
Semantic Business Process Repository

Zhilei Ma1, Branimir Wetzstein1, Darko Anicic2, Stijn Heymans2

1Institute of Architecture of Application Systems (IAAS)
University of Stuttgart, Germany

{firstname.lastname}@iaas.uni-stuttgart.de
2Digital Enterprise Research Institute (DERI)

University of Innsbruck, Austria
{firstname.lastname}@deri.org

Abstract. Semantic Business Process Management (SBPM) utilizes semantic
technologies to achieve more automation throughout the BPM lifecycle. An in-
tegral part of the SBPM infrastructure is a Semantic Business Process Reposi-
tory (SBPR), which is used for storage and management of business process
modeling artifacts. As in SBPM business process models are based on process
ontologies, the SBPR has additional requirements towards support of reasoning
and querying capabilities. In this paper, we first identify the functionalities the
SBPR has to provide. We then evaluate different approaches on how process
models can be stored and queried efficiently by taking the semantic information
into account. Finally, we present the overall architecture for the SBPR.

Keywords: Business Process Management (BPM), Business Process Reposi-
tory, Semantic Business Process Management (SBPM), Ontologies, Reasoning

1 Introduction

The globalization of the economy and the ongoing change of the market situation
challenge corporations to adapt their business processes in an agile manner to satisfy
the emerging requirements on the market and stay competitive against their competi-
tors. Business Process Management (BPM) is the approach to manage the execution
of IT-supported business processes from a business expert’s point of view rather than
from a technical perspective [SF03]. However, currently businesses have still very
incomplete knowledge of and very incomplete and delayed control over their process
spaces. Semantic Business Process Management (SBPM) extends the BPM approach
by adopting semantic web and semantic web service technologies to bridge the gap
between business and IT worlds [HLD+05].

In both BPM and SBPM business processes play a central role. As business proc-
esses manifest the business knowledge and logics of a corporation and normally more
than one person or organization with different expertise and in different geographic
locations are involved in management of business processes, it is necessary to estab-
lish a Business Process Repository (BPR) within the corporation for effective sharing
of valuable business knowledge. Furthermore, business users tend to reuse existing
business process artifacts during process modeling, so that they are able to adapt the

2 Semantic Business Process Repository

business processes in a more agile manner. However, as the number of business proc-
esses increases, it is difficult for them to manage the process models by themselves
and to find the required business process information effectively. A BPR helps busi-
ness users by providing a systematic way to manage and obtain information on busi-
ness processes.

In SBPM business process models are based on process ontologies and make use
of other ontologies, such as organizational ontology or semantic web service ontology
[HR07]. The BPR has to be able to cope with these ontological descriptions when
storing and retrieving process models, and in particular support efficient querying and
reasoning capabilities based on the ontology formalism used. In order to distinguish
from traditional BPR technology, we call this kind of repository a Semantic Business
Process Repository (SBPR).

In this paper, we first analyze the functional requirements on the SBPR. We de-
scribe what kind of functionality the SBPR should offer to its clients, which is primar-
ily a process modeling tool. We then compare different approaches for data storage
and querying based on the ontological descriptions. The comparison is based on the
expressiveness of the query language, the scalability of the query processing and the
effort for the integration of the query processing with the underlying data storage. We
then finally describe the overall architecture of the SBPR.

2 Requirements Analysis

In general, a repository is a shared database of information about engineered artifacts
produced or used by an enterprise [BD94]. In SBPM, these artifacts are semantic
business process models (process models for short).

Process models are modeled by business users with help of a process modeling
tool. To support process modeling, the SBPR has to provide standard functionality of
a Database Management System, such as storage of new process models, update,
retrieval or deletion of existing process models, transaction support for manipulation
of process models and query capability. The query capability enables business users
or client applications to search process models in the SBPR based on the criteria
specified. We classify the queries into two categories. The first category of queries
can be answered based on the artifacts explicitly stored in the SBPR. This kind of
queries is of the same kind as the queries that traditional database systems can proc-
ess. The second category of queries is “semantic queries”, which can only be proc-
essed, when the ontological knowledge of the process models is taken into account.

