Evaluating QBF Solvers: Quantifier Alternations Matter

Florian Lonsing and Uwe Egly

Research Division of Knowledge Based Systems
Institute of Logic and Computation, TU Wien, Vienna, Austria
http://www.kr.tuwien.ac.at/staff/lonsing/

24th International Conference on Principles and Practice of Constraint Programming (CP), August 27-31, Lille, France

This work is supported by the Austrian Science Fund (FWF) under grant S11409-N23.
Quantified Boolean Formulas (QBF):
- Existential (∃) / universal (∀) quantification of propositional variables.
- Checking QBF satisfiability: PSPACE-complete.
- QBF encodings: potentially more succinct than propositional logic.

Progress in QBF Reasoning:
- Theory: proof systems (foundations of solver implementations).
- Practice: solving, preprocessing.

Example
Syntax:
- QBF $\psi := \Pi \phi$ in prenex conjunctive normal form (PCNF).
- $\psi = \forall u \exists x. (\overline{u} \lor x) \land (u \lor \overline{x})$.

quantifier prefix propositional CNF

Example

Syntax:

- QBF $\psi := \hat{Q}.\phi$ in *prenex conjunctive normal form (PCNF)*.
- $\psi = \forall u \exists x. \left(\overline{u} \lor x \right) \land \left(u \lor \overline{x} \right)$.

 quantifier prefix
 propositional CNF

Semantics (recursive):

- Assign variables in prefix ordering, recurse on simplified formula $\psi[A]$ under current assignment A.
- **Base cases:** \bot is unsatisfiable, \top is satisfiable.
- $\forall u.\psi$ is satisfiable iff $\psi[u/\bot]$ and $\psi[u/\top]$ are satisfiable.
- $\exists x.\psi$ is satisfiable iff $\psi[x/\bot]$ or $\psi[x/\top]$ is satisfiable.

PCNF ψ above is satisfiable:

- $\psi[u/\bot] = \exists x. (\overline{x})$ is satisfiable by setting x to \bot.
- $\psi[u/\top] = \exists x. (x)$ is satisfiable by setting x to \top.
Example

Syntax:

- QBF $\psi := \hat{Q}.\phi$ in *prenex conjunctive normal form (PCNF)*.
- $\psi = \forall u \exists x. (\bar{u} \lor x) \land (u \lor \bar{x})$.

Semantics (recursive):

- Assign variables in prefix ordering, recurse on simplified formula $\psi[A]$ under current assignment A.
- Base cases: \bot is unsatisfiable, \top is satisfiable.
- $\forall u.\psi$ is satisfiable iff $\psi[u/\bot]$ and $\psi[u/\top]$ are satisfiable.
- $\exists x.\psi$ is satisfiable iff $\psi[x/\bot]$ or $\psi[x/\top]$ is satisfiable.

PCNF ψ above is satisfiable:

- $\psi[u/\bot] = \exists x. (\bar{x})$ is satisfiable by setting x to \bot.
- $\psi[u/\top] = \exists x. (x)$ is satisfiable by setting x to \top.
Quantifier Alternations in PCNFs:
- A PCNF $Q_1B_1Q_2B_2\ldots Q_nB_n$. ϕ has $n \geq 1$ quantifier blocks Q_iB_i.
- Q_iB_i: sets B_i of variables, quantifiers $Q_i \in \{\forall, \exists\}$ with $Q_i \neq Q_{i+1}$.
- A PCNFs with n quantifier blocks has $n - 1$ quantifier alternations.

Polynomial Hierarchy (PH): cf. [MS72, Sto76, Wra76]
- Framework to describe the complexity of problems beyond NP.
- Satisfiability problem of a given PCNF is located in PH.

