S., 2005, Oracle Spatial Resource Description Framework
(RDF), 10g Release 2 (10.2).

OWLIM – OWL semantics repository. 2006. http://www.ontotext.com/owlim/
Pan, Z., and Heflin, J., 2003, DLDB: Extending relational databases to support semantic web queries. In

Proceddings of Workshop on Practical and Scaleable Semantic Web Systems.
Passin, Thomas B.: Explorer’s Guide to the Semantic Web. Manning, 2004.
Prud’hommeaux, E., Seaborne, A., eds., 2005, SPARQL Query Language for RDF.W3C Working Draft.
Poosala, V., Ioannidis, Y. E., Haas, P. J., and Shekita, E., 1996, Improved histograms for selectivity estimation of

range predicates. In Proceedings of the ACM SIGMOD International Conference on Management of Data.
RDF Primer, W3C Recommendation 10 February 2004. http://www.w3.org/TR/rdf-primer

RDF Vocabulary Description Language 1.0: RDF Schema. W3C Recommendation 10 February 2004
Rector, A., 2003, Message to public-webont-comments@w3.org: ”case for reinstatement of qualified cardinality

restrictions”. Available from: http://lists.w3.org/Archives/Public/public-webontcomments/2003Apr/0040.html.
Reiter, R., 1992, What Should a Database Know? Journal of Logic Programming, 14(1–2):127–153.
Roman, D., Lausen, H., and Keller, U., 2004, Web service modeling ontology (WSMO). WSMO final draft

d2v1.2. Available from: http://www.wsmo.org/TR/d2/v1.2/.

http://www.w3.org/TR/rdf-primer

Rosati, R., 2006, DL + log: A Tight Integration of Description Logics and Disjunctive Datalog. In Proceedings of
the 10th International Conference on the Principles of Knowledge Representation and Reasoning, pages 68–78,
AAAI Press.

Ruckhaus, Edna and Ruiz, Eduardo. Query evaluation and optimization in the semantic web. In Proceedings of the
ICLP’06 Workshop on Applications of Logic Programming in the Semantic Web and Semantic
Web Services (ALPSWS2006), Washington, USA, August 16 2006.

Siberschatz, Abraham; Korth, Henry F.; Sudarshan, S.: Database System Concepts. Fifth Edition, McGraw-Hill,

2006.
Sirin, E., and Parsia, B., 2004, Pellet: An OWL DL Reasoner. In Proceedings of Workshop on Description Logic.
Smith, Howard; Fingar, Peter: Business Process Management. The Third Wave. Meghan-Kiffer,US 2003.

Spiegel, J. and Polyzotis, N. Graph-based synopses for relational selectivity estimation. In SIGMOD ’06:

Proceedings of the 2006 ACM SIGMOD international conference on Management of data, pages

205–216, New York, NY, USA, 2006. ACM Press.
Steinmetz, N., 2006, WSML-DL Reasoner. Bachelor thesis, Leopold-Franzens University Innsbruck. Available

from: http://www.deri.at/fileadmin/documents/thesis/dlreasoner.pdf
SUPER, The European Integrated Project – Semantics Utilised for Process Management within and between

Enterprises. http://www.ip-super.org/

ter Horst, Herman J.: Combining RDF and Part of OWL with Rules: Semantics, Decidability, Complexity. In Proc.

of ISWC 2005, Galway, Ireland, November 6-10, 2005. LNCS 3729, pp. 668-684.
Volz, R., 2004, Web Ontology Reasoning with Logic Databases. PhD thesis, Fridericiana University Karlsruhe.
Wang, M., Chang, Y., and Padmanabhan, S., 2002, Supporting Efficient Parametric Search of E-Commerce Data:

A Loosely-Coupled Solution. In Proceedings of the 8th International Conference on Extending Database
Technology, pages 409-426.

Wilkinson, K., Sayers, C., Kuno, H. A., and Reynolds, D., 2003, Efficient RDF storage and retrieval in Jena2. In
Proceedings of VLDB Workshop on Semantic Web and Databases, pages 131-150.

Wu, XD, Lee, ML, Hsu, W., 2004, A prime number labeling scheme for dynamic ordered XML trees. In
Proceedings of the 20th Int'l Conf. on Database Engineering (ICDE). pages 66-78, IEEE Computer Society.

Zhou, J., Ma, L., Liu, Q., Zhang, L., Yu, Y., and Pan, Y., 2006, Minerva: A Scalable OWL Ontology Storage and
Inference System. In Proceedings of the 1st Asian Semantic Web Conference, volume 4185 of Lecture Notes in
Computer Science, pages 429-443, Springer.

http://www.deri.at/fileadmin/documents/thesis/dlreasoner.pdf
http://www.ip-super.org/

	1. INTRODUCTION
	2. ONTOLOGY STORAGE AND REASONING IN RELATIONAL DATABASES
	2.1 Overview of Ontology Repository
	2.2 Practical Methods for Ontology Storage and Index in Relational Databases
	2.3 A Scalable Ontology Reasoning Method by Summarization and Refinement
	2.4 Other approaches to scaling reasoning over large knowledge bases
	2.5 Bridging Discrepancies Between OWL ontology and Database

	3. REASONING WITH WSML-DL
	3.1 Reasoning with Description Logics
	3.2 WSML-DL
	3.2.1 WSML-DL Syntax
	3.2.1.1 WSML-DL Conceptual Syntax
	3.2.1.2 WSML-DL Logical Expression Syntax

	3.2.2 WSML-DL vs. SHIQ(D)

	3.3 Translation of WSML-DL to OWL DL
	3.3.1 Transformation Steps
	3.3.2 Mapping Tables
	3.3.3 Restrictions to the Transformation
	3.3.4 Translation Example
	3.3.5 Architecture and Implementation

	4. SEMANTIC BUSINESS PROCESS REPOSITORY
	4.1 Requirements Analysis
	4.2 Comparison of Storage Mechanisms
	4.2.1 Option 1: Without Reasoning Capability
	4.2.2 Option 2: With Reasoning Capability

	4.3 Overall Architecture

	5. CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH
	6. REFERENCES