The modeling of business processes can be a time-consuming task. It may take
days or even months for business users to finish modeling a given business process.
Therefore, treating the entire modeling activity related to a process model as a single
transaction is impractical. The SBPR has to provide check-in and check-out opera-
tions, that support long running interactions, enable disconnected mode of interaction
with the SBPR, and are executed as separate short transactions. In this case the mod-
eling tool works in a disconnected mode regarding the SBPR. The process model in
the SBPR is locked when the modeling tool obtains it (check-out), so that no other
users can modify the process model in the SBPR in the meantime. After the modeling

Semantic Business Process Repository 3

work has been done, the process model is updated in the SBPR and any locks that
have been held for the process model are released (check-in). Please note that the
locking mechanism refers only to the locking of the process models in the SBPR. The
process ontologies, that are stored separately in an ontology store and have been ref-
erenced by the process models, are not locked simultaneously. Furthermore, in a dis-
tributed modeling environment several business users may work on the same process
model simultaneously. A fine-grained locking of elements in a process model enables
different business users to lock only the part of the process model, they are working
on, thus avoiding producing inconsistent process models.

Process models may undergo a series of modifications undertaken by business us-
ers. The series of modification is called change history of the process model. The
SBPR represents the change history as versions. A version is a snapshot of a process
model at a certain point in its change history [BD94]. In certain industry sectors cor-
porations must record all the change histories of their process models for government
auditing or for some legal requirements. From the modeling perspective it is meaning-
ful to keep process models in different versions, so that business users can simply go
back to an old version and develop the process model from the old version further.
Due to these reasons the SBPR has to provide also versioning functionality, so that
the change history of process models can be documented.

3 Comparison of Storage Mechanisms

As storing and querying process models are the main requirements for the SBPR, we
evaluate in this section several options for storage mechanism and their query capa-
bilities.

A process model is an instance of a process ontology. Process ontologies which are
developed in the SUPER project [SUPER, HR07] include the Business Process Mod-
eling Ontology (BPMO); the semantic Business Process Modeling Notation ontology
(sBPMN), which is an ontological version of Business Process Modeling Notation
(BPMN) [BPMN06]; the semantic Event Process Chain ontology (sEPC), which is an
ontological version of Event Process Chain (EPC) [KNS92]; the semantic Business
Process Execution Language ontology (sBPEL), which is a ontological version of
Business Process Execution Language (BPEL) [ACG+05]. These ontologies are de-
scribed using the ontology-formalism Web Service Modeling Language (WSML)
[WSML05]. There are 5 variants of WSML: WSML-Core, WSML-DL, WSML-
Flight, WSML-Rule, and WSML-Full, differing in logical expressiveness and under-
lying language paradigm [WSML05]. The ontologies considered in this paper are
formalized using WSML-Flight, which is a compromise between the allowed expres-
siveness and the reasoning capability of the ontology language. In the following, we
thus assume that a process model is an instance of a process ontology, which is speci-
fied in WSML-Flight.

For each option we take into account the expressiveness of the query language, the
scalability of the query processing and the effort for the integration of the query proc-
essing with the underlying data storage. Scalability is a rather fuzzy term. In the con-
text of SBPR we define it in respect to reasoning scalability. Reasoning is used to

4 Semantic Business Process Repository

infer conclusions that are not explicitly stated but are required by or consistent with a
known set of data (cf. [PT04]). A system or a framework is scalable if enlarging the
data-set, which in our context is the set of actual process models that described using
ontologies, leads to a performance loss that is tolerable. More formally, one could say
that reasoning is scalable if augmenting the input size of the problem, which in this
case refers to the ontologies plus the instance data of the ontologies, leads at most to a
polynomial increase of the time in which reasoning can be performed. With regards to
the reasoning capability we consider two options, namely the storage mechanism with
or without reasoning capability.

3.1 Option 1: Without Reasoning Capability

For storage mechanisms without reasoning capability we considered Relational Data-
base Management System (RDBMS) and RDF store, which have been widely
adopted.

Queries against RDBMS are normally performed using the Structured Query Lan-
guage (SQL). SQL is based on both the relational algebra and the tuple relational
calculus [SKS06]. It is a powerful language, which, however, still has some limita-
tions. For example, a simple query such as:

Find all supervisors of the employee John Smith
requires computation of transitive closures on the personnel hierarchy. It is known
that transitive closure cannot be expressed using relational algebra [LL01, AHV95].
In SQL, one can express transitive closures using WITH RECURSIVE to create recur-
sive views, which in general is a very expensive operation. Furthermore the “supervi-
sor” relationship must be stored explicitly in the database system. As SQL can only
express queries that target explicitly stored data, it has no capability to take into ac-
count implicit data, which can be derived from the instances of the ontologies based
on the axioms specified there. Thus, SQL is not sufficient for the requirements on
query processing of the SBPR.

