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Abstract: As reasoning with large amounts of data together with ontological knowledge is becoming an 
increasingly more pertinent issue, we will give in this chapter an overall introduction to some 
well-known ontology repositories, including native stores and database based stores, and highlight 
strengths and limitations of each store. We take Minerva as an example to analyze ontology storage 
in databases in depth, as well as to discuss efficient indexes for scaling up ontology repositories. 
We then discuss a scalable reasoning method for handling expressive ontologies, as well as 
summarize other similar approaches.  We will subsequently delve into the details of one particular 
ontology language based on Description Logics called WSML-DL and we will show that reasoning 
with this language can be done by a transformation from WSML-DL to OWL DL and supports all 
main DL specific reasoning tasks.  Finally, we want to make reasoning a bit more tangible by 
showing a reasoning example in a practical business context: we thus present the Semantic 
Business Process Repository (SBPR) for systemical management of semantic business process 
models. We first analyze the main requirements on a SBPR. After the comparison of different 
approaches for storage mechanisms, we conclude that a RDBMS with the IRIS inference engine 
integrated is, due to the expressiveness of the query language and the reasoning capability, a 
suitable solution.  

Key words:  Reasoning with large datasets, OWL DL, WSML DL, IRIS, business repository  

1. INTRODUCTION 

Reasoning with large amounts of data together with ontological knowledge is becoming an 
increasingly more pertinent issue.  Especially in the case of Semantic Web Applications an 
important question is how to store these ontologies and how to reason with them, without 
losing out of sight the need for scalability: in the end the Semantic Web is envisaged to 
contain a huge amount of data, and reasoning with ontologies for maintaining semantical 
information requires scalable reasoners to extract the relevant information from these 
ontologies. 



In order to give the reader an overview of existing solutions regarding the storage of 
ontologies we will start this chapter by giving an overview of existing ontology stores.  
Furthermore, we will explore the use of relational databases extensively as an efficient means 
to store ontologies. 

After discussing how OWL - currently the most prominent ontology language on the 
Semantic Web – ontologies can be stored, we will investigate a particular language, 
WSML-DL and see how it can be translated to OWL-DL, thus giving the reader also insight 
in WSML-DL reasoning by relating it to the storing capabilities described for OWL in this 
chapter. 

Whereas the first part of this chapter thus focuses on Description Logic based languages 
like OWL and WSML-DL, we will in the final part discuss a Logic Programming approach, 
based on WSML-Flight, and see how reasoning with ontologies can be done in that context. 

An important use case for the Logic Programming approach is given by the area of 
Business Process Management.  The globalization of the economy and the ongoing change 
of the market situation challenge corporations to adapt their business processes in an agile 
manner to satisfy the emerging requirements on the market and stay competitive against their 
competitors. Business Process Management (BPM) is the approach to manage the execution 
of IT-supported business processes from a business expert’s point of view rather than from a 
technical perspective (Smith et al. 2003). However, currently businesses have still very 
incomplete knowledge of and very incomplete and delayed control over their process spaces. 
Semantic Business Process Management (SBPM) extends the BPM approach by adopting 
semantic web and semantic web service technologies to bridge the gap between business and 
IT worlds (Hepp et al., 2005).  

In both BPM and SBPM business processes play a central role. As business processes 
manifest the business knowledge and logics of a corporation and normally more than one 
person or organization with different expertise and in different geographic locations are 
involved in management of business processes, it is necessary to establish a Business Process 
Repository (BPR) within the corporation for effective sharing of valuable business 
knowledge. Furthermore, business users tend to reuse existing business process artifacts 
during process modeling, so that they are able to adapt the business processes in a more agile 
manner. However, as the number of business processes increases, it is difficult for them to 
manage the process models by themselves and to find the required business process 
information effectively. A BPR helps business users by providing a systematic way to 
manage and obtain information on business processes.  

In SBPM business process models are based on process ontologies and make use of other 
ontologies, such as organizational ontology or semantic web service ontology (Hepp et al. 
2007). The BPR has to be able to cope with these ontological descriptions when storing and 
retrieving process models, and in particular support efficient querying and reasoning 
capabilities based on the ontology formalism used. In order to distinguish from traditional 
BPR technology, we call this kind of repository a Semantic Business Process Repository 
(SBPR). 

We first analyze the functional requirements on the SBPR. We describe what kind of 
functionality the SBPR should offer to its clients, which is primarily a process modeling tool. 
We then compare different approaches for data storage and querying based on the ontological 
descriptions. The comparison is based on the expressiveness of the query language, the 
scalability of the query processing and the effort for the integration of the query processing 
with the underlying data storage. We then finally describe the overall architecture of the 
SBPR. 



2. ONTOLOGY STORAGE AND REASONING IN RELATIONAL 
DATABASES 

2.1 Overview of Ontology Repository 

In the past decade, we have seen the development of ontology repositories for use in 
semantic web applications. In this section, we classify some well-known repositories based on 
their storage schemes, summarize methods to store ontologies in relational databases, and 
introduce reasoning methods used by these repositories briefly. 

 

Figure -1. A Taxonomy to Classify Ontology Repositories 
An ontology is in essence a directed labeled graph, which makes ontology storage highly 

challenging. Figure 1 shows a classification scheme for ontology repositories based on their 
storage models. In general, ontology repositories can be divided into two major categories, 
i.e., native stores and database based stores. Native stores are directly built on the file system, 
whereas database based repositories use relational or object relational databases as the 
backend store. Representative native stores include OWLIM (Kiryakov at al., 2005), HStar 
(Chen et al., 2006), and AllegroGraph (AllegroGraph, 2006). OWLIM and AllegroGraph 
adopt simple triple (N-triple) files to store all data, which results in the extremely fast speed 
for load and update. It is reported that AllegroGraph can load RDF data at the speed of more 
than 10,000 triples per second. OWLIM uses B+ trees to index triples and AllegroGraph just 
sorts triples in the order of (S, P, O), (P, O, S), and (O, S, P), respectively, for indexing 
purposes. The triple reasoning and rule entailment engine (TRREE) is utilized by OWLIM, 
which performs forward chaining reasoning in main memory, and inferred results are 
materialized for query answering. AllegroGraph can expose RDF data to Racer, a highly 
optimized DL reasoner (Haarslev & Moller, 2001), for inference. HStar is a hierarchy store 
and organizes typeOf triples (namely concept assertions in description logics terminology) 
using a class hierarchy and other non-typeOf triples (namely role assertions) using a property 
hierarchy. Because of its hierarchical tree models, it can leverage XML techniques to support 
a scalable store. Range labeling, which assigns labels to all nodes of an XML tree such that 
the labels encode all ancestor-descendant relationships between the nodes (Wu et al., 2004), 
can also largely improve query performance. Also, HStar uses B+ trees to index triples. A set 
of rules derived from OWL-lite is categorized into two groups, which are executed at load 
time using forward chaining and are evaluated at query time using backward chaining, 
respectively. In particular, reasoning on SubClassOf or SubPropertyOf could be easily 
implemented via its hierarchical trees. 

Compared with database based stores, native stores greatly reduce the load and update 
time. However, database systems provide many query optimization features, thereby 
contributing positively to query response time. It is reported in (Ma et al., 2006) that a simple 



exchange of the order of triples in a query may make the query time of native stores 10 times 
(or even more) slower. Furthermore, native stores need to re-implement the functionality of a 
relational database such as transaction processing, query optimization, access control, logging 
and recovery. One potential advantage of database based stores is that they allow users and 
applications to access both ontologies and other enterprise data in a more seamless way at the 
lower level, namely database level. For instance, The Oracle RDF store translates an RDF 
query into a SQL query which can be embedded into another SQL query retrieving non-RDF 
data. In this way, query performance can be improved by efficiently joining RDF data and 
other data using well-optimized database query engines. Currently, lots of research efforts are 
made on database based stores. So, here we focus on ontology storage and reasoning in 
databases. 

A generic RDF store mainly uses a relational table of three columns (Subject, Property, 
Object) to store all triples, in addition to symbol tables for encoding URIs and literals with 
internal unique IDs. Both Jena and the Oracle RDF store are generic RDF stores. In Jena2 
(Wilkinson et al., 2003), most of URIs and literal values are stored as strings directly in the 
triple table. Only the URIs and literals longer than a configurable threshold are stored in 
separated tables and referenced by IDs in the triple table. Such a design trades storage space 
for time. The property table is also proposed to store patterns of RDF statements in Jena2. An 
n-column property table stores n-1 statements (one column per property). This is efficient in 
terms of storage and access, but less flexible for ontology changes. Jena2 provides by default 
several rule sets with different inference capability. These rule sets could be implemented in 
memory by forward chaining, backward chaining or a hybrid of forward and backward 
chaining. The Oracle RDF store (Murray et al., 2005) is the first commercial system for RDF 
data management on top of RDBMS. Particularly, it supports so-called rulebases and rule 
indexes. A rulebase is an object that contains rules which can be applied to draw inferences 
from RDF data. Two built-in rulebases are provided, namely RDFS and RDF (a subset of 
RDFS). A rule index is an object containing pre-calculated triples that can be inferred from 
applying a specified set of rulebases to RDF data. Materializing inferred results would 
definitely speed up retrieval. Different from the generic RDF store, improved triple stores, 
such as Minerva (Zhou et al., 2006) and Sesame on MySQL database (Broekstra et al., 2002), 
manage different types of triples using different tables. As we can see from the storage 
schema of Minerva shown in Figure 3, class and property information is separated from 
instances, and typeOf triples are isolated from other triples. The improved triple store is 
efficient since some self-joins on a big triple table are changed to some joins among 
small-sized tables. Both the generic RDF store and the improved triple store make use of a 
fixed database schema. That is, the schema is independent of ontologies. The schema of 
binary table based stores, however, changes with ontologies. These kinds of stores, such as 
DLDB-OWL (Pan & Heflin, 2003) and Sesame on PostgreSQL (Broekstra et al., 2002), 
create a table for each class (resp. each property) in an ontology. A class table stores all 
instances belonging to the same class and a property table stores all triples which have the 
same property. Such tables are called binary tables. For the subsumption of classes and 
properties, DLDB-OWL exploits database views to capture them, whereas Sesame leverages 
the sub-tables from object relational databases so as to handle them naturally. One of 
advantages of the binary table based store is to decrease the traversal space and improve data 
access for queries. That is, instances of unrelated classes or properties to a query will not be 
accessed. An obvious drawback is the alteration of the schema (e.g., deleting or creating 
tables) when ontologies change. Also, this binary table based approach is not suitable for very 
huge ontologies having tens of thousands of classes, such as SnoMed ontology (SnoMed, 
2006). Too many tables will increase serious overhead to databases. 