Proposition (cf. [BB09, MS72, Sto76, Wra76])
- Let $\psi := Q_1B_1\ldots Q_nB_n$. ϕ be a PCNF with $k \geq 0$ alternations.
- $Q_1 = \exists$: satisfiability problem of ψ is Σ_{k+1}^P-complete.
- $Q_1 = \forall$: satisfiability problem of ψ is Π_{k+1}^P-complete.
Introduction (4)

<table>
<thead>
<tr>
<th>Class</th>
<th>Prefix Pattern</th>
<th>Problems (e.g.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Sigma_1^P = NP$</td>
<td>$\exists B_1.\phi$</td>
<td>Checking prop. logic satisfiability</td>
</tr>
<tr>
<td>$\Pi_1^P = co-NP$</td>
<td>$\forall B_1.\phi$</td>
<td>Checking prop. logic validity</td>
</tr>
<tr>
<td>Σ_2^P</td>
<td>$\exists B_1 \forall B_2.\phi$</td>
<td>MUS membership testing [JS11, Lib05], encodings of conformant planning [Rin07], ASP-related problems [FR05], abstract argumentation [CDG+15]</td>
</tr>
<tr>
<td>Π_2^P</td>
<td>$\forall B_1 \exists B_2.\phi$</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSPACE</td>
<td>$Q_1 B_1 \ldots Q_n B_n.\phi$</td>
<td>LTL model checking [SC85], NFA language inclusion, games [Sch78] (n depending on problem instance)</td>
</tr>
</tbody>
</table>
Introduction (5): Solving Paradigms

1. **Expansion** [AB02, Bie04]:
 - RAReQS [JKMSC16], Ijtihad [BBSH+18], Rev-Qfun [Jan18],
 - DynQBF [CW17].

2. **QDPLL (backtracking search)** [CGS98]:
 - GhostQ [JKMSC16, KSGC10].

3. **Nested SAT solving**:
 - QSTS [BJT16a, BJT16b].

4. **Clause selection and clausal abstraction**:
 - QESTO [JM15b], CAQE [RT15, Ten17].

5. **Backtracking search with learning (QCDCL)** [GNT06, Let02, ZM02b]:
 - DepQBF [LE17], Qute [PSS17].

6. **Hybrid approach (expansion, QCDCL)**:
 - Heretic [BBSH+18] (applies Ijtihad and DepQBF).

Theory of (orthogonal) proof systems, e.g.: [BCJ15, JM15a, Ten17].
Progress in QBF Solving — Problems:

- Largely driven by empirical evaluation.
- Practically relevant problems: QBF encodings on low levels in PH.
- Risk of convergence of research to few alternations, cf. [Hoo95].
- Solver rankings by solved instances might not reflect diversity and strength of available paradigms.
Outline and Contributions

Our Contributions:

- Study impact of quantifier alternations on solver performance.
- Performance of paradigms varies wrt. alternations.
- More fine-grained analysis: highlighting diversity of paradigms.
- Motivation for combining orthogonal paradigms (proof complexity).

⇒ Improve QBF solving for encodings at higher levels up to PSPACE.
Example

\[\psi = \exists x \forall u \exists y. (\bar{x} \vee y) \land (x \vee \bar{y}) \land (\bar{u} \vee y) \land (u \vee \bar{y}) \]

- **Expand** \(u \): copy CNF and replace \(y \) by fresh \(y_d \) in copy of CNF.
- **Expand** \(\forall \): replace all universal variables by Shannon expansion [Sha49].

 Replace \(\hat{Q}\forall x. \phi \) by \(\hat{Q}.(\phi[x/\bot] \land \phi[x/\top]) \).

Expansion of \(\forall \)-Variables: cf. [AB02, Bie04]

- Idea: eliminate all universal variables by Shannon expansion [Sha49].
- Replace \(\hat{Q}\forall x. \phi \) by \(\hat{Q}.(\phi[x/\bot] \land \phi[x/\top]) \).
- Duplicate existential variables inner to \(x \) [Bie04, BK07].
- Finally, apply SAT solving to propositional formula.
- Modern: counter example guided abstraction refinement (CEGAR).
Solving Paradigm (2/2): Q-Resolution Calculus

Definition (Q-Resolution Rule)

\[
\frac{C_1 \cup \{p\} \quad C_2 \cup \{\bar{p}\}}{\text{for all } x \in \hat{Q}: \{x, \bar{x}\} \not\subset (C_1 \cup C_2), \quad \bar{p} \not\in C_1, \quad p \not\in C_2, \text{ and } q(p) = \exists}
\]

Example

\[
\psi = \exists x \forall u \exists y. (x) \land (\bar{x} \lor u \lor y) \land (\bar{x} \lor u \lor \bar{y})
\]

- Traditional Q-resolution [BKF95].
- Must resolve on \(\exists\) pivots (cf. variant [VG12]).
- Cf. stronger variants [ZM02a, BJ12].