[BKK06] defined a RDF representation of WSML, which allows storing WSML
data in a RDF store. RDF store is a framework providing support for the RDF Schema
[RDFS04] based inference and querying, which uses a relational database system as
the underlying storage for the RDF data [RDF04]. In this section, we only consider
RDF stores without an integrated third-party inference engine or reasoner. Inference
here refers to the RDFS entailments supported by the RDFS semantics. There are
already several reference implementations of RDF stores like Sesame1. Inference in
such RDF stores is normally based on the RDF schema, which provides only a re-
stricted number of constructs to describe the relationships between resources and
properties, such as rdfs:subClassOf, rdfs:subPropertyOf. The query processing of
RDF stores is based on special query languages for RDF data, such as Simple Proto-
col and RDF Query Language (SPARQL) or Sesame RDF Query Language (SeRQL).
Using these query languages, one cannot express transitivity or transitive closure.
Furthermore, these query languages take only into account explicitly stored data. The

1 http://www.openrdf.org/index.jsp

Semantic Business Process Repository 5

implicit data can be derived by the inference capability. However, the inference capa-
bility is very limited in RDF stores.

3.2 Option 2: With Reasoning Capability

Jena2 2 is another RDF store, which support not only native entailment of RDFS se-
mantics but also third-party inference engines or reasoners. The primary use of a
plugged-in inference engine is to support the use of more expressive languages such
as OWL which allow additional facts to be inferred from instance data and class de-
scriptions [JENA2]. The default OWL reasoner in Jena can only perform reasoning on
a subset of OWL semantics. To provide complete support of OWL DL reasoning one
can use external OWL DL reasoner such as Pellet3, Racer4 or FaCT5. Jena can handle
OWL DL, but there is only a partial bi-directional mapping defined between WSML-
Core and OWL DL, which is not sufficient to fulfill the requirements of SBPR that
requires WSML-Flight.

Besides Jena, OWLIM [OWLIM] is another implementation of a RDF store with
reasoning capability. OWLIM is a high performance Storage and Inference Layer
(SAIL) for Sesame6, which performs OWL Description Logic Programs (DLP)
[GHV+03] reasoning, based on forward-chaining of entailment rules [KOM05]. As
argued in [KOM05], OWLIM can query the Knowledge Base (KB) of 10 million
statements with an upload and storage speed of about 3000 statements per second
[OWLIM]. In more detail, querying is done by materializing the KB, i.e., for every
update to the KB, the inference closure of the program is computed: all conclusions
that can be recursively obtained by applying Process Ontology rules, given certain
instance data (process models), are computed. This approach has the advantage that
querying or other reasoning tasks are performed fast because the reasoning was done
beforehand. Moreover, one could store the inference closure in the persistent storage,
effectively using optimization methods for storage. The approach taken in OWLIM
shows, that taking into account ontologies does not need to lead to a significant per-
formance loss per se. Nonetheless, the approach has some disadvantages.

OWLIM provides support for a fraction of OWL, close to OWL DLP and OWL-
Horst [TH05], which can be mapped to WSML and vice versa. However, the expres-
siveness of OWL DLP corresponds to WSML-Core. OWL-Horst is more powerful
than WSML-Core, but it is still not as powerful as WSML-Flight. Therefore, the ex-
pressiveness is not adequate. As we already discussed, the reasoning in OWLIM takes
the forward-chaining approach. Forward-chaining means that the reasoner starts from
the facts that are already known and infers new knowledge in an inductive fashion.
The result of forward-chaining can be stored for reuse. This enables efficient query
answering, because all facts needed for the query processing are already available in
the data storage. On the other hand, the disadvantage of this approach is that update
and delete operations are very expensive. Newly added or updated data leads to a re-

2 http://jena.sourceforge.net/index.html
3 http://pellet.owldl.com/
4 http://www.racer-systems.com/
5 http://www.cs.man.ac.uk/~horrocks/FaCT/
6 http://www.openrdf.org/index.jsp

6 Semantic Business Process Repository

computing of the inference closure in the SBPR. Removal of process models is even
more problematic, as facts from the inference closure that were introduced by this
removed process models have also to be removed from the SBPR, which could lead to
more removal operations. In the worst case this could lead to a recalculation of a large
part of the inference closure. However, the removal of process models from the SBPR
seems to be an action that is less common. The OWLIM approach also relies heavily
on the fact that the semantics of OWL DLP and extensions towards OWL Lite are
monotonic. The monotonic semantics allows for incremental additions to the SBPR,
i.e. one can extend the current inference closure with new inferences. In the presence
of non-monotonism, e.g., negation as failure as for example in WSML-Flight
[BLP+06], such an incremental approach no longer works, as adding knowledge may
prohibit previously made deductions.