The above gives an overall introduction to some well-known ontology repositories, 
including native stores and database based stores, and highlights strengths and limitations of 
each store. It is reported in (Ma et al., 2006) that Minerva achieves good performance in 
benchmarking tests. Next, we will take Minerva as an example to analyze ontology storage in 



databases in depth, as well as to discuss efficient indexes for scaling up ontology repositories. 
We will then discuss a scalable reasoning method for handling expressive ontologies, as well 
as summarize other similar approaches. 

2.2 Practical Methods for Ontology Storage and Index in Relational 
Databases 

This section discusses methods to store and index ontologies in relational databases by 
investigating an improved triple store, namely Minerva (Zhou et al., 2006). Figure 2 shows 
the component diagram of Minerva, which is comprised of Import Module, Inference Module, 
Storage Module (viz. an RDBMS schema) and Query Module. 

 

Figure -2. The Component Diagram of Minerva 

The import module consists of an OWL parser and two translators. The parser parses 
OWL documents into an in-memory EODM model (EMF ontology definition metamodel) 
(IODT, 2005), and then the DB translator populates all ABox assertions into the backend 
database. The function of the TBox translator is twofold, one is to populate all asserted TBox 
axioms into a DL reasoner and the other is to obtain inferred results from the DL reasoner and 
insert them into the database. A DL reasoner and a rule inference engine comprise the 
inference module. Firstly, the DL reasoner infers complete subsumption relationships 
between classes and properties. Then, the rule engine conducts ABox inference based on the 
description logic programs (DLP) rules (Grosof et al., 2003). Currently, the inference rules 
are implemented using SQL statements. Minerva can use well-known Pellet (Sirin & Parsia, 
2004) or a structural subsumption algorithm for TBox inference (IODT, 2005). The storage 
module is intended to store both original and inferred assertions by the DL reasoner and the 
rule inference engine. But, there is a way to distinguish original assertions from inferred 
assertions by a specific flag. Since inference and storage are considered as an inseparable 
component in a complete storage and query system for ontologies, a specific RDBMS schema 
is designed to effectively support ontology reasoning. Currently, Minerva can take IBM DB2, 
Derby, MySQL and Oracle as the back-end database. The query language supported by 
Minerva is SPARQL (Prud’hommeaux & Seaborne, 2006). SPARQL queries are answered by 
directly retrieving inferred results from the database using SQL statements. There is no 



inference during the query answering stage because the inference has already been done at the 
loading stage. Such processing is expected to improve the query response time. 

In summary, Minerva combines a DL reasoner and a rule engine for ontology inference, 
followed by materializing all inferred results into a database. The database schema is well 
designed to effectively support inference and SPARQL queries are answered by direct 
retrieval from the database. Jena and Sesame have provided support for ontology persistence 
in relational databases. They persist OWL ontologies as a set of RDF triples and do not 
consider specific processing for complex class descriptions generated by class constructors 
(boolean combinators, various kinds of restrictions, etc). The highlight of Minerva’s database 
schema is that all predicates in the DLP rules have corresponding tables in the database. 
Therefore, these rules can be easily translated into sequences of relational algebra operations. 
For example, Rule Type(x,C) :- Rel(x,R, y).Type(y,D).SomeValuesFrom(C,R,D) has four 
terms in the head and body, resulting in three tables: RelationshipInd, TypeOf and 
SomeValuesFrom. It is straightforward to use SQL statements to execute this rule. We just 
need to use simple SQL select and join operations among these three tables. Leveraging 
well-optimized database engines for rule inference is expected to significantly improve the 
efficiency. Figure 3 shows the relational storage model of Minerva. 

 

Figure -3. Database Schema of Minerva 

We categorize tables of the database schema of Minerva into 4 types: atomic tables, TBox 
axiom tables, ABox fact tables and class constructor tables. The atomic tables include: 
Ontology, PrimitiveClass, Property, Datatype, Individual, Literal and Resource. These tables 
encode the URI with an integer (the ID column), which reduces the overhead caused by the 
long URI to a minimum. The hashcode column is used to speed up search on URIs and the 
ontologyID column denotes which ontology the URI comes from. The Property table stores 
characteristics (symmetric, transitive, etc.) of properties as well. To leverage built-in value 
comparison operations of databases, boolean, date time and numeric literals are separately 
represented using the corresponding data types provided by databases. There are three 



important kinds of ABox assertions involved in reasoning: TypeOf triples, object property 
triples and datatype property triples. They are stored in three different tables, namely tables 
TypeOf, RelationshipInd and RelationshipLit. A view named Relationship is constructed as 
an entry point to object property triples and datatype property triples. Triples irrelevant to 
reasoning, such as those with RDFS:comment as the property, are stored in Table Utility. 
Tables SubClassOf, SubPropertyOf, Domain, Range, DisjointClass, InversePropertyOf are 
used to keep TBox axioms. The class constructor tables are used to store class expressions. 
Minerva decomposes the complex class descriptions into instantiations of OWL class 
constructors, assigns a new ID to each instantiation and stores it in the corresponding class 
constructor table. Taking the axiom Mother ≡ Woman ⊓∃hasChild.Person as an example, 
we first define S1 for ∃hasChild.Person in Table SomeValuesFrom. Then I1, standing for the 
intersection of Woman and S1, will be defined in Table IntersectionClass. Finally, {Mother 
⊑ I1, I1 ⊑ Mother} will be added to the SubClassOf table. Such a design is motivated by 
making the semantics of complex class description explicit. In this way, all class nodes in the 
OWL subsumption tree are materialized in database tables, and rule inference can thus be 
easier to implement and faster to execute via SQL statements. Also, a view named Classes is 
defined to provide an overall view of both named and anonymous classes in OWL ontologies. 

The triple table of three columns (Subject, Property, Object) is also called a vertical table 
in data management. In (Agrawal et al., 2001), Agrawal et al. discussed the advantages of 
vertical tables over binary tables in terms of manageability and flexibility. Improved triple 
stores, including Minerva, generally adopt vertical tables to store ABox facts. The vertical 
table is efficient in space, but its retrieval often requires a 3-way join. This becomes a 
bottleneck in the case of complex queries or a large number of records involved, although 
using some indexes. Wang et al. (Wang et al., 2002) gives an insight into why the vertical 
table sometimes results in long query response time. Most relational databases transform a 
user query into a physical query plan which represents the operations, the method of 
performing the operations, and the order of processing the different operations 
(Garcia-Molina et al., 2000). A query optimizer of the database considers multiple physical 
plans and estimates their costs, and then selects a plan with the least estimated cost and passes 
it to the execution engine. So, the accuracy of the cost estimation seriously affects the 
efficiency of a query execution. Usually statistics collected from the base data are used to 
estimate the cost of a query plan. The query optimizer builds a histogram for each column. 
The histogram contains information about the distribution of the corresponding column and is 
stored in a database catalog (Wang et al., 2002, Poosala et al., 1996, Matias et al., 1998). 
Apparently, if the statistical information represented by the histogram is inaccurate, the query 
optimizer may make a wrong selection among different physical query plans. Since values of 
different properties are stored in the same column of the vertical table, the corresponding 
histogram can not accurately reflect the value distribution of each property. This may affect 
the query plan selection and execution of a query which needs to access information in the 
vertical table. Wang et al. proposed to build external histograms for values of different 
attributes and rewrite the physical query plan based on these external histograms. That is, 
with the external histograms, the DBMS query engine could generate an optimal query plan. 
Therefore, we can adopt this optimization method for the performance of triple stores. 
Sometimes, it is impossible to apply this method since one needs to access the core engine of 
the database. So, it is desirable to leverage indexes as much as possible to improve ontology 
repositories. 

Currently, most commercial database systems provide primary clustering indexes. In this 
design, an index containing one or more keyparts could be identified as the basis for data 
clustering. All records are organized on the basis of their attribute values for these index 
keyparts by which the data is ordered on the disk. More precisely, two records are placed 
physically close to each other if the attributes defining the clustering index keyparts have 
similar values or are in the same range. Clustering indexes could be faster than normal 
indexes since they usually store the actual records within the index structure and the access on 



the ordered data needs less IO costs. In practice, it is not suitable to create an index on a 
column with few distinct values because the index does not narrow the search too much. But, 
a clustering index on such a column is a good choice because similar values are grouped 
together on the data pages. Considering that real ontologies have a limited number of 
properties, the property column of triple tables, such as the RelationshipInd table of Minerva, 
could be a good candidate for clustering. So, it is valuable to use clustering indexes on triple 
tables for performance purpose. 