- PCNF \(\psi\) is unsatisfiable iff empty clause \(\emptyset\) can be derived.
- Resolution-based QBF solvers: inspired by conflict-driven clause learning (CDCL) and DPLL algorithm for SAT solving.
Solving Paradigm (2/2): Q-Resolution Calculus

Definition (Reduction Rule)

\[
\begin{align*}
C \cup \{l\} & \quad \text{for all } x \in \hat{Q}: \{x, \bar{x}\} \not\subseteq (C \cup \{l\}), \; q(l) = \forall, \text{ and} \\
& \quad l' < l \text{ for all } l' \in C \text{ with } q(l') = \exists \\
\end{align*}
\]

Example

\[
\psi = \exists x \forall u \exists y. (x) \land (\bar{x} \lor u \lor y) \land (\bar{x} \lor u \lor \bar{y})
\]

- Reduction removes “trailing” \(\forall\)-literals.
- Local rule, applied to individual clauses.

- PCNF \(\psi\) is unsatisfiable iff empty clause \(\emptyset\) can be derived.
- Resolution-based QBF solvers: inspired by conflict-driven clause learning (CDCL) and DPLL algorithm for SAT solving.
Experiments (1)

Benchmark Set and Solvers:

- QBFEVAL’17: 523 prenex CNF instances, 1800 CPU sec., 7 GB mem.
- Focus: instances not solved in preprocessing by HQSpre [WRMB17].
- Top-ranked solvers, based on orthogonal paradigms / proof systems.

Goals of Experimental Evaluation:

- Typical solver rankings: by total number of solved instances.
- Theory: numbers of alternations \approx levels in polynomial hierarchy.
- Performance analysis wrt. instances and their numbers of alternations.
- How do different solving paradigms perform wrt. alternations?
- Is there a single best approach that dominates all the others?
Experiments (2): Alternation Bias

Table: Histograms of the benchmark sets illustrating the numbers of formulas (#f) in classes given by the number of qblocks (#q).

<table>
<thead>
<tr>
<th>#q</th>
<th>#f</th>
<th>#q</th>
<th>#f</th>
<th>#q</th>
<th>#f</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>90</td>
<td>2</td>
<td>70</td>
<td>2</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>236</td>
<td>3</td>
<td>145</td>
<td>3</td>
<td>145</td>
</tr>
<tr>
<td>4–10</td>
<td>70</td>
<td>4–10</td>
<td>26</td>
<td>4–10</td>
<td>26</td>
</tr>
<tr>
<td>11–20</td>
<td>42</td>
<td>11–20</td>
<td>30</td>
<td>11–20</td>
<td>30</td>
</tr>
<tr>
<td>21–</td>
<td>85</td>
<td>21–</td>
<td>41</td>
<td>21–</td>
<td>41</td>
</tr>
<tr>
<td>2–3</td>
<td>326</td>
<td>2–3</td>
<td>215</td>
<td>2–3</td>
<td>215</td>
</tr>
<tr>
<td>4–</td>
<td>197</td>
<td>4–</td>
<td>97</td>
<td>4–</td>
<td>97</td>
</tr>
</tbody>
</table>

(a) 523 original benchmarks.
(b) 312 benchmarks filtered by HQSpree.
(c) 312 benchmarks preprocessed by HQSpree.
Table: Solvers and corresponding paradigms (P), solved instances (S), unsatisfiable (\perp) and satisfiable ones (\top), and uniquely solved instances.