IRIS (Integrated Rule Inference System)7 is an inference engine, which together
with the WSML2Reasoner framework8, supports query answering for WSML-Core
and WSML-Flight. In essence, it is a Datalog engine extended with stratified nega-
tion9. The system implements different deductive database algorithms and evaluation
techniques. IRIS allows different data types to be used in semantic descriptions ac-
cording the XML Schema specification and offers a number of built-in predicates.
Functionality for constructing complex data types using primitive ones is also pro-
vided.

The translation from a WSML ontology description to Datalog is conducted using
the WSML2Reasoner component. This framework combines various validation, nor-
malization and transformation functionalities which are essential to the translation of
WSML ontology descriptions to set of predicates and rules. Further on, rules are
translated to expressions of relational algebra and computed using the set of opera-
tions of relational algebra (i.e., union, set difference, selection, Cartesian product,
projection etc.). The motivation for this translation lies in the fact that the relational
model is the underlying mathematical model of data for Datalog and there are a num-
ber of database optimization techniques applicable for the relational model. Finally
optimized relational expressions serve as an input for computing the meaning of re-
cursive Datalog programs.

The core of the IRIS architecture, see Figure 1, is defined as a layered approach
consisting of:

• Knowledgebase API;
• Invocation API;
• Storage API.

The knowledgebase API is a top API layer encapsulating central abstractions of the
underlying system (e.g., rule, query, atom, tuple, fact, program, knowledge base,
context etc.). The purpose of this layer is to define the basic concepts of data model
used in IRIS as well as to define the functionality for the knowledge base and pro-
gram manipulation.

7 http://sourceforge.net/projects/iris-reasoner/
8 WSML2Reasoner framework: http://tools.deri.org/wsml2reasoner/
9 IRIS is continuously being developed and the support for non-stratified negation and unsafe

rules is envisioned in coming releases.

Semantic Business Process Repository 7

The invocation API characterizes a particular evaluation strategy (e.g., bottom-up,
top-down or mixture of these two strategies) and evaluation methods for a given strat-
egy which are used with respect to a particular logic program.

IRIS implements the following evaluation methods10:
• Naive evaluation;
• Semi-naive evaluation;
• Query-subquery (QSQ) evaluation.

The storage layer defines the basic API for accessing data and relation indexing. A
central abstraction in this layer is a relation which contains a set of tuples and serves
as an argument in each operation of relation algebra. The implementation of IRIS
relation is based on Collection and SortedSet Java interfaces where red-black binary
search trees are utilized for indexing.

Figure 1: IRIS Architecture

Current inference systems exploit reasoner methods developed rather for small

knowledge bases. Such systems either process data in main memory or use a Rela-
tional Database Management System (RDBMS) to efficiently access and do relational
operations on disk persistent relations. Main memory reasoners cannot handle datasets
larger than their memory. On the other side, systems based on RDBMSs feature great
performance improvement comparing with main memory systems, but efficient data-
base techniques (e.g., cost-based query planning, caching, buffering) they utilize are
suited only for EDB relations and not fully deployable on derived relations.

IRIS is designed to meet requirements for large scale reasoning. Apart from the
state-of-the-art deductive methods, the system utilizes database techniques and ex-

10 More evaluation techniques are under development.

8 Semantic Business Process Repository

tends them for implicit knowledge in order to effectively process large datasets. We
are building an integrated query optimizer. The estimation of the size and evaluation
cost of the intentional predicates will be based on the adaptive sampling method
[LN90, RR06], while the extensional data will be estimated using a graph-based syn-
opses of data sets similarly as [SP06]. Further on, for large scale reasoning (i.e., dur-
ing the derivation of large relations which exceeds main memory), run time memory
overflow may occur. Therefore in IRIS we are developing novel techniques for a
selective pushing of currently processed tuples to disk. Such techniques aim to tempo-
rarily lessen the burden of main memory, and hence to make the entire system capable
of handling large relations.

The comparison shows that a RDBMS with integrated IRIS inference engine is the
only suitable solution to fulfill the requirements of the SBPR.