Similar to normal unclustered indexes, the clustering index typically contains one entry for 
each record as well. More recently, Multi-Dimensional Clustering (MDC) (Bhatt et al., 2003) 
is developed to support block indexes which is more efficient than normal clustering indexes. 
Unlike the primary clustering index, an MDC index (also called MDC table) can include 
multiple clustering dimensions. Moreover, the MDC supports a new physical layout which 
mimics a multi-dimensional cube by using a physical region for each unique combination of 
dimension attribute values. A physical block contains only records which have the same 
unique values for dimension attributes and could be addressed by block indexes, a higher 
granularity indexing scheme. Block indexes identify multiple records using one entry and are 
thus quite compact and efficient. Queries using block indexes could benefit from faster block 
index scan, optimized prefetching of blocks, as well as lower path length overheads while 
processing the records. Evaluation results from (Brunner et al., 2007) showed that the MDC 
indexes could dramatically improve query performance (20 times faster and even more) and 
the set of indexes P*, (P,O), (S,P,O) on the triple table gives the best result for most queries 
on Minerva using DB2, where P* means an MDC index, other two represent composites 
unclustered indexes. Additionally, the MDC index could be built on the table defining typeOf 
information, grouping the records by classes. 

Currently, the MDC index is a unique feature of DB2. But other popular databases provide 
advanced index functionalities as well. Oracle supports range partitioning which is a single 
dimension clustering of the data into partitions. It allows tables, indexes, and index-organized 
tables to be subdivided into smaller pieces, enabling these objects to be managed and 
accessed at a finer level of granularity. SQL Server and Teradata Non StopSQL support B+ 
tree tables. In this scheme, one can define the entire table as a B+ tree itself clustered on one 
or more columns. These features are helpful for the performance of triple stores. 

2.3 A Scalable Ontology Reasoning Method by Summarization and 
Refinement 

Reasoning algorithms that could be scaled to realistic databases are a key enabling 
technology for the use of ontologies in practice. Unfortunately, OWL-DL ontology reasoning 
using the tableau algorithm is intractable in the worst case. As we discussed previously, rule 
inference is adopted for OWL reasoning by some ontology repositories, and sometimes, 
inferred results are materialized for retrieval. But, rule inference cannot realize complete and 
sound reasoning of OWL-DL ontologies and maintaining the update of materialized results is 
also a non-trivial problem. Here, we introduce a novel method that allows for efficient 
querying of SHIN ontologies with large ABoxes stored in databases. Currently, this method 
focuses on instance retrieval that queries all individuals of a given class in the ABox. This 
summarization and refinement based method can also be treated as an optimization that any 
tableau reasoner can employ to achieve scalable ABox reasoning. 



 

Figure -4. The Workflow of SHER Reasoner 

It is well known that all queries over DL ontologies can be reduced to consistency check 
(Horrocks & Tessaris, 2002), which is usually checked by a tableau algorithm. As an 
example, an instance retrieval algorithm can be realized by testing if the addition of an 
assertion a : ¬C for a given individual a results in an inconsistency. If the resulting ABox is 
inconsistent, then a is an instance of C. But, it is impractical to apply such a simple approach 
to every individual. Motivated by the fact that in most real ontologies: 1) individuals of the 
same class tend to have the same assertions with other individuals; 2) most assertions are in 
fact irrelevant for purposes of consistency check, Fokoue et al. (Fokoue et al., 2006) proposed 
to group individuals which are instances of the same class into a single individual to generate 
a summary ABox of a small size. Then, consistency check can be done on the dramatically 
simplified summary ABox, instead of the original ABox. By testing an individual in the 
summary ABox, all real individuals mapped to it are effectively tested at the same time. 
Figure 4 shows the workflow of the algorithm.  

The first step is to construct a summary ABox A’ corresponding to the original ABox A. 
This can be done by two steps: 1) Generate a single individual in the summary to represent all 
individuals which have the same concept set (the concept set consists of all classes of an 
individual). But individuals involved in differentFrom assertions are preserved in the 
summary. 2) Add a relation R to a pair of summary individuals (C, D) if there is an R edge 
between an individual mapped to C and another individual mapped to D in the ABox. 
Formally, we can use a mapping function f to describe the correspondence between A and A’. 
It satisfies the following constraints: 

(1) if a : C ∈ A, then f (a) : C ∈ A′ 
(2) if R(a, b) ∈ A, then R(f (a), f (b)) ∈ A′ 
(3) if a ≠ b ∈ A, then f (a) ≠ f (b) ∈ A′ 
It is proven that if the summary ABox A’ of ABox A is consistent w.r.t. an ontology’s 

TBox, then A is consistent as well. However, the converse does not hold. This is because the 
summarization may cause inconsistencies.  

Next is to filter out role assertions that cannot be responsible for the detection of an 
inconsistency in the ABox, either because they cannot be used to propagate a concept 
assertion, or because they cannot be involved in the detection of an inconsistency due to a 
merger of ABox individuals. For the SHIN sub-language of DL, these are role assertions 
where the roles are not specified in any universal restriction or a maximum cardinality 



restriction in clos(A). Note that the clos(A) includes the negated query, because the queried 
concept is effectively a part of the summary ABox. This filtering step further reduces the size 
of the summary ABox that is used as a starting point for instance retrieval.  

When the summary ABox contains disconnected sub-graphs, each isolated sub-graph can 
be processed separately. Since the algorithm currently works for the description logic SHIN, 
which does not contain nominals, it is safe to partition the ABox without affecting soundness 
and completeness of the instance retrieval algorithm. Note that individuals in disconnected 
partitions can only interact via axioms in the TBox by using nominals. The partitioning 
strategy works well in a lot of realistic large ontologies where the class hierarchy is spread 
out, typically observed when dealing with separate domains or specializing in numerous 
areas. In such cases, there exist a lot of disconnections between sub-ABoxes that are tied into 
separate class hierarchies. In addition, filtering out irrelevant role assertions that connect 
instances together in practice produces a large number of disconnected partitions. Partitioning 
presents a great opportunity for parallelization since consistency check can be executed on 
each separate partition simultaneously with the results being combined at the end. 

Each individual s in the summary ABox A’ is tested by adding an assertion s : 
¬QueriedConcept to A’, and checking for consistency using a tableau reasoner, such as Pellet 
reasoner. To achieve scalability, one can test multiple individuals in the summary graph at the 
same time.  

Definition A. Let A be an ABox. Let Q be a concept expression. Let S be a subset of 
individuals in A such that for all s ∈ S, s : ¬Q ∉ A. 1 We define the tested ABox w.r.t. A, Q 
and S, denoted tested(A,Q, S), to be the ABox obtained from A by adding the assertion s : ¬Q 
for each s ∈ S. Formally, tested(A,Q, S) = A ∪ {s : ¬Q|s ∈ S}. 

If the result of testing a single individual s is consistent, then we know that none of real 
individuals mapped to s is a query solution. However, if the result is inconsistent, then we 
cannot conclude anything about individuals mapped to s. This situation arises because 
individuals are aggregated based only on the similarity of their concepts, not relationships. 
One approach for resolving summary ABox inconsistencies is to iteratively refine the 
summary. Refinement partitions the set of individuals mapped to a single summary individual 
and remaps each partition to a new summary individual. Obviously, refinement increases the 
size and precision of the summary, and preserves three properties defined by the above 
summary mapping function. Here, the strategy is to refine only individuals that are part of a 
summary ABox justification, where a justification is a minimal set of assertions which, when 
taken together, imply a logical contradiction, thus making the entire ABox inconsistent. In 
addition to guiding refinement, justifications are helpful for users to understand query results. 
Since justifications are at a summarized level, the information is more useful than detailed 
information about each individual in an ABox. In some cases, inconsistencies disappear 
through refinement. Otherwise, when a justification J is precise, we typically know that we 
have converged on a solution. That is, there is a tested individual s in J, such that all real 
individuals mapped to s are instances of the query. We say that a tested individual s is tested 
in J for query Q if s : ¬Q is an assertion in J . 

Definition B. Let A′ be a summary ABox of an ABox A obtained through the summary 
mapping f . Let Q be a queried concept, S be a subset of individuals in A′such that for all x ∈ 
S, x : ¬Q ∉ A′and let H be a subset of tested(A′,Q, S). We say that an individual s ∈ H is 
precise w.r.t. H iff the following conditions are satisfied: 

1. for all individuals t ∈ H and for all roles R, R(s, t) ∈ H (resp. R(t, s) ∈ H) implies that, 
for all individuals a ∈ A such that f (a) = s, there is an individual b ∈ A such that f (b) = t 
and R(a, b) ∈ A (resp. R(b, a) ∈ A); and 

2. for all individuals s, t ∈ H, s ≠ t ∈ H (resp. t ≠ s ∈ H) implies that, for all individuals 
a ∈ A such that f (a) = s, there is an individual b ∈ A such that f (b) = t and a ≠ b ∈ A (resp. 
b ≠ a ∈ A); and 

3. There is an individual a ∈ A such that f (a) = s; and 



4. s : C ∈ H − {x : ¬Q|x ∈ S} implies that, for all individuals a ∈ A such that f (a) = s, a : 
C ∈ A 

We say that H is precise iff all its individuals are precise w.r.t. H. 
In summary, a high level outline of the algorithm is shown below. 

S←{x|x ∈ individuals in A′and x : ¬Q∉ A′}; 
R←A′; 
Results←∅; 
while S ≠ ∅ do 

RT←tested(R,Q, S) (see Definition A) ; 
if consistent(RT ) then 

return Results; 
end 
Find Justifications in RT ; 
T←individuals tested in precise Justifications; 
Results←Results ∪ Image(T); 
S←S − T; 
Execute refinement strategy on R ; 

end 
return Results 

The SHER reasoner (Dolby et al., 2007) implemented this reasoning approach on top of 
Minerva’s storage component (Zhou et al., 2006) and proved its effectiveness and efficiency 
on the UOBM benchmark ontology. It is reported that SHER can process ABox queries with 
up to 7.4 million assertions efficiently, whereas the state of the art reasoners could not scale to 
this size. 