<table>
<thead>
<tr>
<th>Solver</th>
<th>P</th>
<th>S</th>
<th>\perp</th>
<th>\top</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>GhostQ</td>
<td>2</td>
<td>112</td>
<td>61</td>
<td>51</td>
<td>15</td>
</tr>
<tr>
<td>Rev-Qfun</td>
<td>1</td>
<td>110</td>
<td>58</td>
<td>52</td>
<td>6</td>
</tr>
<tr>
<td>CAQE</td>
<td>4</td>
<td>68</td>
<td>42</td>
<td>26</td>
<td>6</td>
</tr>
<tr>
<td>DepQBF</td>
<td>5</td>
<td>64</td>
<td>41</td>
<td>23</td>
<td>4</td>
</tr>
<tr>
<td>QSTS</td>
<td>3</td>
<td>56</td>
<td>34</td>
<td>22</td>
<td>3</td>
</tr>
<tr>
<td>RAReQS</td>
<td>1</td>
<td>50</td>
<td>34</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Heretic</td>
<td>6</td>
<td>49</td>
<td>34</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Qute</td>
<td>5</td>
<td>47</td>
<td>25</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>DynQBF</td>
<td>1</td>
<td>46</td>
<td>24</td>
<td>22</td>
<td>9</td>
</tr>
<tr>
<td>QESTO</td>
<td>4</td>
<td>45</td>
<td>30</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Ijtihad</td>
<td>1</td>
<td>36</td>
<td>27</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

(a) Filtered instances.

<table>
<thead>
<tr>
<th>Solver</th>
<th>P</th>
<th>S</th>
<th>\perp</th>
<th>\top</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAQE</td>
<td>4</td>
<td>114</td>
<td>65</td>
<td>49</td>
<td>6</td>
</tr>
<tr>
<td>RAReQS</td>
<td>1</td>
<td>103</td>
<td>63</td>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td>QESTO</td>
<td>4</td>
<td>97</td>
<td>63</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>Rev-Qfun</td>
<td>1</td>
<td>90</td>
<td>57</td>
<td>33</td>
<td>6</td>
</tr>
<tr>
<td>Heretic</td>
<td>6</td>
<td>87</td>
<td>55</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>QSTS</td>
<td>3</td>
<td>72</td>
<td>46</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>DepQBF</td>
<td>5</td>
<td>72</td>
<td>44</td>
<td>28</td>
<td>5</td>
</tr>
<tr>
<td>Qute</td>
<td>5</td>
<td>70</td>
<td>42</td>
<td>28</td>
<td>2</td>
</tr>
<tr>
<td>Ijtihad</td>
<td>1</td>
<td>58</td>
<td>43</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>GhostQ</td>
<td>2</td>
<td>58</td>
<td>33</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>DynQBF</td>
<td>1</td>
<td>45</td>
<td>24</td>
<td>21</td>
<td>17</td>
</tr>
</tbody>
</table>

(b) Preprocessed instances.
Table: Instances solved in classes by numbers of qblocks (\#q) and numbers of formulas in each class (\#f). Only class winners (bold face) are shown, paradigms (P:) are indicated in the first row.

(a) Filtered instances.

(b) Preprocessed instances.
Experiments (5): Class-Based Analysis — Paradigms

Table: Instances solved by solving paradigms 1 to 6 in classes by numbers of qblocks (#q).

<table>
<thead>
<tr>
<th>#q</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>28</td>
<td>36</td>
<td>9</td>
<td>6</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>85</td>
<td>62</td>
<td>27</td>
<td>36</td>
<td>40</td>
<td>23</td>
</tr>
<tr>
<td>4–10</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>11–20</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>21–</td>
<td>15</td>
<td>8</td>
<td>12</td>
<td>15</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>2–3</td>
<td>113</td>
<td>98</td>
<td>36</td>
<td>42</td>
<td>48</td>
<td>25</td>
</tr>
<tr>
<td>4–</td>
<td>32</td>
<td>14</td>
<td>20</td>
<td>32</td>
<td>35</td>
<td>24</td>
</tr>
<tr>
<td>2–</td>
<td>145</td>
<td>112</td>
<td>56</td>
<td>74</td>
<td>83</td>
<td>49</td>
</tr>
</tbody>
</table>

(a) Filtered instances.