4. Overall Architecture

In this section, we present the overall architecture of the SBPR. The BPL has been
designed in a layered architecture style consisting of

• Semantic Business Process Repository API
• Service Layer
• Persistence Layer

Service Layer
Version ManagerLock Manager IRIS Framework

Persistence Layer

Semantic Business Process Repository API

Relational Database
System

Service Layer
Version ManagerLock Manager IRIS Framework

Persistence Layer

Semantic Business Process Repository API

Relational Database
System

Figure 2: SBPR Architecture

Semantic Business Process Repository API

The Semantic Business Process Repository API provides programmatic access to the
SBPR. It includes an API realizing the CRUD pattern, which represents the four basic
functions of persistent storage, namely create, retrieve, update and delete. Besides the
CRUD API, the SBPR API also provides check-in and check-out operations for long-
running process modeling. The Query API rounds off the SBPR API by providing
programmatic access to the IRIS Framework for query answering.

Semantic Business Process Repository 9

Service Layer

The Service Layer implements the SBPR API and processing logic of the SBPR. The
Service Layer contains three modules: Lock Manger, Version Manager and the IRIS
Framework. The Lock Manager takes charge of requests on locking and unlocking of
the process models in the SBPR. A locking request can only be granted when the
process model is not yet locked. The Version Manager takes care of the management
of the change histories of process models. To record the change history every new
process model or changed process model is stored as a new version in the SBPR. IRIS
Framework takes the responsibility for the query processing in SBPR.

Persistence Layer

The Persistence Layer manages the data access to the underlying relational database
system and provides an abstraction for data access operations. It provides persistent
solutions for persistent objects by adopting Object Relational Mapping (ORM) mid-
dleware such as Hibernate [HIBER] and Data Access Object (DAO11) pattern.

5. Summary and Outlook

In this paper we have presented a Semantic Business Process Repository (SBPR) for
storage and management of semantic business process models in SBPM. We have
first analyzed the main requirements on the SBPR. After the comparison of different
approaches for storage mechanisms, we concluded that an RDBMS with an integrated
IRIS inference engine is the most suitable solution, due to the expressiveness of the
query language and the reasoning capability..

Currently IRIS is a WSML-Flight reasoner. The system is extensively being devel-
oped to support reasoning with WSML-Rule (i.e., support for function symbols, un-
safe rules and non-stratified negation). Further on, IRIS will tightly integrate a per-
manent storage system designed for distributed scalable reasoning. One of our major
objectives is the implementation of Rule Interchange Format (RIF)12 in IRIS. Imple-
menting RIF, IRIS will be capable of handling rules from diverse rule systems and
will make WSML rule sets interchangeable with rule sets written in other languages
that are also supported by RIF.

Finally, IRIS will implement novel techniques for reasoning with integrating
frameworks based on classical first-order logic and non-monotonic logic program-
ming as well as techniques for Description Logics reasoning.

11 http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccess

Object.html
12 Rule Interchange Format-W3C Working Group: http://www.w3.org/2005/rules/

10 Semantic Business Process Repository

Acknowledgements

We would like to thank Marin Dimitrov, Graham Hench, Monika Kaczmarek, Dr.
Dimka Karastoyanova, Mihail Konstantinov, Tammo van Lessen, Prof. Dr. Frank
Leymann, Jörg Nitzsche, Jussi Vanhatalo, Karol Wieloch, Paweł Żebrowski and all
other colleagues from the SUPER project for valuable discussions. This work has in
part been funded through the European Union's 6th Framework Program, within In-
formation Society Technologies (IST) priority under the SUPER project (FP6-
026850, http://www.ip-super.org).

References13

[ACG+05] Andrews, Tony; Curbera, Francisco; Dholakia, Hitesh; et al.: Business
Process Execution Language for Web Services Version 1.1. 5 May 2003

[AHV95] Abiteboul, Serge; Hull, Richard; Vianu, Victor: Foundations of Databases.
Addison-Wesley, 1995

[BD94] Bernstein, Philip A.; Dayal, Umeshwar: An Overview of Repository Tech-
nology. In VLDB 1994.

[BKK06] Bruijn, Jos de; Kopecký, Jacek; Krummenacher, Reto: RDF Representation
of WSML. 20 December 2006

[BLP+06] Bruijn, Jos de; Lausen, Holger; Polleres, Axel; Fensel, Dieter: The web
service modeling language: An overview. In Proceedings of the 3rd Euro-
pean Semantic Web Conference (ESWC2006), number 4011 in Lecture
Notes in Computer Science, pages 590–604, Budva, Montenegro, June
2006. Springer-Verlag.