2.4 Other approaches to scaling reasoning over large knowledge bases 

The issue of scaling reasoning over large ABoxes has recently received a lot of attention 
from the Semantic Web and Description Logics communities. Two main approaches have 
been proposed to tackle it. The first approach consists in building new algorithms, heuristics 
and systems that exhibit acceptable performance on realistic large and expressive knowledge 
bases. Proponents of the second approach, on the other hand, advocate reducing the 
expressiveness of TBoxes describing large ABoxes so that the worst-case data complexity1 of 
reasoning becomes tractable. The summarization and refinement technique to scale reasoning 
over large and expressive ABoxes presented in the previous section is an illustration of 
research work guided by the first approach. In this section, we present other important recent 
work on reasoning over large and expressive knowledge bases as well as Description Logics 
that have been defined with a tractable worst-case data complexity. 

Since state-of-the-art in-memory reasoners, such as Pellet (Sirin & Parsia, 2004) and 
Racer (Haarslev & Moller, 2001), offer good performance on realistic expressive but small 
knowledge bases, Guo et al. have recently proposed to decompose large and expressive 
ABoxes into possibly overlapping small components that could be separately fed to 
state-of-the-art in-memory reasoners. The decomposition is such that the answer to a 
conjunctive query over the original ABox is the union of the answers of the same conjunctive 
query over each component of the decomposition. Conservative analyses of the inference 
rules of the considered DL provide the understanding of interdependency between ABox 
assertions. Two ABox assertions depend on each other if they might be used together to infer 
new assertions. The decomposition is such that two assertions that depend on each other 
always appear together in a component. Results of initial experimental evaluation presented in 
(Guo & Heflin, 2006) are very promising. Another approach (Hustadt et al., 2004) to 

                                                      
1 Data complexity refers to the complexity of reasoning over the ABox only assuming that the TBox is fixed.  It 

measures the complexity of reasoning as a function of the ABox size only.  



efficiently answer conjunctive queries over large and expressive knowledge bases consists in 
transforming any SHIN(D) 2  knowledge base into a disjunctive datalog program. The 
advantages of this approach are twofold. First, it leverages decades of research on 
optimizations of disjunctive datalog programs (e.g. magic set transformation). Second, it 
naturally supports DL-safe rules (Motik et al., 2004), which can straightforwardly be 
translated into datalog rules.  

Other researchers have advocated reducing the expressive power in order to obtain 
tractable reasoning over large ABoxes. Calvanese et al. have introduced a family of 
inexpressive Description Logics, the DL-Lite family, with data complexity varying from 
LogSpace to co-NP-hard (Calvanese et al., 2006). DL-Litecore, the least expressive language in 
the DL-Lite family, consists of existential restriction and a restricted form of negation 
(Calvanese et al., 2005). The language for DL-Litecore concepts and roles is defined as 
follows:  

Cl  A | ∃R; Cr A | ∃R| ¬A | ¬∃R 
R  P | P - 

where Cl (resp. Cr) denotes a concept that may appear in the left (resp. right) hand side of a 
concept inclusion axiom in the TBox. Two simple extensions of DL-Litecore, DL-LiteF,6 and 
DL-LiteR,6 , have been defined and shown to be FOL-reducible: i.e. answering a conjunctive 
query in DL-Litecore or in one of these extensions can be reduced to evaluating a SQL query 
over the database corresponding to the ABox. The advantages of these FOL-reducible 
languages are straightforward for applications with very limited expressiveness needs. 
DL-LiteF,6 extends DL-Litecore by allowing intersections on the left hand side of concept 
inclusion axioms and functional roles; while DL-LiteR,6 extends DL-Litecore by allowing 
inclusion axioms between roles, intersections on the left hand side of concept inclusion 
axioms, and qualified existential restrictions on the right hand side of concept inclusion 
axioms. All the other extensions3 to DL-Litecore are not FOL-reducible, but, for the most part, 
they remain tractable. Other Description Logics with polynomial data complexity include 
Horn-SHIQ (Hustadt et al., 2005, Krotzsch et al., 2006), a fragment of SHIQ analogous to the 
Horn fragment of first-order logic, and description logic programs (Grosof et al., 2003). 

2.5 Bridging Discrepancies Between OWL ontology and Database 

Recently, Semantic Web and ontologies are receiving extensive attention from data 
management area. Ontologies are used as semantic models which are believed to be able to 
represent more semantics of the underlying data and are easy to understand. OWL provides 
numerous constructs to define complex and expressive models. However, it is gradually 
recognized that there are remarkable discrepancies between description logics (the logical 
foundation of OWL) and databases. As is well-known, DL is based on an open world 
assumption (OWA) permitting incomplete information in an ABox, while DB adopts a closed 
world assumption (CWA) requiring information always understood as complete. The unique 
name assumption (UNA) is often emphasized in DB but not in DL. OWL Flight (Bruijn et al., 
2005), furthermore, clarifies restrictions in DL and constraints in DB, of which the former is 
to infer and the latter to check. When negation comes, DBs prefer to “non-monotonic 
negation”, while DLs rely on “monotonic negation”. The following simple example gives us 
an intuitive understanding of such discrepancies. In a relational database, if “each employee 
must be known to be either male or female” is specified as an integrity constraint, the 
database system would check whether the gender of a person is given and set to be male or 
female during database updates. If the gender is not specified as male or female, the update 
would fail. In an ontology, the same requirement would naturally be represented by an axiom 
that Employee is subsumed by the union of Male and Female. Adding an employee without 

                                                      
2 SHIN(D) is the subset of OWL DL without nominal. 
3 We are not considering extension allowing n-ary predicate with n>2. 



expressing he/she is an instance of Male or Female to the ontology would not result in any 
errors, and just imply that the employee could be either Male or Female. 

Some research work on extending DLs with integrity constraints are mainly based on 
autoepistemic extensions of DLs, such as the description logics of minimal knowledge and 
negation-as-failure (MKNF) (Donini et al., 2002) and some nonmonotonic rule extensions of 
DLs (Motik et al., 2007). This may be inspired by Reiter’s observation that integrity 
constraints describe the state of the database and have an epistemic nature (Reiter, 1992). 
Motivated by representing integrity constraints in MKNF, Mei et al. imposed epistemic 
operators on union and existential restrictions and explained them using integrity constraints 
in an ontology (Mei et al., 2006). Given the ABox of an SHI ontology is satisfiable with 
regard to its epistemic TBox, reasoning on such an ontology could be done by a datalog 
program. 

More recently, Boris et al. proposes an extension of OWL that attempts to mimic the 
intuition behind integrity constraints in relational databases (Motik et al., 2006). Integrity 
constraints, introduced in (Mei et al., 2006), are used for conveying semantic aspects of OWL 
that are not covered by deductive databases, while (Motik et al., 2006) extends standard TBox 
axioms with constraint TBox axioms, s.t., for TBox reasoning, constraints behave like normal 
TBox axioms; for ABox reasoning, however, they are interpreted in the spirit of relational 
databases. Acting as checks, constraints are thrown away, if satisfied, without losing relevant 
consequences. Algorithms for checking constraint satisfaction are also discussed in (Motik et 
al., 2006), and the complexity of constraint checking is primarily determined by the 
complexity of the standard TBox. As a result, answering queries under constraints may be 
computationally easier due to a smaller input of the standard TBox concerning. Currently, 
(Motik et al., 2006) plans to implement such an approach in the OWL reasoner KAON2 and 
tests its usefulness on practical problems. 

Technically, (Motik et al., 2006) defines constraints in the same way as subsumptions, 
having the form of C⊑D where C and D are DL concepts. Keeping the semantics of DLs 
unchanged, constraints rely on Herbrand models for checking satisfiability. Query answering 
is another reasoning service, provided the constraints are satisfied, and again uses the standard 
semantics of DLs after throwing those constraints away. That is, authors define TBox axioms, 
of which some are for inferring (namely, standard TBox axioms) and some for checking 
(namely, constraint TBox axioms). The extended DL system will provide support for DL 
reasoning as usual, in addition to checking constraint satisfiability using the well-known 
methods of logic programming.  

By definition, an extended DL knowledge base is a triple K=(S, C, A) such that S is a 
finite set of standard TBox axioms, C is a finite set of constraint TBox axioms, and A is a 
finite set of ABox assertions, D(a), ¬D(a), R(a,b), a≈b, a ≠ b, for D an atomic concept, R a 
role, and a, b individuals. Checking C in the minimal models of A ∪ S, the algorithm is 
sketched as follows (Motik et al., 2006). 
1. The standard TBox S is translated into a first-order formula π(S) according to the standard 

DL semantics, and the results are further translated into a (possibly disjunctive) logic 
program LP(S) = LP(π(S)) which can be exponentially larger than S. For each rule in LP(S) 
in which a variable x occurs in the head but not in the body, the atom HU(x) is added to 
the rule body. Additionally, for each individual a occurring in A ∪ S, an assertion HU(a) 
is introduced. 

2. The constraint TBox C is translated into a first-order formula π(C), and CN(C) = CN(π(C)) 
is constructed as a stratified datalog program. For each formula ϕ, a unique predicate Eϕ is 
associated, also μ(ϕ) and sub(ϕ) are defined, where μ(ϕ) is a translation rule for ϕ and 
sub(ϕ) is the set of sub-formulae of ϕ, s.t. the following logic program is computed: CN(ϕ) 
= μ(ϕ) ∪ ∪ φ∈sub(ϕ) CN(φ). 
As a consequence, K=(S, C, A) satisfies the constraint TBox C if and only if 

A∪LP(S)∪CN(C) |=c EC, where |=c denotes the well-known entailment in stratified (possibly 
disjunctive) logic programs, and EC = Eπ(C).  



Intuitively, CN(C) simply evaluates C and ensures that EC holds in a model if and only if 
C is true in the model. Thus, EC is derived if and only if C is satisfied in all minimal models. 
Finally, suppose K=(S, C, A) be an extended DL knowledge base that satisfies C. For any 
union of conjunctive queries γ(v) over K=(S, C, A) and any tuple of constants u, it holds that 
A∪S∪C |= γ(u) if and only if A∪S |= γ(u).  