<table>
<thead>
<tr>
<th>#q</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>37</td>
<td>7</td>
<td>17</td>
<td>18</td>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>78</td>
<td>40</td>
<td>35</td>
<td>71</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>4–10</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>13</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>11–20</td>
<td>17</td>
<td>6</td>
<td>13</td>
<td>15</td>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td>21–</td>
<td>8</td>
<td>4</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>2–3</td>
<td>115</td>
<td>47</td>
<td>52</td>
<td>89</td>
<td>61</td>
<td>57</td>
</tr>
<tr>
<td>4–</td>
<td>35</td>
<td>11</td>
<td>20</td>
<td>38</td>
<td>36</td>
<td>30</td>
</tr>
<tr>
<td>2–</td>
<td>150</td>
<td>58</td>
<td>72</td>
<td>127</td>
<td>97</td>
<td>87</td>
</tr>
</tbody>
</table>

(b) Preprocessed instances.
Table: Instances solved by the virtual best solver (VBS) in classes by number of qblocks (#q), number of formulas (#f) in each class, and relative contribution (%) of each solver to instances solved by the VBS.

<table>
<thead>
<tr>
<th>#q</th>
<th>#f</th>
<th>VBS</th>
<th>GhostQ</th>
<th>Rev-Qfun</th>
<th>CAQE</th>
<th>DepQBF</th>
<th>QSTS</th>
<th>RAReQS</th>
<th>Heretic</th>
<th>Qute</th>
<th>DynQBF</th>
<th>QESTO</th>
<th>Ijtihad</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>70</td>
<td>46</td>
<td>41.3</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>30.4</td>
<td>2.1</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>145</td>
<td>89</td>
<td>12.3</td>
<td>33.7</td>
<td>2.2</td>
<td>2.2</td>
<td>15.7</td>
<td>22.4</td>
<td>0.0</td>
<td>3.3</td>
<td>2.2</td>
<td>4.4</td>
<td>1.1</td>
</tr>
<tr>
<td>4–10</td>
<td>26</td>
<td>19</td>
<td>5.2</td>
<td>0.0</td>
<td>26.3</td>
<td>26.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>15.7</td>
<td>10.5</td>
<td>10.5</td>
<td>5.2</td>
</tr>
<tr>
<td>11–20</td>
<td>30</td>
<td>18</td>
<td>0.0</td>
<td>0.0</td>
<td>11.1</td>
<td>50.0</td>
<td>27.7</td>
<td>5.5</td>
<td>0.0</td>
<td>0.0</td>
<td>5.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>21–</td>
<td>41</td>
<td>21</td>
<td>4.7</td>
<td>14.2</td>
<td>19.0</td>
<td>9.5</td>
<td>28.5</td>
<td>14.2</td>
<td>0.0</td>
<td>0.0</td>
<td>9.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2–3</td>
<td>215</td>
<td>135</td>
<td>22.2</td>
<td>24.4</td>
<td>3.7</td>
<td>3.7</td>
<td>12.5</td>
<td>14.8</td>
<td>0.0</td>
<td>2.2</td>
<td>11.8</td>
<td>3.7</td>
<td>0.7</td>
</tr>
<tr>
<td>4–</td>
<td>97</td>
<td>58</td>
<td>3.4</td>
<td>5.1</td>
<td>18.9</td>
<td>27.5</td>
<td>18.9</td>
<td>6.8</td>
<td>0.0</td>
<td>5.1</td>
<td>8.6</td>
<td>3.4</td>
<td>1.7</td>
</tr>
<tr>
<td>2–</td>
<td>312</td>
<td>193</td>
<td>16.5</td>
<td>18.6</td>
<td>8.2</td>
<td>10.8</td>
<td>14.5</td>
<td>12.4</td>
<td>0.0</td>
<td>3.1</td>
<td>10.8</td>
<td>3.6</td>
<td>1.0</td>
</tr>
</tbody>
</table>

(a) Filtered instances.
Experiments (6): Class-Based VBS Analysis — Solvers

Table: Instances solved by the virtual best solver (VBS) in classes by number of qblocks (#q), number of formulas (#f) in each class, and relative contribution (%) of each solver to instances solved by the VBS.