[BPMN06] Business Process Modeling Notation Specification. OMG Final Adopted
Specification, February 6, 2006

[GHV+03] Grosof, Benjamin N.; Horrocks, Ian; Volz, Raphael; Decker, Stefan: De-
scription Logic Programs: Combining Logic Programs with Description
Logic. In Proc. of WWW 2003, pages 48–57, 2003

[HIBER] Hibernate Reference Documentation. Version: 3.2.0.ga
[HLD+05] Hepp, Martin; Leymann, Frank; Domingue, John; Wahler, Alexander;

Fensel, Dieter: Semantic Business Process Management: A Vision Towards
Using Semantic Web Services for Business Process Management. Proceed-
ings of the IEEE ICEBE 2005, October 18-20, Beijing, China, pp. 535-540

[HR07] Hepp, Martin; Roman, Dumitru: An Ontology Framework for Semantic
Business Process Management, Proceedings of Wirtschaftsinformatik 2007,
February 28 - March 2, 2007, Karlsruhe (forthcoming).

[KNS92] Keller, G.; Nüttgens, M.; Scheer, A.-W.: Semantische Prozeßmodellierung
auf der Grundlage „Ereignisgesteuerter Prozeßketten (EPK)", in: Scheer,
A.-W. (Hrsg.): Veröffentlichungen des Instituts für Wirtschaftsinformatik,
Heft 89, Saarbrücken 1992.

[KOM05] Kiryakov, Atanas; Ognyanov, Damyan; Manov, Dimitar: OWLIM – a
Pragmatic Semantic Repository for OWL. In Proc. of Int. Workshop on
Scalable Semantic Web Knowledge Base Systems (SSWS 2005), WISE
2005, 20 Nov, New York City, USA.

13 All hyperlinks used in this paper are followed at April 10, 2007.

Semantic Business Process Repository 11

[LL01] Libkin, Leonid: Expressive Power of SQL. The 8th International Confer-
ence on Database Theory. London, United Kingdom, 2001

[LN90] Lipton, Richard and Naughton, Jeffrey. Query size estimation by adaptive
sampling (extended abstract). In PODS ’90: Proceedings of the ninth ACM
SIGACTSIGMOD-SIGART symposium on Principles of database systems,
pages 40–46, New York, NY, USA, 1990. ACM Press.

[OWLIM] OWLIM – OWL semantics repository. 2006.
http://www.ontotext.com/owlim/

[PT04] Passin, Thomas B.: Explorer’s Guide to the Semantic Web. Manning, 2004.
[RDF04] RDF Primer, W3C Recommendation 10 February 2004.

http://www.w3.org/TR/rdf-primer
[RDFS04] RDF Vocabulary Description Language 1.0: RDF Schema. W3C Recom-

mendation 10 February 2004
[RR06] Ruckhaus, Edna and Ruiz, Eduardo. Query evaluation and optimization in

the semantic web. In Proceedings of the ICLP’06 Workshop on Applica-
tions of Logic Programming in the Semantic Web and Semantic Web Ser-
vices (ALPSWS2006), Washington, USA, August 16 2006.

[SF03] Smith, Howard; Fingar, Peter: Business Process Management. The Third
Wave. Meghan-Kiffer,US 2003.

[SKS06] Siberschatz, Abraham; Korth, Henry F.; Sudarshan, S.: Database System
Concepts. Fifth Edition, McGraw-Hill, 2006.

[SP06] Joshua Spiegel and Neoklis Polyzotis. Graph-based synopses for relational
selectivity estimation. In SIGMOD ’06: Proceedings of the 2006 ACM
SIGMOD international conference on Management of data, pages 205–216,
New York, NY, USA, 2006. ACM Press.

[SUPER] The European Integrated Project – Semantics Utilised for Process Manage-
ment within and between Enterprises.
http://www.ip-super.org/

[TH05] ter Horst, Herman J.: Combining RDF and Part of OWL with Rules: Se-
mantics, Decidability, Complexity. In Proc. of ISWC 2005, Galway, Ire-
land, November 6-10, 2005. LNCS 3729, pp. 668-684.

[WSML05] Bruijn, Jos de; Lausen, Holger; Krummenacher, Reto; Polleres, Axel; Pre-
doiu, Livia; Kifer, Michael; Fensel, Dieter: The Web Service Modeling
Language WSML. 5 October 2005.
http://www.w3.org/TR/rdf-schema/