Not surprising, in query answering, constraints are thrown away, if they are satisfied. All 
other reasoning problems look like before, and the existing DL algorithms can be applied to 
solve them. 

 

3. REASONING WITH WSML-DL 

In this section, we take the approach of looking at another practical language for ontology 
reasoning.  We focus on reasoning with the Description Logic-based Ontology language 
WSML-DL. We use WSML-DL as a more intuitive surface syntax for an expressive 
Description Logic (DL) in the WSML family of knowledge representation languages. Its 
syntax is inspired by First-order Logic modelling style. 

WSML-DL is less expressive than OWL DL, given that WSML-DL does not support 
nominals. This reduces the complexity of WSML-DL, which is important for reasoning. In 
fact, until recently many state-of-the-art DL reasoners did not support reasoning with 
nominals, since no good optimization techniques were known.  

To enable the use of existing DL reasoning engines for WSML, we transform WSML-DL 
to OWL DL. This is because OWL DL is the appropriate syntax for DL reasoners as e.g. 
Pellet or KAON2. Then we integrate the reasoners into a flexible WSML reasoner 
framework. 

In the following, we first point out the particularities of DL reasoning. Next we describe 
the WSML-DL syntax and its correspondence to DLs. We show the translation from 
WSML-DL to OWL DL abstract syntax and explain the architecture and implementation of 
the WSML2Reasoner framework. 

3.1 Reasoning with Description Logics 

Description Logics can be seen as particularly restricted subset of Predicate Logic and 
constitute a family of logic-based knowledge representation formalisms. They have become a 
cornerstone of the Semantic Web for its use in the design of ontologies. 

DL knowledge bases are separated into two components: TBoxes, containing the 
terminological knowledge of a knowledge base (e.g. concept definitions), and ABoxes, 
containing the assertional knowledge (knowledge about the individuals of a domain). 

In DLs, there are different basic reasoning tasks for reasoning with TBoxes or ABoxes. As 
described in Baader et al. (2003), the main inference procedures with TBoxes are concept 
subsumption and concept satisfiability. With ABoxes, the main reasoning tasks are ABox 
consistency and instance checking.  

The OWL community focuses on entailment and query answering as the key inference 
services. Entailment can be reduced to satisfiability, while query answering amounts to 
compute the result of a query for instances with specific properties over a database, or an 
ABox respectively.  

Descriptions of the main standard DL reasoning tasks, as well as of some main 
non-standard inference tasks can be found in Baader et al. (2003). 

http://tools.deri.org/wsml2reasoner/DIPFactSheet.html#ReasWSMLDL
http://tools.deri.org/wsml2reasoner/DIPFactSheet.html#ReasWSMLDL


3.2 WSML-DL 

The Web Service Modeling Language WSML (de Bruijn et al., 2005) is a family of formal 
Web languages based on the conceptual model of WSMO (Roman et al., 2004). Conforming 
to different influences, as e.g. Description Logics (Baader et al., 2003), Logic Programming 
(Lloyd, 1987) and First-order Logic (Fitting, 1996), there exist five variants of WSML: 
WSML-Core, WSML-DL, WSML-Flight, WSML-Rule and WSML-Full. 

The WSML-DL variant captures the expressive Description Logic SHIQ(D). The 
following sections will introduce the WSML-DL syntax and its correspondence to 
Description Logics. 

3.2.1 WSML-DL Syntax 

WSML makes a clear distinction between the modelling of conceptual elements 
(Ontologies, Web Services, Goals and Mediators) and the specification of logical definitions. 
Therefore the WSML syntax is split in two parts: the conceptual syntax and the logical 
expression syntax. The following sections will provide an overview of the WSML-DL 
conceptual and the logical expression syntax. A more detailed description can be found in de 
Bruijn et al. (2005). 

3.2.1.1 WSML-DL Conceptual Syntax  
A WSML ontology specification may contain concepts, relations, instances, relation 

instances and axioms. Concepts form the basic terminology of the domain of discourse and 
may have instances and associated attributes. A concept can be defined as subconcept of 
another concept, and in this case, a concept inherits all attribute definitions of its 
superconcept. 

A concept may have an arbitrary number of instances associated to it. The instance 
definition can be followed by the attribute values associated with the instance. Instead of 
being explicitly defined in the ontology, instances can exist outside the ontology in an 
external database. 

There are two sorts of attribute definitions that a concept may contain: inferring 
definitions with the keyword impliesType and constraining definitions with the keyword 
ofType. The constraining definitions may only be used for datatype ranges. Inferring attribute 
definitions are similar to range restrictions on properties in RDFS (Brickley and Guha, 2004) 
and OWL (Bechhofer et al., 2004). 

In WSML-DL only binary relations are allowed. They correspond to the definition of 
attributes. The usage of inferring and constraining definitions in relations corresponds to their 
usage in attribute definitions. A relation can be defined as a subrelation of another relation. 

A relation may contain relation instances with parameter values associated to it.   
Axioms can be used to refine the definitions already given in the conceptual syntax, e.g. 

the subconcept and attribute definitions of concepts. By defining respective axioms one can 
define cardinality restrictions and global transitivity, symmetricity and inversity of attributes, 
just like in DLs or OWL. The logical expression syntax is explained in the following section. 

3.2.1.2 WSML-DL Logical Expression Syntax 
The form of WSML-DL logical expressions and their expressiveness is based on the 

Description Logic SHIQ(D). The WSML-DL logical expression syntax has constants, 
variables, predicates and logical connectives, which all are based on First-order Logic 
modelling style.  

An atom in WSML-DL is a predicate symbol with one or two terms as arguments. WSML 
has a special kind of atoms, called molecules. There are two types of molecules that are used 
to capture information about concepts, instances, attributes and attribute values: “isa 



molecules”, that are used to express concept membership or subconcept definitions, and 
“object molecules”, that are used to define attribute and attribute value expressions. 

These molecules build the set of atomic formulae in WSML-DL. Using First-order 
connectives, one can combine the atomic formulae to descriptions and formulae. How exactly 
the molecules can be combined to build descriptions and formulae, can be seen in detail in de 
Bruijn et al. (2005). 

3.2.2 WSML-DL vs. SHIQ(D) 

Table 1 illustrates the relationship between the WSML-DL semantics, the Description 
Logics syntax and the OWL DL syntax. The table follows de Bruijn et al (2005), Volz (2004) 
and Borgida (1996). 

In the table, “id” can be any identifier, “dt” is a datatype identifier, “X” can be either a 
variable or an identifier and “Y” is a variable. 

Table -1. WSML-DL logical expressions - DL syntax 
WSML-DL DL Syntax OWL DL 
τ(lexpr impliedBy rexpr) rexpr  lexpr ⊆ subClassOf 
τ(lexpr or rexpr) lexpr  rexpr ∪ unionOf 
τ(lexpr and rexpr) lexpr  rexpr ∩ intersectionOf 
τ(neg expr) ¬  expr complementOf 
τ(forall Y expr) . expr R∀ allValuesFrom 
τ(exists Y expr) .R∃ expr someValuesFrom 
τ(X memberOf id) idX :  Type 
τ(id1 subConceptOf id2) 21 idid ⊆  subClassOf 
τ(X1[id hasValue X2]) < X1, X2 > : id Property 
τ(id1[id2 impliesType id3]) 3.21 ididid ∀⊆  subPropertyOf 
τ(id1[id2 ofType dt]) dtidid .21 ∀⊆  subPropertyOf 
τ(p(X1,…,Xn)) < X1,…Xn > : p Type 
τ(X1 :=: X2) 21 XX ≡  equivalentClass 

3.3 Translation of WSML-DL to OWL DL 

The following sections show the translation from WSML-DL to OWL DL abstract syntax 
(Steinmetz, 2006). The mapping is based on a mapping from WSML-Core to OWL DL, 
which can be found in de Bruijn et al. (2005), and can be applied to WSML ontologies and 
logical expressions. 

3.3.1 Transformation Steps 

The transformation of a WSML-DL ontology to an OWL DL ontology is done in a line of 
single transformation steps that are executed subsequently.  

 
• Relations, subrelations and relation instances are replaced by attributes and axioms, 

according to the preprocessing steps described in Steinmetz (2006). 
• All conceptual elements are converted into appropriate axioms specified by logical 

expressions. The resulting set of logical expressions is semantically equivalent to the 
original WSML ontology. 

• Equivalences and right implications in logical expressions are replaced by left 
implications. 

• Conjunctions on the left side and disjunctions on the right side of inverse implications are 
replaced by left implications. 

• Complex molecules inside of logical expressions are replaced by conjunctions of simple 
ones. 

 



As last step, the resulting axioms and logical expressions are transformed one by one into 
OWL Descriptions according to the mapping presented in the following section. 

3.3.2 Mapping Tables 

Table 2 and Table 3 contain the mapping between the WSML-DL syntax and the OWL 
DL abstract syntax. The mapping is described through the mapping function τ. In Table 3 we 
will introduce the functions α and ε, which are needed for the correct translation of 
WSML-DL descriptions. 

Boldfaced words in the tables refer to keywords in the WSML language. “X” and “Y” are 
meta-variables and are replaced with actual identifiers and variables during the translation, 
while “DES” stands for WSML-DL descriptions. IRIs4 are abbreviated by qualified names. 
The prefix ’wsml’ stands for ’http://wsmo. org/wsml/wsml-syntax#’ and ’owl’ stands for 
’http://www.w3.org/2002/07/owl#’. 