<table>
<thead>
<tr>
<th>#q</th>
<th>#f</th>
<th>VBS</th>
<th>CAQE</th>
<th>RAReqS</th>
<th>QESTO</th>
<th>Rev-Qfun</th>
<th>Heretic</th>
<th>QSTS</th>
<th>DepQBF</th>
<th>Qute</th>
<th>Jtihad</th>
<th>GhostQ</th>
<th>DynQBF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>70</td>
<td>40</td>
<td>7.5</td>
<td>17.5</td>
<td>2.5</td>
<td>7.5</td>
<td>2.5</td>
<td>10.0</td>
<td>10.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.5</td>
<td>40.0</td>
</tr>
<tr>
<td>3</td>
<td>145</td>
<td>87</td>
<td>9.1</td>
<td>40.2</td>
<td>8.0</td>
<td>12.6</td>
<td>1.1</td>
<td>6.8</td>
<td>0.0</td>
<td>8.0</td>
<td>3.4</td>
<td>4.5</td>
<td>5.7</td>
</tr>
<tr>
<td>4–10</td>
<td>26</td>
<td>20</td>
<td>25.0</td>
<td>10.0</td>
<td>15.0</td>
<td>5.0</td>
<td>0.0</td>
<td>25.0</td>
<td>5.0</td>
<td>5.0</td>
<td>0.0</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>11–20</td>
<td>40</td>
<td>26</td>
<td>3.8</td>
<td>19.2</td>
<td>7.6</td>
<td>0.0</td>
<td>7.6</td>
<td>26.9</td>
<td>30.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.8</td>
</tr>
<tr>
<td>21–</td>
<td>31</td>
<td>11</td>
<td>9.0</td>
<td>27.2</td>
<td>9.0</td>
<td>9.0</td>
<td>0.0</td>
<td>27.2</td>
<td>9.0</td>
<td>9.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>2–3</td>
<td>215</td>
<td>127</td>
<td>8.6</td>
<td>33.0</td>
<td>6.2</td>
<td>11.0</td>
<td>1.5</td>
<td>7.8</td>
<td>3.1</td>
<td>5.5</td>
<td>2.3</td>
<td>3.9</td>
<td>16.5</td>
</tr>
<tr>
<td>4</td>
<td>97</td>
<td>57</td>
<td>12.2</td>
<td>17.5</td>
<td>10.5</td>
<td>3.5</td>
<td>3.5</td>
<td>17.5</td>
<td>24.5</td>
<td>3.5</td>
<td>1.7</td>
<td>0.0</td>
<td>5.2</td>
</tr>
<tr>
<td>2–</td>
<td>312</td>
<td>184</td>
<td>9.7</td>
<td>28.2</td>
<td>7.6</td>
<td>8.6</td>
<td>2.1</td>
<td>10.8</td>
<td>9.7</td>
<td>4.8</td>
<td>2.1</td>
<td>2.7</td>
<td>13.0</td>
</tr>
</tbody>
</table>

(a) Preprocessed instances.
Table: Instances solved by the virtual best solver (VBS) in classes by number of qblocks (#q), number of formulas (#f) in each class, and relative contribution (%) of solving paradigms to instances solved by the VBS.

<table>
<thead>
<tr>
<th>#q</th>
<th>#f</th>
<th>VBS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>70</td>
<td>46</td>
<td>36.9</td>
<td>41.3</td>
<td>6.5</td>
<td>8.6</td>
<td>6.5</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>145</td>
<td>89</td>
<td>59.5</td>
<td>12.3</td>
<td>15.7</td>
<td>6.7</td>
<td>5.6</td>
<td>0.0</td>
</tr>
<tr>
<td>4–10</td>
<td>26</td>
<td>19</td>
<td>15.7</td>
<td>5.2</td>
<td>0.0</td>
<td>36.8</td>
<td>42.1</td>
<td>0.0</td>
</tr>
<tr>
<td>11–20</td>
<td>30</td>
<td>18</td>
<td>11.1</td>
<td>0.0</td>
<td>27.7</td>
<td>11.1</td>
<td>50.0</td>
<td>0.0</td>
</tr>
<tr>
<td>21–</td>
<td>41</td>
<td>21</td>
<td>38.0</td>
<td>4.7</td>
<td>28.5</td>
<td>19.0</td>
<td>9.5</td>
<td>0.0</td>
</tr>
<tr>
<td>2–3</td>
<td>215</td>
<td>135</td>
<td>51.8</td>
<td>22.2</td>
<td>12.5</td>
<td>7.4</td>
<td>5.9</td>
<td>0.0</td>
</tr>
<tr>
<td>4–</td>
<td>97</td>
<td>58</td>
<td>22.4</td>
<td>3.4</td>
<td>18.9</td>
<td>22.4</td>
<td>32.7</td>
<td>0.0</td>
</tr>
<tr>
<td>2–</td>
<td>312</td>
<td>193</td>
<td>43.0</td>
<td>16.5</td>
<td>14.5</td>
<td>11.9</td>
<td>13.9</td>
<td>0.0</td>
</tr>
</tbody>
</table>

(a) Filtered instances.
Table: Instances solved by the virtual best solver (VBS) in classes by number of qblocks (#q), number of formulas (#f) in each class, and relative contribution (%) of solving paradigms to instances solved by the VBS.