Table -2. Mapping WSML-DL ontologies and axioms to OWL DL  
WSML-DL OWL-DL Remarks 
Mapping for ontologies 
τ(ontology id 
    header1
    … 
    headern
    ontology_element1
    … 
    ontology_elementn
) 

Ontology(id 
τ(header1) 
… 
τ(headern) 
τ(ontology_element1) 
… 
τ(ontology_elementn) 
) 

A header can contain 
nonFunctionalProperties, 
usesMediator and 
importsOntology statements. 
An ontology_element can be 
a concept, a relation, an 
instance, a relation instance 
or an axiom. 

τ(nonFunctionalProperties 
    id1 hasValue value1
    … 
    idn hasValue valuen
endNonFunctionalProperties)
  

Annotation(id1 τ(value1)) 
… 
Annotation(idn τ(valuen)) 

For non functional 
properties on the ontology 
level “Annotation” instead 
of “annotation” has to be 
written. 

τ(importsOntology id) Annotation(owl#import id) “id” stands for the identifier 
of a WSML file. 

τ(usesMediator id) Annotation( 
    wsml#usesMediator id)

As OWL doesn’t have the 
concept of a mediator, a 
wsml#usesMediator 
annotation is used. 

τ(datatype_id(x1,…,xn)) datatype_id(x1,…,xn)^^ 
τdatatypes(datatype_id) 

τdatatypes maps WSML 
datatypes to XML Schema 
datatypes, according to de 
Bruijn et al. (2005). 

τ(id) id In WSML an IRI is enclosed 
by _” and “, which are 
omitted in OWL abstract 
syntax. 

Mapping for axioms 
τ(axiom id log_expr nfp) τ(log_expr) A log_expr can be a logical 

expression like the 
following. The axiom does 
not keep its non functional 
properties. 

τ(id[att_id impliesType      
    range_id]) 

Class(id 
    restriction (att_id    
    allValuesFrom 
range_id)) 
ObjectProperty (att_id) 

 

                                                      
4 http://www.ietf.org/rfc/rfc3987.txt 



WSML-DL OWL-DL Remarks 
τ(id[att_id ofType range_id]) Class(id 

    restriction (att_id    
    allValuesFrom 
range_id)) 
DatatypeProperty (att_id) 

 

τ(id1 subConceptOf id2) Class(id1 partial id2)  
τ(id[att_id hasValue value]) Individual (id 

    value (att_id τ(value))) 
 

τ(id1 memberOf id2) Individual(id1 type(id2))  
τ(?x[att_id2 hasValue ?y]  
    impliedBy  
    ?x[att_id hasValue ?y]) 

SubProperty(att_id att_id2) A left implication with 
attribute values as left-hand 
and right-hand sides is 
mapped to an OWL 
subProperty. 

τ(?x[att_id hasValue ?y]  
    impliedBy  
    ?x[att_id hasValue ?z] and  
    ?y[att_id hasValue ?z]) 

ObjectProperty(att_id  
   Transitive) 

Transitive Property 

τ(?x[att_id hasValue ?y]  
    impliedBy  
    ?y[att_id hasValue ?x]) 

ObjectProperty(att_id  
    Symmetric) 

Symmetric Property 

τ(?x[att_id hasValue ?y]  
    impliedBy  
    ?y[att_id2 hasValue ?x]) 

ObjectProperty(att_id    
    inverseOf(att_id2)) 

Inverse Property 

τ(?x memberOf concept_id2  
    impliedBy  
    ?x memberOf concept_id) 

Class(concept_id partial  
    concept_id2) 

Equivalence of concepts can 
be expressed as follows, 
with A and B being 
membership molecules: “A 
equivalent B” :=: “A 
impliedBy B and B 
impliedBy A”. 

τ(?x memberOf concept_id  
    impliedBy  
    ?x[att_id hasValue ?y]) 

ObjectProperty(att_id      
    domain(concept_id)) 

 

τ(?y memberOf concept_id  
    impliedBy  
    ?x[att_id hasValue ?y]) 

ObjectProperty(att_id  
    range(concept_id)) 

 

τ(DES1 impliedBy DES2) α(DES1) 
α(DES2) 
subClassOf(ε(DES2) 
ε(DES1)) 

“A impliedBy B” can be 
written as 
“subClassOf(B,A)”. 

τ()  If τ is applied for a 
non-occurring production no 
translation has to be made 

 
Table 3 shows the mapping of WSML-DL descriptions that are used inside of axioms, as 

can be seen in Table 2. The descriptions are translated to concept expressions and to axioms. 
Concept expressions are again used within other expressions, while the axioms are added as 
such to the OWL ontology. The mapping τ is translated into a tuple of concept expressions 
and axioms as follows: τ (DES) = (ε (DES), α (DES)). 

The table also indicates a mapping for Qualified Cardinality Restrictions (QCRs). In 
WSML-DL the QCRs are represented by a combination of WSML-DL descriptions. The 
mapping to OWL DL is done according a workaround with OWL subproperties, described in 
Rector (2003). 

Table -3. Mapping WSML-DL descriptions to OWL DL 
WSML-DL OWL-DL – concept 

expression ε 
OWL-DL – axiom α Remarks 

Mapping for descriptions (DES) 



WSML-DL OWL-DL – concept 
expression ε 

OWL-DL – axiom α Remarks 

τ(?x memberOf id) id Class(id) Membership 
molecule. 

τ(?x[att_id hasValue  
    ?y]) 

restriction(att_id  
    allValuesFrom( 
    owl:Thing)) 

ObjectProperty(att_id) Attribute value 
molecule with ?y 
being an unbound 
variable within the 
logical expression. 

τ(?x[att_id hasValue  
    ?y] and  
    ?y memberOf 
id) 

restriction (att_id  
    
someValuesFrom( 
    id)) 

Class(id) 
ObjectProperty(att_id) 

Attribute value 
molecule with ?y 
being a bound 
variable. 

τ(DES1 and … and  
    DESn) 

intersectionOf(ε(DES1 

    ),…,ε(DESn)) 
α(DES1) 
… 
α(DESn) 

Conjunction. 

τ(DES1 or … or  
    DESn) 

unionOf(ε(DES1),…,ε 
    (DESn)) 

α(DES1) 
… 
α(DESn) 

Disjunction. 

τ(neg DES) complementOf(ε(DES
    )) 

α(DES) Negation. 

τ(exists ?x (?y[att_id  
    hasValue ?x] 
and      
    DES)) 

restriction(att_id  
    
someValuesFrom( 
    ε(DES))) 

α(DES) 
ObjectProperty(att_id)  

Existential 
quantification. 

τ(exists ?x (?x[att_id  
    hasValue ?y] 
and    
    DES)) 

restriction(inverseOf( 
    att_id)   
    
someValuesFrom( 
    ε(DES))) 

α(DES) 
ObjectProperty(att_id) 

Existential 
quantification with 
inverse role. 

τ(forall ?x (DES  
    impliedBy   
    ?y[att_id 
hasValue  
    ?x])) 

restriction(att_id     
    allValuesFrom( 
    ε(DES))) 

α(DES) 
ObjectProperty(att_id) 

Universal 
quantification. 

τ(forall ?x (DES  
    impliedBy  
    ?x[att_id 
hasValue  
    ?y])) 

restriction(inverseOf( 
    att_id)    
    allValuesFrom( 
    ε(DES))) 

α(DES) 
ObjectProperty(att_id) 

Universal 
quantification with 
inverse role. 

τ(exists ?y1,…,?yn  
    (?x [att_id    
    hasValue ?y1] 
and  
    … and ?x[att_id  
    hasValue ?yn] 
and  
    DES and 
neg(?y1  
    :=: ?y2) and …  
    and neg(?yn-1 
:=:  
    ?yn))) 

restriction(att_id’  
    
minCardinality(n)) 

α(DES) 
ObjectProperty(att_id) 
ObjectProperty(att_id’ 
    range(ε(DES))) 
SubPropertyOf(att_id’  
    att_id) 

(Qualified) 
minCardinality 
restriction. 

τ(forall ?y1,…,?yn+1 
    (?y1 :=: ?y2 or 
…  
    or ?yn :=: ?yn+1 
    impliedBy  
    ?x[att_id 
hasValue  
    ?y1] and … and  
    ?x[att_id 
hasValue  

restriction(att_id’  
    
maxCardinality(n)) 

α(DES) 
ObjectProperty(att_id) 
ObjectProperty(att_id’ 
    range(ε(DES))) 
SubPropertyOf(att_id’  
    att_id) 

(Qualified) 
maxCardinality 
restriction. 



WSML-DL OWL-DL – concept 
expression ε 

OWL-DL – axiom α Remarks 

    ?yn+1] and 
DES) 

 

3.3.3 Restrictions to the Transformation 

The transformation is not complete, i.e. WSML-DL supports features that cannot be 
expressed in OWL DL and that can thus not be translated. Concretely, OWL DL does not 
support datatype predicates. They are lost during the transformation. 

3.3.4 Translation Example 

Table 4 shows two simple translation examples of both WSML-DL conceptual syntax and 
logical expression syntax. More examples can be found in Steinmetz (2006). 

Table -4. Translation Example 
WSML-DL OWL DL 
concept Human 
    hasChild impliesType Human 
    hasBirthday ofType date 
 
 
 
axiom definedBy 
    ?x memberOf Man implies neg(?x 
    memberOf Woman). 

ObjectProperty(hasChild 
    domain(Human)  range(Human)) 
DatatypeProperty(hasBirthday 
    domain(Human) range(xsd:date )) 
Class(Human partial) 
 
Class(Man partial) 
Class(Woman partial) 
SubClassOf(Man complementOf(Woman)) 

3.3.5 Architecture and Implementation 

In the following we will discuss the architecture and the implementation of a reasoner 
prototype that allows us to perform reasoning with WSML-DL ontologies using 
state-of-the-art reasoning engines by means of a wrapper component. 