<table>
<thead>
<tr>
<th>#q</th>
<th>#f</th>
<th>VBS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>70</td>
<td>40</td>
<td>65.0</td>
<td>2.5</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>145</td>
<td>87</td>
<td>62.0</td>
<td>4.5</td>
<td>6.8</td>
<td>17.2</td>
<td>8.0</td>
<td>1.1</td>
</tr>
<tr>
<td>4–10</td>
<td>26</td>
<td>20</td>
<td>30.0</td>
<td>0.0</td>
<td>0.0</td>
<td>40.0</td>
<td>30.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11–20</td>
<td>40</td>
<td>26</td>
<td>23.0</td>
<td>0.0</td>
<td>26.9</td>
<td>11.5</td>
<td>30.7</td>
<td>7.6</td>
</tr>
<tr>
<td>21–</td>
<td>31</td>
<td>11</td>
<td>36.3</td>
<td>0.0</td>
<td>27.2</td>
<td>18.1</td>
<td>18.1</td>
<td>0.0</td>
</tr>
<tr>
<td>2–3</td>
<td>215</td>
<td>127</td>
<td>62.9</td>
<td>3.9</td>
<td>7.8</td>
<td>14.9</td>
<td>8.6</td>
<td>1.5</td>
</tr>
<tr>
<td>4–</td>
<td>97</td>
<td>57</td>
<td>28.0</td>
<td>0.0</td>
<td>17.5</td>
<td>22.8</td>
<td>28.0</td>
<td>3.5</td>
</tr>
<tr>
<td>2–</td>
<td>312</td>
<td>184</td>
<td>52.1</td>
<td>2.7</td>
<td>10.8</td>
<td>17.3</td>
<td>14.6</td>
<td>2.1</td>
</tr>
</tbody>
</table>

(a) Preprocessed instances.
Summary

QBF Solving:
- Different approaches, empirically-driven development of QBF tools.
- Power of different approaches often not reflected in overall rankings.
- Majority of available QBF benchmarks: problems from low PH levels.

Our Empirical Results:
- More fine-grained picture of solver performance.
- Highlighting different strengths in instance classes by alternations.
- VBS: large potential for combining different approaches.

Future Work and Open Problems:
- Risk of convergence of research to certain approaches / formulas.
- Proof complexity and alternations, cf. [BHP17, BBH18, Che16].
References
References

References III

References IV

References V

References VII

Towards Generalization in QBF Solving via Machine Learning.

In AAAI. AAAI Press, 2018.

Solving QBF with counterexample guided refinement.

Expansion-based QBF solving versus Q-resolution.

Solving QBF by Clause Selection.
On Deciding MUS Membership with QBF.

A Non-prenex, Non-clausal QBF Solver with Game-State Learning.

[LE17] Florian Lonsing and Uwe Egly.
DepQBF 6.0: A Search-Based QBF Solver Beyond Traditional QCDCL.
[Let02] Reinhold Letz.
Lemma and Model Caching in Decision Procedures for Quantified Boolean Formulas.

[Lib05] Paolo Liberatore.
Redundancy in logic I: CNF propositional formulae.

The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space.

[Sch78] Thomas J Schaefer.
On the Complexity of Some Two-Person Perfect-Information Games.

[Sha49] Claude Elwood Shannon.
The Synthesis of Two-Terminal Switching Circuits.

[Sto76] Larry J. Stockmeyer.
The Polynomial-Time Hierarchy.
[Ten17] Leander Tentrup.
On Expansion and Resolution in CEGAR Based QBF Solving.

Contributions to the Theory of Practical Quantified Boolean Formula Solving.

[Wra76] Celia Wrathall.
Complete Sets and the Polynomial-Time Hierarchy.