The WSML2Reasoner framework5 is a flexible and highly modular architecture for easy 
integration of external reasoning components. It has been implemented in Java and is based 
on the WSMO4J6 project, which provides an API for the programmatic access to WSML 
documents. Instead of implementing new reasoners, existing reasoner implementations can be 
used for WSML through a wrapper that translates WSML expressions into the appropriate 
syntax for the reasoner.  

As already said above, the appropriate syntax for many DL Reasoners is OWL DL. We 
have implemented the transformation from WSML-DL to OWL DL using the Wonderweb 
OWL API (Bechhofer et al., 2003). The OWL API allows a programmatic access to OWL 
ontologies. It offers a high-level abstraction from the Description Logics underlying OWL 
DL, what increases the usage of DL knowledge bases in the Semantic Web area. 

The WSML2Reasoner framework infrastructure offers an interface that represents a 
façade to various DL reasoning engines. The façade provides a set of DL usual  reasoning 
task methods and mediates between the OWL DL ontologies produced by the transformation 
and the reasoner-specific internal representations. For each new DL reasoning engine that is 
integrated into the framework, a specific adapter façade has to be implemented. 

The framework currently comes with façades for two OWL DL reasoners: Pellet7 and 
KAON28: 

                                                      
5 http://tools.deri.org/wsml2reasoner/ 
6 http://wsmo4j.sourceforge.net/ 
7 http://pellet.owldl.com/ 



• Pellet – Pellet is an open-source Java based OWL DL reasoner. It can be used directly in 
conjunction with the OWL API. 

• KAON2 – KAON2 is an infrastructure to manage, amongst others, OWL DL ontologies. 
It provides a hybrid reasoner that allows datalog-style rules to interact with structural 
Description Logics knowledge bases. 

4. SEMANTIC BUSINESS PROCESS REPOSITORY 

In the final section of this chapter, we take a look at a practical use of ontological 
reasoning with large instance data.   

4.1 Requirements Analysis 

In general, a repository is a shared database of information about engineered artifacts 
produced or used by an enterprise (Bernstein et al. 1994). In SBPM, these artifacts are 
semantic business process models (process models for short).  

Process models are modeled by business users with help of a process modeling tool. To 
support process modeling, the SBPR has to provide standard functionality of a Database 
Management System, such as storage of new process models, update, retrieval or deletion of 
existing process models, transaction support for manipulation of process models and query 
capability. The query capability enables business users or client applications to search process 
models in the SBPR based on the criteria specified. We classify the queries into two 
categories. The first category of queries can be answered based on the artifacts explicitly 
stored in the SBPR. This kind of queries is of the same kind as the queries that traditional 
database systems can process. The second category of queries is “semantic queries”, which 
can only be processed, when the ontological knowledge of the process models is taken into 
account.  

The modeling of process models can be a time-consuming task. It may take days or even 
months for business users to finish modeling a given business process. Therefore, treating the 
entire modeling activity related to a process model as a single transaction is impractical. The 
SBPR has to provide check-in and check-out operations, that support long running 
interactions, enable disconnected mode of interaction with the SBPR, and are executed as 
separate short transactions. In this case the modeling tool could work in a disconnected mode 
regarding the SBPR. The process model in the SBPR can be locked when the modeling tool 
obtains it (check-out), so that no other users can modify the process model in the SBPR in the 
meantime. After the modeling work has been done the process model is updated in the SBPR 
and any locks that have been held for the process model are released (check-in). Please note 
that the locking mechanism refers only to the locking of the process models in the SBPR. The 
process ontologies, that are stored separately in an ontology store and have been referenced 
by the process models, are not locked simultaneously. Furthermore, in a distributed modeling 
environment several business users may work on the same process model simultaneously. A 
fine-grained locking of elements in a process model enables different business users to lock 
only the part of the process model they are working on, thus avoiding producing inconsistent 
process models.  

Process models may undergo a series of modifications undertaken by business users. The 
series of modification is called change history of the process model. The SBPR represents the 
change history as versions. A version is a snapshot of a process model at a certain point in its 
change history (Bernstein et al. 1994). In certain industry sectors corporations must record all 
the change histories of their process models for government auditing or for some legal 
requirements. From the modeling perspective it is meaningful to keep process models in 

                                                                                                                                                        
8 http://kaon2.semanticweb.org/ 



different versions, so that business users can simply go back to an old version and develop the 
process model from the old version further. Due to these reasons the SBPR has to provide 
also versioning functionality, so that the change history of process models can be 
documented. 

4.2 Comparison of Storage Mechanisms 

As storing and querying process models stored are the main requirements for the SBPR, 
we evaluate in this section several options for storage mechanism and their query capabilities.  

A process model is an instance of a process ontology. Process ontologies which are 
developed in the SUPER project (SUPER, Hepp et al. 2007) include the Business Process 
Modeling Ontology (BPMO); the semantic Business Process Modeling Notation ontology 
(sBPMN), which is an ontological version of Business Process Modeling Notation (BPMN); 
the semantic Event Process Chain ontology (sEPC), which is an ontological version of Event 
Process Chain (EPC) (Keller 1992); the semantic Business Process Execution Language 
ontology (sBPEL), which is a ontological version of Business Process Execution Language 
(BPEL) (Andrews 2003). These ontologies are described using the ontology-formalism Web 
Service Modeling Language (WSML) (de Bruijn et al. 2005). There are 5 variants of WSML: 
WSML-Core, WSML-DL, WSML-Flight, WSML-Rule, and WSML-Full, differing in logical 
expressiveness and underlying language paradigm. The ontologies considered in this paper 
are formalized using WSML-Flight, which is a compromise between the allowed 
expressiveness and the reasoning capability of the ontology language. In the following, we 
assume thus that a process model is an instance of a process ontology, which is specified in 
WSML-Flight. 

For each option we take into account the expressiveness of the query language, the 
scalability of the query processing and the effort for the integration of the query processing 
with the underlying data storage. Scalability is a rather fuzzy term. In general, one would 
understand that in the context of reasoning. Reasoning is used to infer conclusions that are not 
explicitly stated but are required by or consistent with a known set of data (cf. (Passin 2004)). 
A system or a framework is scalable if enlarging the data-set, which is in our context the set 
of actual process models that described using ontologies, leads to a performance loss that is 
tolerable. More formal, one could say that reasoning is scalable if augmenting the input size 
of the problem, which in this case refers to the ontologies plus the instance data of the 
ontologies, leads at most to a polynomial increase of the time in which reasoning can be 
performed. With regards to the reasoning capability we consider two options, namely the 
storage mechanism with or without reasoning capability.  

4.2.1 Option 1: Without Reasoning Capability 

For storage mechanisms without reasoning capability we considered Relational Database 
Management System (RDBMS) and RDF store, which have been widely adopted at the time 
of writing this paper. 

Queries against RDBMS are normally formalized using the Structured Query Language 
(SQL). SQL is quite powerful and bases on both the relational algebra and the tuple relational 
calculus (Siberschatz 2006). However, it has still some limitations. For example, a simple 
query such as: 

Find all supervisors of the employee John Smith 
requires computation of transitive closures on the personnel hierarchies. It is known that 

transitive closure can not be expressed using relational algebra (Libkin 2001,Abiteboul 1995). 
In SQL one can express transitive closures using WITH RECURSIVE to create recursive 
views, which could be very expensive. Furthermore the “supervisor” relationship must be 
stored explicitly in the database system. Because SQL can express queries aim at the 
explicitly stored data, it has no capability to take into account of the implicit data, which can 



be derived from the instances of the ontologies based on the axioms specified there. This is 
not sufficient for the requirements on query processing of the SBPR. 

(de Bruijn 2006) defined a RDF representation of WSML, which allows storing WSML 
data in a RDF store. RDF (RDF 2004) store is a framework providing support for the RDF 
Schema (RDFS 2004) inference and querying, which uses a relational database system as the 
underlying storage for the RDF data. In this section we only consider RDF stores without 
third-party inference engine or reasoner integrated. The inference here refers to the RDFS 
entailments supported by the RDFS semantics. There are already several reference 
implementations of RDF stores like Sesame9. The inference in such RDF stores is normally 
based on the RDF schema, which provides only restricted number of constructs to describe 
the relationships between the resources, as well as these between the properties, such as 
rdfs:subClassOf, rdfs:subPropertyOf. The query processing of RDF stores is based on special 
query languages for RDF data like Simple Protocol and RDF Query Language (SPARQL) or 
Sesame RDF Query Language (SeRQL). Using these query languages one cannot express 
transitivity or transitive closure. Furthermore, these query languages take only into account 
explicitly stored data. The implicit data can be derived by the inference capability. However, 
the inference capability is very limited in RDF stores. 

4.2.2 Option 2: With Reasoning Capability 

Jena 2 (JENA) is another RDF store, which support not only native entailment of RDFS 
semantics but also third-party inference engines or reasoner. The primary use of plug-in such 
inference engine or reasoner is to support the use of languages such as RDFS and OWL 
which allow additional facts to be inferred from instance data and class descriptions. The 
default OWL reasoner in Jena can only perform reasoning on a subset of OWL semantics. To 
provide complete support of OWL DL reasoning one can use external OWL DL reasoner 
such as Pellet10, Racer11 or FaCT12. Jena can handle OWL DL, but there is only a partial 
bi-directional mapping defined between WSML-Core and OWL DL, which is not sufficient to 
fulfill the requirements of SBPR.  

Besides Jena OWLIM (OWLIM 2006) is another implementation, which enables RDF 
store with reasoning capability. OWLIM is a high performance Storage and Inference Layer 
(SAIL) for Sesame, which performs OWL Description Logic Programs (DLP) (Grosof 2003) 
reasoning, based on forward-chaining of entailment rules (Kiryakov 2005). As argued in 
(Kiryakov 2005), OWLIM can query the Knowledge Base (KB) of 10 million statements with 
an upload and storage speed of about 3000 statements per second. In more detail [OWLIM], 
querying is done by materializing the KB, i.e., for every update to the KB, the inference 
closure of the program is computed: all conclusions that can be recursively obtained by 
applying Process Ontology rules, given certain instance data (process models), are computed. 
This approach has the advantage that querying or other reasoning tasks are performed fast 
because the reasoning was done beforehand. Moreover, one could store the inference closure 
in the persistent storage, effectively using optimization methods for storage. The approach 
taken in OWLIM shows that taking into account ontologies does not need to lead to a 
significant performance loss per se. Nonetheless, the approach has some disadvantages. 

OWLIM provides support for a fraction of OWL, close to OWL DLP and OWL-Horst (ter 
Horst 2005), which can be mapped to WSML and vice versa. However, the expressiveness of 
OWL DLP corresponds to WSML-Core. OWL-Horst is more powerful than WSML-Core, but 
it is still not as powerful as WSML-Flight. Therefore, the expressiveness is not adequate. As 
we already discussed, the reasoning in OWLIM takes the forward-chaining approach. 
Forward-chaining means that the reasoner starts from the facts that are already known and 
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infers new knowledge in an inductive fashion. The result of forward-chaining can be stored 
for reuse. This enables efficient query answering, because all facts needed for the query 
processing are already available in the data storage. But in the meanwhile this introduces also 
the expensive time and space consuming operations of data manipulation such as update or 
delete. Newly added or updated data leads to computing the inference closure in the SBPR 
again. Removal of process models is even more problematic, as facts from the inference 
closure that were introduced by this removed process models have also to be removed from 
the SBPR, which could lead to more removal operations. In the worst case this could lead to a 
recalculation of a large part of the inference closure. However, the removal of process models 
from the SBPR seems to be an action that is less common. The OWLIM approach also relies 
heavily on the fact that the semantics of OWL DLP and extensions towards OWL Lite are 
monotonic. The monotonic semantics allows for incremental additions to the Process Library, 
i.e. one can extend the current inference closure with new inferences. In the presence of 
non-monotonism, e.g., negation as failure as for example in WSML-Flight (de Bruijn 2006), 
such an incremental approach no longer works, as adding knowledge may prohibit previously 
made deductions.  

IRIS (Integrated Rule Inference System)13 is an inference engine, which together with the 
WSML2Reasoner framework 14 , supports query answering for WSML-Core and 
WSML-Flight. In essence, it is a Datalog engine extended with stratified negation15. The 
system implements different deductive database algorithms and evaluation techniques. IRIS 
allows different data types to be used in semantic descriptions according the XML Schema 
specification and offers a number of built-in predicates. Functionality for constructing 
complex data types using primitive ones is also provided. 

The translation from a WSML ontology description to Datalog is conducted using the 
WSML2Reasoner component. This framework combines various validation, normalization 
and transformation functionalities which are essential to the translation of WSML ontology 
descriptions to set of predicates and rules. Further on, rules are translated to expressions of 
relational algebra and computed using the set of operations of relational algebra (i.e., union, 
set difference, selection, Cartesian product, projection etc.). The motivation for this 
translation lies in the fact that the relational model is the underlying mathematical model of 
data for Datalog and there are a number of database optimization techniques applicable for 
the relational model. Finally optimized relational expressions serve as an input for computing 
the meaning of recursive Datalog programs. 

The core of the IRIS architecture, see Figure 5, is defined as a layered approach consisting 
of: 

• Knowledgebase API; 
• Invocation API; 
• Storage API. 

The knowledgebase API is a top API layer encapsulating central abstractions of the 
underlying system (e.g., rule, query, atom, tuple, fact, program, knowledge base, context etc.). 
The purpose of this layer is to define the basic concepts of data model used in IRIS as well as 
to define the functionality for the knowledge base and program manipulation. 

The invocation API characterizes a particular evaluation strategy (e.g., bottom-up, 
top-down or mixture of these two strategies) and evaluation methods for a given strategy 
which are used with respect to a particular logic program. 

IRIS implements the following evaluation methods16: 
• Naive evaluation; 

                                                      
13 http://sourceforge.net/projects/iris-reasoner/ 
14 WSML2Reasoner framework: http://tools.deri.org/wsml2reasoner/ 
15 IRIS is continuously being developed and the support for non-stratified negation and unsafe rules is envisioned 

in coming releases. 
16 More evaluation techniques are under development. 



• Semi-naive evaluation; 
• Query-subquery (QSQ) evaluation. 

The storage layer defines the basic API for accessing data and relation indexing. A central 
abstraction in this layer is a relation which contains a set of tuples and serves as an argument 
in each operation of relation algebra. The implementation of IRIS relation is based on 
Collection and SortedSet Java interfaces where red-black binary search trees are utilized for 
indexing. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
Figure 5: IRIS Architecture 

 
Current inference systems exploit reasoner methods developed rather for small knowledge 

bases. Such systems either process data in main memory or use a Relational Database 
Management System (RDBMS) to efficiently access and do relational operations on disk 
persistent relations. Main memory reasoners cannot handle datasets larger than their memory. 
On the other side, systems based on RDBMSs feature great performance improvement 
comparing with main memory systems, but efficient database techniques (e.g., cost-based 
query planning, caching, buffering) they utilize are suited only for EDB relations and not 
fully deployable on derived relations.  

IRIS is designed to meet requirements for large scale reasoning. Apart from the 
state-of-the-art deductive methods, the system utilizes database techniques and extends them 
for implicit knowledge in order to effectively process large datasets. We are building an 
integrated query optimizer. The estimation of the size and evaluation cost of the intentional 
predicates will be based on the adaptive sampling method (Liption 1990, Ruckhaus 2006), 
while the extensional data will be estimated using a graph-based synopses of data sets 
similarly as (Spiegel 2006). Further on, for large scale reasoning (i.e., during the derivation of 
large relations which exceeds main memory), run time memory overflow may occur. 



Therefore in IRIS we are developing novel techniques for a selective pushing of currently 
processed tuples to disk. Such techniques aim to temporarily lessen the burden of main 
memory, and hence to make the entire system capable of handling large relations. 

The comparison shows that a RDBMS with integrated IRIS inference engine is the only 
suitable solution to fulfill the requirements of the SBPR.  

4.3 Overall Architecture 

In this section we present the overall architecture of the SBPR. The BPL has been 
designed in a layered architecture style consisting of 

Semantic Business Process Repository API 
Service Layer 
Persistence Layer 
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Version ManagerLock Manager IRIS Framework

Persistence Layer

Semantic Business Process Repository API

Relational Database 
System
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Figure 6: SBPR Architecture 

Semantic Business Process Repository API  

The Semantic Business Process Repository API provides the programmatic access to the 
SBPR. It includes the API designed after the CRUD pattern, which represents the four basic 
functions of persistent storage, namely create, retrieve, update and delete. Besides the CRUD 
API the SBPR API also provides check-in and check-out functions for long-running process 
modeling. The query API rounds off the SBPR API by providing programmatic access to the 
IRIS Framework for query answering. 

Service Layer 

The Service Layer implements the SBPR API and processing logic of the SBPR. The 
Service Layer contains three modules: Lock Manger, Version Manager and the IRIS 
Framework. The Lock Manager take charge of requests on locking and unlocking for the 
process models in the SBPR. A locking request can only be granted when the process model 
is yet not locked. The Version Manager takes care of the management of the versions of 
process models. To record the modeling history every new process model or changed process 
model is stored as a new version in the SBPR. IRIS Framework takes the responsibility for 
the query processing in SBPR.  



Persistence Layer 

The Persistence Layer manages the data access to the underlying relational database 
system and provides an abstraction for data access operations. It provides persistent solutions 
for persistent objects by adopting Object Relational Mapping (ORM) middleware such as 
Hibernate and Data Access Object (DAO) pattern. 

5. CONCLUSIONS AND DIRECTIONS FOR FURTHER 
RESEARCH 

 
We gave an overall introduction to some well-known ontology repositories, including 

native stores and database based stores, and highlights strengths and limitations of each store. 
It is reported in (Ma et al., 2006) that Minerva achieves good performance in benchmarking 
tests.  We took Minerva as an example to analyze ontology storage in databases in depth, as 
well as to discussed efficient indexes for scaling up ontology repositories. We then discussed 
a scalable reasoning method for handling expressive ontologies, as well as summarized other 
similar approaches. 

We have presented a framework for reasoning with Description Logic based WSML. It 
builds on top of a transformation from WSML-DL to OWL-DL and supports all main DL 
specific reasoning tasks.  We thus linked the work for storing OWL ontologies, to the work 
on WSML-DL, providing the reader with an insight in storing and reasoning with both 
OWL-DL and WSML-DL ontologies. 

As a practical use case of storing ontologies and reasoning with them, we presented 
Semantic Business Process Repository (SBPR) for systemically management of semantic 
business process models. We first analyzed the main requirements on SBPR. After the 
comparison of different approaches for storage mechanisms we concluded that a RDBMS 
with IRIS inference engine integrated is, due to the expressiveness of the query language and 
the reasoning capability, the most suitable solution.  

Currently IRIS is a WSML-Flight reasoner. The system is extensively being developed to 
support reasoning with WSML-Rule (i.e., support for function symbols, unsafe rules and 
non-stratified negation). Further on, IRIS will tightly integrate a permanent storage system 
designed for distributed scalable reasoning. One of our major objectives is the implementation 
of Rule Interchange Format (RIF)17 in IRIS. Implementing RIF, IRIS will be capable of 
handling rules from diverse rule systems and will make WSML rule sets interchangeable with 
rule sets written in other languages that are also supported by RIF. 

Finally, IRIS will implement novel techniques for reasoning with integrating frameworks 
based on classical first-order logic and nonmonotonic logic programming as well as 
techniques for Description Logics reasoning. 
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